
NO-""S 647 THE ADN (TWE 1ME) COWLER YAIDATION CIPAILITY 1/P
INLEMETERS' GUIDE VERSION V(U) SOFTECH INC NLTIM

ODNONDC0

UNC 3 SIFI D ENF/041DEC 6

1 iEEEEEEEEmmojiE

III~ ~ i I - 5 3. 1112.2,

L.13.6 -

11&.25

&UCROCO PYt RESOLUTION TEST CHART
N6.,ONAL. OURA6, OF STANDAft- 196,

'I56

%'J

w

%6

% L - ,.! .

,. . The
Admi Compiler Validation Capability

r-v .-.

, Imple enters'Guide

A00 Version I C
VV.

* December 1986
0

DTICEL crEC
DEC 2 8 W 1

John B. Goodenough -.

4: SofTech, Inc.

Waltham, MA. 02254-9197

Prepared for the

ACVC Maintenance Organization
ASD/SIOL

Wright-Patterson AFS OH. 45433-6503

OCopyright Sofrech, Inc., 1986

(@A)a is a registered trademark of the United States Goverment

(Ada Joint Program Office)

4,

S87 12 14 1 O1

.... ,v- v ' -. '- .. .",

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered4)

REPORT DOCUMENTATION PAGE READ_____________

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 16. TYPE OF REPORT & PERIOD COVERED a',,

The Ada Compiler Validation Capability December# 1986
Implemnenters' Guide. Version 1 _ _ _ _ _ _ _ _ _ _ _

6.. PERFORMING ORG. REPORT NUMBER

7. AUTHOR() 8. CONTRACT OR GRANT NUMBER(s)
John B.- Goodenough, Sofech, Inc.PO

S. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
SoffecInc.AREA & WORK UNIT NUMBERS

Waltham, MA 02254-9197

11. CON ROLLING OFFICE NAME AND ADDRESS 12. REPORT DATEa
ACV,. Maintenance Organization December, 1986
ASD/SIOL1. UUKU b5
Wright-Patterson AFB OH. 45433-6503 787UME U~PAS

14. MONITORING AGENCY NAME & ADORE SS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Wright-Patterson UNCLASSIFIED -

i5a. REkA5EFICATION/DWNGRADING

N/A
10. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

IVa *~

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation, Ada Compiler
Validation Capability, ACVC, Validation Testing, Ada Validation office,
AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-1815A, Ada Joint
Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DO PUM 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

q qv

Version 1 (DeC 86) 1 Introduction

Chapter 1

Introduction

The primary purpose of the Ada Compiler Validation Capability (ACVC) is to help decide
whether Ada translators conform to ANSI/MIL-STD-1 81 5A-1 983, "The Reference Manual for the
Ada Language* (the RM). The ACVC has three main components: 1

-t* An Implementer Guide, which describes implementation implications of the
RM and the conditions to be checked by validation tests,

* Test programs to be submitted to a compiler 4

* Validation support tools, which assist in preparing tests for execution and in
analyzing the results of executions. -

This document is the Ada Implementers' Guide (AIG). Although it follows the structure and
numbering of the RM, additional sections have sometimes been created. These sections are
designated with letters - e.g., 8.3.a, 8.3.b, etc. - to distinguish them from sections of the RM.

Each numbered/lettered AIG section contains up to seven unnumbered subsections as
follows:

1 . Semantic Ramifications - This subsection documents semantic implications
that might not otherwise be obvious from a reading of the RM. When
conclusions stated in these subsections are derived from statements in
separate sections of the RM, appropriate references are made so the basis for
the interpretation Is clear. In case of conflict between the AIG and the RM, the
RM takes precedence.

2. Legality Rules - This subsection explicitly lists context-sensitive syntactic and
semantic legality rules to be checked by an Ada translator prior to beginning
execution of an Ada program. In essence, all legality conditions other than
those expressed by syntax productions In the RM are listed here, even if this
listing duplicates wording in the RM. Subtle ways of violating these rules are
discussed In the Semantic Ramifications subsection.

3. Exception Conditions - This subsection explicitly lists the conditions under
which an Implementation is required to raise an exception associated with
some predefined language construct.

4. Test Objectives and Design Guidelines - This subsection specifies the
validation tests to be written, lists the problems to keep in mind while writing
test cases under "Implementation Guidelines," and, when necessary, outlines
the program structure required to satisfy a test objective. At least one test will
be written for each objective except when the objective Is duplicated by an
objective in another section. In such cases, a reference to the implemented
objective Is given. Test objectives are numbered in Increasing order, but not
necessarily consecutively.

'More information about the ACVC can be found in "The Ada Compiler Validation Capability." COMPUTER 14, 6* *?r , (June 1981), 57-64 and in *Ada Compiler Validation: An Example of software Testing Theory and Practice,"
,Tehnical Report TI:..0. Wang Institute of Graduate Studies, Tyngaboro, MA, 01824.

lid ''I

1-1 ,'

I Introduction Version i (Dec 86) P

WJ1
5. Approved Interpretations - This subsection summarizes approved

Interpretations of ANSI/MIL-STD-1815A-1983. These interpretations correct
errors, ambiguities, or inconsisv -,cles in the RM. Such interpretations are ,
reflected In the validation tests. S

In this version of the AIG, only Chapters 2-4 have been fully updated to reflect
approved Interpretations."A.

6. Changes from July 1982 - This subsection briefly describes changes to the
draft ANSI/MIL-STD, dated July 1982. This version was distributed widely as
part of the standardization process. Changes to the July 1982 version are
documented to ensure they are covered by the tests. The changes described
in this and the following subsection comprise all the substantive changes
made to MIL-STD-1 815.

7. Changes from July 1980 - This subsection briefly describes substantive
changes between MIL-STD-1815, July 1980, and the draft ANSI/MIL-STD S
dated July 1982. These changes are documented to ensure they are covered
by the tests.

When referencing a section or paragraph of the RM, the section number is preceded by
RM, e.g., RM 12.3.1. To reference a paragraph within a section, the section number is followed
by a slash, e.g., RM 12.3/3 means paragraph 3 of section 12.3. A similar method is used to p
refer to sections of the AIG. For example, IG 12.31T3 refers to test objective 3 of AIG section
12.3. IG 12.3/S refers to the Semantic Ramifications subsection of AIG section 12.3.

Interpretatlons of the RM are recommended by the Ada Language Maintenance Panel of
the Ada Board and become official (for ANSV MIL-STD-1815A) when issued by the Director,
AJPO (Ada Joint Program Office). These interpretations are contained in Ada Commentaries,
which are identified by numbers having the form AI-ddddd, e.g., AI-00037. Copies of these -
Commentaries can be obtained by contacting the AJPO or the Ada Information Clearinghouse.
The Commentaries are also available online in the account ADA-COMMENT at ADA20.ISI.EDU
and can be mailed electronically to requesters.

Comments on the AIG should be sent to ACVr -f ADA20.ISI.EDU using the same format
as for comments on the RM:

Isection x.y.z(pp) Commenter's Name YY-MM-".
Iversion v
Itopic brief description of nature of comment

The paragraph numbers should use the numbering provided by the AIG, e.g., 12.3.1 (S2)
would mean the second Semantic Ramification paragraph of section 12.3.1. When describing
typographical errors, use brackets (0) to indicate what should be deleted and braces ({}) to
indicate what should be Inserted. Files of AIG comments will be placed in the ADA-LSN
account at ADA20. .

41.

1-.. .

1-2 •

Version I (Dec 86)

Table of Contents

@ "1 Introduction ... 1-1

2 Lexical Elements... 2-1
V. Character Set .. 2 1 "

2.2 Lexical Elements, Separtors and Delmlm 2.......................... 2-2
2.3 Identifiers .. 2-4
2.4 Num eric Literal8 2-5

2.4.1 Dedmal Lterals 2-6
2.4.2 Based Lerals .. 2-7

2.5 Character Literals 2-8
2.6 String Literals 2-9
2.7 Comments 2-12
2.8 Pragm2as 213
2.9 Reserved Words 2-17
2.10 Allowable Replacements of Characters 2-18

3 Declarations and Types .3. 31
3 1 Declarations .. 3-1

3.2 Objects and Named Numbers 3-1
3.2.1 Object Declrations 3-3

__3.2.2 Number Declarations 3-11
3.3 Types ard Subtypes....... 3-1 3

3.3.1 Type Declatons............................3-16
3.3.2 Su.btypeDeclarslons 3-17
3.3.3 Clasellcafdon of Operations 3-19

3.4 Derived TypDefinitions 3-22
3.5 2 3-37

3.5.1 Enumeration Types 3-40
3.5.2 Character Types. 3-42
3.5.3 Boolean Type 3-43
3.5.4 Integer Types 3-44
3.5.5 Operations of Discrete Types 346
3.5.6 Real Types 3-54
3.5.7 Floting Point Types 3-55
3.5.8 Operations of Floating Point Types 3-62
3.5.9 Fixed Point Types 3-63
3.5.10 Operations of Fixed Point Types 3-67

3.6 Array Types 3-69
3.6.1 Index Conutraints and Discrete Ranges........................ 3-71 V

3.6.1.a- Discrete Ranges 3-71
3.6.1.b Index Constrant 3-75

3.6.2 Operatlons of Array Types 3-78--
3.6.3 The Type String 3-82---1

A-..i

I

Version 1 (Dec 86)

Table of Contents - -.
3.7 Re.

3.7 Record Types .. 3-84

3.7.1 Dlscdminants ... 3-89
3.7.2 Discriminant Constraints 3-93
3.7.3 Variant Parts .. 3-107
3.7.4 Operations of Record Types 3-110

3.8 Access Types ... 3-114
3.8.1 Incomplete Type Declarations 3-119
3.8.2 Operations of Access Types 3-125

3.9 Declarative Parts .. 3-127
Names and Expressions 4-

4 esnEx n......e....................................4
4.1 Names .. 4-1

4.1.1 Indexed Components 4-3
4.1.2 Sces ... 4-5
4.1.3 Selected Components 4-8
4.1. Attrbutes 4-18

4 .2 Literais .. 4-22
4.3 Aggregates ... 4-27

4.3.1 Record Aggregates 4-32
4.32 Arry Aggregates....................................... -36

4.4 Expressions .. 4-53
4.5 Operators and Expression Evaluation 4-55

4.5.1 Logical Operators and Short-Circuit Control Forms 4-57
4.5.1.a Logical Boolean Operators 4-57
4.5.1 .b Logical Army Operators 4-58
4.5.1.c Short-circuit Control Form.s 4-59

4.5.2 Relational Operators and Memoership Tests 4-60
4.5.2.a Relational and Member-,hp Operations (Enumeration) 4-61
4.5.2.b Relational and Membership Operations (Character) 4-62
4.5.2.c Relational and Membership Operations (Boolean) 4-62
4.5.2.d Relational and Membership Operations (Integer) 4-63
4.5.2.e Reltionl and Membership Operations (FixedtFloat) 4-64
4.5.2.f Relational and Membership Operations (Array) 4-65
4.5.2.g Relational and Membership Operations (Record) 4-67
4.5.2.h Relational and Membership Operations (Access) 4-68
4.5.2.1 Relational and Membership Operations (Phivat/Ltd) 4-70

4. .3 Binary Adding Operators 4-70
4.5.3.a Integer Adding Operators 4-71
4.5.3.b Floating Point Adding Operators 4-72
4.5.3.c Fixed Point Adding Operators 4-74
4.5.3.d Army Adding Operators (Catenation) 4-74

4.5.4 Unary Adding Operators 4-76
4.5.4.a Integer Unary Adding Operators 4-77
4.5.4.b Real Unary Adding Operators 4-78

4.5.5 Multiplying Operators ... 4-79
4.5.5.a Integer Multiplying Operators 4-80
4.5.5.b Real Multiplying Operators 4-81

,%

Version 1 (Doc 86)
_

or
Table of Contents

4.5.6 Highest Precedence Operators. 4-84 -
4.5.6.a Integer Exponentatlng Operator 4-85

4.5.6.b Floating P t lntng e a 4-86
4.5.6.c Integer Asoluts Vu Oper ... 4-87
4.5.6.d Real Absolute Value Operator (PIxe&M) 4
4.5.6. Scalar Negation Operator 4.9 "

4.5.6.f Array Negation Operator 4-89
4.5.7 Accuracy of Operations with Real Operands 4-89

4.6 Type Conversions ... 4-90
4.7 Qualified Expressions 4-..499
4.8 Allocators 4-101
4.9 Static Expressions and Stae Subtye 4-120 *
4.10 Universal Expressions ... 4-128

5 Statements 5-1

5.1 Simple and Compound Statements 5-1 l
5.2 Assignment Statements S4

5.2.1 Aray Assignments............ 5-9
5.3 If Statements 5-12
5.4 Case Statements 5-14

5.4.a Basic Case Statement Propetiles 5-14
5.4.b When others Can Be Omitted 5-20

5.5 Loop Statements 5-22
5.5.a Properties of Al Loops 5-22
5 -5b FOR Loops- 24

5.5.c WHILE Loops 5-28
5.5.d Continuous Loops 5-28

5.6 Blocks 529
5.7 Exit Statements 5-....................................530
5.8 Return Statements .5................ 5-32
5.9 Goto Statements 5-34

B Subprograms .. 6-1

6.1 Subprogram Declaratons ... 6-1
6.2 Formal Parameters 6-6

6.3 Subprogram Bodles .. 6-18

6.3.1 Conformance Rules 612
6.3.2 Inlne Expansion of Subprograms 6-16

6Subprogram Calls 6-18

6.4.1 Parameter Asoations........... 6-20
6.4.2 Default Parameters 6-35

6.5 Function Subprograms 6-36

6.6 Overloading of Subprograms 6-37
6.7 Overloading of Operators 640

-7

. Jq,,. ., . " , . ". -"' '. . *'" .'. *,'","", '" ' '" %

Version 1 (Dec 86)

Table of Contents

7 Packages ... 7-1
7.1 Package Structure ... 7-1
7.2 Package Specifications and Declarations 7-2
7.3 Package Bodies ... 7-4
7.4 Private Type and Deferred Constant Declarations 7-7

7.4.1 Private Types ... 7-9
7.4.2 Operations on Private Types 7-14
7.4.3 Deferred Constants .. 7-23
7.4.4 Limited Types ... 7 27

8 Visibility Rules ... 8-1
8.1 'Declarative Regions ... 8-.
8.2 Scope of Declarations .. 8-1
8.3 Visibility of identifiers ... 8-3

8.3.a Labels, Loop Names, and Block Names 8-18
8.3.b Loop Parameters .. 8-22
8.3.c Records ... 8-23
8.3.d Enumeration Literals .. 8-24
8.3.e Subprogram and Entry Parameters 8-25
8.3.f Packages ... 8-26

8.4 Use Clauses .. 8-27
8.5 Renaming Declarations ... 8-32
8.6 The Package Standard .. 8-40 .
8.7 The Context of Overload Resolution 8-44

8.7.a General Rules for Overloading Resolution 8-45
8.7.a.1 Nonoverloadable Construct 8-46
8.7.a.2 Syntactic Ambiguity 8-47
8.7.a.3 Ambiguities Regarding V'sibility 8-51
8.7.a.4 Complete Contexts for OvJoadlng Resolution 8-52
8.7.a.5 A Model for an OverloadIng Resolution Algorithm 8-53
8.7.a.6 An Algorithm for Overloading Resolution 8-55
8.7.a.7 Implicit Conversions of Numeric Types 8-57

8.7.b Specific Overloading Resolution Rules 8-62

9 Tasks .. 9-1
9.1 Task Specifications and Task Bodies 9-1
9.2 Task Types and Task Objects 9-3
9.3 Task Execution - Task Activation 9-6
9.4 Task Dependence - Termination of Tasks 9-12
9.5 Entries, Entry Calls, and Accept Statements 9-18
9.6 Delay Statements, Duration, and Time 9-34
9.7 Select Statements ... 9-37

9.7.1 Selective W aits .. 9-37
9.7.2 Conditional Entry Cals 9-40 .
9.7.3 Timed Entry Calls .. 9-42 .

p",

Version I (Dec 86)

~U'U9..Table of Contents

9.8 Priortes ... 9-44
9.9 Task and Entry Attributes ... 9-46
9.10 Abort Statements**.. . 9-49
9.11 Shared Variables 9-51

10 Program Structure and Compilation Issues . 10-1
10.1 Compilation Units - Ubrary Units 10-1

10.1.1 With Clsuses 10-5
10.2 Subunits of Compilation Units 10-9
10.3 Order of Compilation 10-15
10.4 Program brary ... 10-24
10.5 Elabomron of Ubary Units 10-24
10.6 Program Optimization 10-29

11 Exceptions .. 11-1

11.1 Exception Declaratons 11-1
11.2 Exception Handes 11-3
11.3 Raise Staten.ents 11-5
11.4 Exception Handing ... 11-6

. 11.5 Exceptions Raised During Task Communication 11-9
A 11.6 Exceptions and Optimzatons 1110

11.7 Suppressing Exceptions 11-12

12 Genec Units •........... 12-1
12.1 Generic Declaration s 12-1

12.1.1 Generic Formal Objects 12-10
12.1.2 Genedo Formal Types 12-15
12.1.3 Generic Formal Subprograms 12-24

12.2 Generic Bodies 12-31
12.3 Generic Instantiation ... 12-32

12.3.1 Matching Rues for Formal Objects 12-39
12.3.2 Matching Rulesfor Formal Private Types 12-46
12.3.3 Matching Rules for Formal Scalar Types 12-53
12.3.4 Matching Rules for Formal Array Types 12-54
12.3.5. Matching Rules for FormIal Access Types 12-58
12.3.8 Matching Rules for Formal Subprograms 12-63

I..

-ZN

.'.

4: j ,,. .. ,, : ,.,..- . . -, ..,-... -.-..-. , ..-.,... . •...-..-. :,..:';

Version 1 (Dec 86)

Table of Contents

13 Representation Clauses and Impleamentation-Dependent Features 13-1
13.1 Representation Clauses ... 13-1

13.1 .a Multiple Representations for a Type 13-6
13.1.b Forcing Occurrences .. 13-7
13.1.c Representation of Derved Types 13-12
13.1.d The pragma PACK .. 13-14

13.2 Length Clauses .. 13-16
13.2.a Size Specificatlons .. 13-17
13.2.b Collection Size Specifications 13-28
13.2.c Task Storage Size Specifications 13-31 ,
13.2.d Small Specifications 13-33

13.3 Enumeration Representation Clauses 13-37
13.4 Record Representation Clauses 13-40
13.5 Address Clauses .. 13-47

13.5.1 Interrupts .. 13-55
13.6 Change of Representation 13-56
13.7 The Package System 13-57 e

13.7.1 System-Dependent Named Numbers 13-59
13.7.2 Representation Attributes 13-60
13.7.3 Representation Attibutes of Real Types 13-62

13.8 Machine Code Insertions 13-63
13.9 Interface to Other Languages 13-65
13.10 Unchecked Programming ... 13-68

13.10.1 Unchecked Storage Deallocation 13-68
13.10.2 Unchecked Type Conversions 13-69

14 Input-Output .. 14-1.
14.1 External Files and File Objects 14-1

14.2 Sequential and Direct Files ... 14-3
14.2.1 File Management ... 14-3
14.2.2 Sequential Input-Output 14-13
14.2.3 Specification of the Package SequentlallO 14-19
14.2.4 Direct Input-Output .. 14-19
14.2.5 Specification of the Package DirectIO 14-23

14.3 Text Input-Output ... 14-23
14.3.1 File Management ... 14-25 ,-.

14.3.2 Default Input and Output Files 14-29
14.3.3 Specification of Une and Page Lengths 14-31
14.3.4 Operations on Columns, Unes, and Pages 14-32
14.3.5 GETand PUT Procedures 14-38

14.3.6 Input-Output of Characters and Stings 14-39

14.3.7 Input-Output for Integer Types 14-42 .-

14.3.8 Input-Output for Real Types 14-51

14.3.9 Input-Output for Enumeration Types 14-62 ' -i
14.3.10 Specification of the Package TextIO 14-67

14.4 Exceptions in Input-Output 14-67
14.5 Specification of the Package IOExceptions 14-68 "-.J-,'

14.6 Low Level Input-Output.. 1468

.': :: -..~ ~ ~.. .-.': -.- .:- -.-.. ,.: -.-..........-

Version 1 (Dec 86) 2.1 Character Set

Chapter 2
Lexical Elements

'I

2.1 Character Set
Semantic Ramifications
si. Although RM 2.1/3 states "The basic character set is sufficient for writing any program,"
this does not mean an implementation is allowed to support only the basic character set. An
implementation must support the entire set of characters defined in the syntactic category
graphic-character. RM 2.1/3 means a programmer need not use the full character set in order
to write an Ada program. In particular, the replacements allowed by RM 2.10 can be used by
programmers If the codes for sharp (#), bar (I), and quotation (*) do not have a suitable
graphical representation.
S2. "Format effector" is a term defined by ISO' standard 646. The only nongraphic control
characters allowed in an Ada program are the format effectors. The use of any other control
characters, such as backspace, DEL, and NUL, is illegal.
Changes from July 1982
S3. There are no significant changes. 5
Changes from July 1980
S4. % is no longer a member of the basic character set.
ss. Each graphic character corresponds to a unique ISO standard 646 seven-bit coded
character. S
S6. Graphic characters may be represented by different graphical symbols in alternate national
representations of the ISO character set.
Legality Rules

L. Only graphic characters and the format effectors (horizontal tabulation, vertical tabulation,
carriage return, line feed, and form feed) are allowed in Ada programs (RM 2.1/1).

Test Objectives and Design Guidelines

T1. Check that the basic character set is accepted outside of string literals and comments. ,
T2. Check that the lower case letters and other special characters are accepted (see IG S

2.3/T1, IG 2.41T2, IG 2.4.21T7, IG 2.6/T4, and IG 2.7/T4).
T3. Check that the only control characters allowed in an Ada program are the format effectors

(see IG 2.2/T5, IG 2.5/T2, IG 2.6/T5, and IG 2.7/T5).

i

-I.

'ISO stands for Intemational Organization for Standardization.

2-1
I

22xaensSatsn Dm si 1 (Dec 861

2.2 Lexical Elements, Separators, and Delimiters Version 1 (Dec 86)

2.2 Lexical Elements, Separators, and Delimiters
Semantic Ramifications

Si. The character sequence '--' is not cor,.. Jered a compound delimiter (i.e., a lexical unit)
since it introduces a comment, which is itself a lexical unit. Similarly, the quotation character (")
is not considered a delimiter since it is part of a string literal. Finally, the sharp character (#) is
not a delimiter, but is part of a based number.

S2. The end of a line need not be physically represented by character codes in the text. For
example, lines could be represented physically as a string of graphic characters preceded by a
character count.

S3. A period is not a delimiter when it appears in a real literal, but it is a delimiter when it
appears in an expanded name. Similarly, a colon is not a delimiter when used within a based
literal as a replacement for the sharp character (RM 2.10/3).

,.1

S4. Separators are not lexical elements. They may appear anywhere in a program as long as
they are not included in a lexical element. Note that expanded names are made up of !exical
eiements. For example, P.F is composed of three lexical elements: P, ., and F. Separators may
aopear between these lexical elements.

s6. A lexical element is composed of the longest sequence of characters that satisfies the
lxical rules, since RM 2.2/2 says in effect, that if a lexical element is preceded or followed by a
:haracter. must not be possible to adjoin the character to the lexical element to produce a
different lexical element.

S6. Lexical processing of the apostrophe is complicated by the three contexts in which it is
used: character literals, attribute naming, and qualified expressions, e.g.:

if' ('in'a'..')'then

if' ('=')'then -- two character literals, ' (' and ')'

CHARACTER' ('a') -- 'a' qualified by CHARACTER
T'BASE'FIRST -- attribute naming
POOL (K) 'TERMINATED -- attribuo naming

To reso!ve the potenral iaxical ambiguities irrpliec i--i, nc, , that the sequence "apostrophe,
character, no,'-apostrophe" always means the firs' - ostrophe is a delimiter (if it is aready
known not to be the terminating apostrophe fo. , character literal). If the sequence
apostrophe, character, apostrophe" is seen, and i!' .,'3z.:rlg fexical element is an identifier,

the sequence should be considered a character literal if the identifier is a reserved word. If it is
qot a reserved word, the first apostrophe should be considered a delimiter. In short, to perform
;exical analysis with only two-character lookahead, you must sometimes know whether or not
the preceding lexical element is a reserved word.

S7. Two-character lookahead is also needed to process based literals that use colons instead
of sharps. Consider:

X INTEGER range 0..2:- 1;
Y INTEGER range 0..2:10::= 1;
Z : INTEGER range 0..2#10#:= 1;

When a digit is followed by a colon, It is not possible to tell if the sequence is the start, of a
based number or if the colon is the beginning of the :- compound delimiter. This ambiguity can
only be resolved by looking at the character that follows the colon.

se. The rule requiring that a separator appear between numeric literals and/or identifiers (RM
2.2/4) makes a construct such as:

2-2

e 40

mw~ W U .rvvuw, M w.,W~WU1#Jr-W~~r 'IRZIMMW,~J'afZ'm ~, m

Version 1 (Dec 86) 2.2 Lexical Elements, Separators, and Delimiters

i.f X-10mod-2then

illegal, since the literal 10 Is not separated from the Identifiers mod and the literal 2 is not
separated from then.

Changes from July 1982

sq. A program is now defined as one or more compilations (instead of as a single compilation).

si. The horizontal tabulation character is no longer defined as being equivalent to one or more
spaces.

Sl 1. Separators are allowed at the beginning and the end of a compilation.

Changes from July 1980

S12. Delete and null characters are no longer simply ignored; they are specifically illegal (RM
2.1/1).

S13. Format effectors are no longer the only means of Indicating the end of a line.
S14. Horizontal tabulation is not a separator within a comment.

Legality Rules

L1. A lexical element consists of the longest sequence of characters satisfying the definition of
a lexical element (RM 2.2/2).

L2. At least one separator must appear between adjacent numeric literals and/or identifiers(RM 2.2/4).

L3. The only ASCII control characters permitted In Ada programs are CR, LF, VT, HT, and FF
(RM 2.1/1).

L4. No lexical element can extend over a line boundary (since a line boundary is A separator)
(RM 2.2/3).

Test Objectives and Design Guidelines

T1. Check that an Identifier, reserved word, compound symbol, numeric literal, character literal,
string literal, or comment cannot be continued across a line boundary.
Implementation Guideline: This test is primarily Intended to check that implementations accepting only fixed-
length input records do not catenate records, but instead treat end-of-record as a separator. The test should be
coded to ensure that the attempt to opntinue a construct across a line boundary occurs at an input record
boundary. Since input record lengths will vary from one implementation to the next, this test must be
parameterized to accept different Input record lengths. For implementations that accept varable-length input
records up to a maximum length, the "contlnued construct must appear at the end of a maximum-length input
record.

% T2. Check that the delimiters are accepted, especially the compound symbols.

ON T3. Check that at least one space must separate adjacent Identifiers (including reserved
words) and/or numbers.

T4. Check that lexical units such as Identifiers (including reserved words), numbers, and
compound symbols cannot contain spaces.

T5. Check that ASCII control characters other than carriage return, line feed, vertical tabulate,
horizontal tabulate, and form feed, cannot appear In Ada programs outside of character
literals, string literals, and comments.
Implementation Guideline: See IG 2.5/T2, IG 2.61T5, and IG 2.71T5 for tests of character literals, string literals,
and comments, respectively.
Implementation Guideline: Each control character should appear in a separate test. The characters signifying
end of line need not be checked here; they are checked in T1.

2-3

' . 9 -. .. .* - ,.... _ , , , -.. . .. " , . -

2.3 Identifiers Version I (Dec 86)

T6. Check that any of the following - carriage return (CR), line feed (LF), vertical tab (VT),
and torm feed (FF) - are permitted outside string literals and are considered as signaling
the end of a line.
hwpIml entation Guideline: Include LF and a s*c, . ice of one or more CRs as line terminators, as well as more
customary squences such as CR LF and CR FF.

Check that horizontal tabulation Is allowed in comments and between lexical units, where it
is considered equivalent to a space.
Check that one or more spaces, horizontal tabulation characters, or end-of-line characters
are permitted at the beginning or the end of a compilation unit.
Implementation Guideline: Write separate tests for end-of-line characters and the other separators.
Implementation Guideline: Some implemontations may not be able to create or accept files that do not
terminate with an end of line. In this case, the test using blanks and HT. at the end of the compilation file will
not be applicable.

.

2.3 Identifiers
Semantic Ramifications

s". Identifiers (including those used to name library units or subunits) can be as long as the
maximum line length allowed by an implementation. if library unit (and subunit) names can
exceed the length allowed by a standard linker, an Ada implementation must provide a special
!inker.

Changes from July 1982

s2. There are no changes.

Changes from July 1980

S3. There are no significant changes.

Legality Rules

L1. No identifier can be longer than the maxim'i, input line length permitted by an
implementation (RM 2.213).

Test Objectives and Design Guidelines

T1. Check that upper and lower case letters are equivalent in identifiers (including reserved
words). (See also 8.3.d/T1.)
Implementation Guideline: Try some all-upper, all-lower, and mixed case identifiers.

T2. Check that consecutive, leading, and/or trailing underscores are not permitted in identifiers.

T3. Check that identifiers can be as long as the maximum input line length permitted by the
implementation, and that all characters are significant (e.g., not just the first 8 or 16, or not
just the first m and last n characters). Try Identifiers serving as variables, enumeration
literals, subprogram names, parameter names, entry names, record component names,
type names, package names (both library units and subunits), statement labels, block
labels, loop labels, task names, and exception names.
Implementaton Guideline: Maximum-length subprogram names and package names should be checked in
separate tests.

T4. Check that none of the characters ? $ @ #'is permitted in identifiers.

Check that none of the characters &O +,-J:,<->J is permitted in identifiers.
Implementation Guideline: Check specifically for: "• .

2-4

Version 1 (Dec 86) 2.4 Numeric Literals

A.B : TE.R;
C*D B DOOLEM;
type X&Y is ... ;

T5. Check that an identifier cannot start with a digit (see IG 2.2MT3).

T6. Check that the underline character Is significant in an identifier.

2.4 Numeric Literals
Semantic Ramifications

Si. Any preceding + or - sign Is not part of the numeric literal. Instead, the sign combined with
the literal forms an arithmetic expression.

s2. Real literais are often Implicitly converted to some real type (RM 4.6/15). Such conversions
must be exact if the reel literal is a model number of the target type since conversion is a
predefined operation giving a real result, and conversion of a universalreal value to a model S
number of another type must be done exactly (RM 4.5.7/6). If 'DIGITS for a floating point type is
N, the exact decimal representation of 'LARGE will require more than N digits, and this decimal
value must be converted exactly to 'LARGE. For example, if N - 6, 'LARGE is 19_342_803-

890_462_029_940_523_008.
Changes from July 1982

s3. There are no significant changes..

Changes from July 1980

s4. There are no significant changes.

0Legality Rules

L1. No numeric literal can contain more characters than the maximum input line length -6
permitted by an implementation (RM 2.2/3).

Test Objectives and Design Guidelines

T1. Check that underscores are not permitted to:

a. be consecutive within a numeric literal,

b. lead or trail In a numeric literal,

c. be adjacent to (on either side of) the '#', ':', '.', 'E', or 'e' characters in a
numeric literal. 0
Implementation Guideline: Check for both based and decimal literas.

T2. Check that 'E' and 'e' may be used In both decimal literals and basednumbers.

Check that numeric Iterals yield the correct values for both fixed and floating point types.
T3. Check that leading zeros in numeric literals (and in integral subparts such as bases and

exponents) are allowed.

Check that trailing zeros in the fractional part of real literals are allowed.

Check that numeric literals can be as long as the maximum Input line length permitted by
an implementation. A."

Implementaton Guidelne: Use leading or tailing zeroes to extend the length of the literal without producing a
literal whose value is too large.

2-5
.,S%

2.4.1 Decimal Literals Version 1 (Dec 86)

T4. Check that negative exponent values are forbidden in integer literals and are allowed in
real literals (see IG 2.4.1/1T4 and IG 2.4.2/T5).

TS. Check that leading/trailing decimal poitts are not permitted in real literals (including based
literals).

T6. Check that underscore characters in numeric literals have no effect on the represented
value (see IG 2.4.1/T6 and IG 2.4.2/T2).

T7. Check that real literals must contain a point.

T9. Check that Integer literals must not contain a point.

2.4.1 Decimal Literals
Semantic Ramifications

Changes from July 1982
0%

s,. There are no significant changes.

Changes from July 1980

S2. A minus sign is explicitly forbidden in the exponent of an integer literal (i.e., OE-0 is no
longer allowed).

Legality Rules

L1. No decimal literal can contain more characters than the maximum input line length
permitted by an implementation (RM 2.2/3). :-,-.

12. If a decimal literal without a decimal point has an exponent part, the exponent must not
contain a minus sign (RM 2.4.1/4).

Test Objectives and Design Guidelines

T1. Check that underscores are not permitted to:

a. be consecutive within a decimal literal,

b. lead or trail in a decimal literal,

c. be adjacent to (on either side of) the '.', 'E', or 'e' characters in a decimal literal
(see IG 2.4/1Ti). NA

T2. Check that 'E' and 'e' may be used In decimal Iiterals (see IG 2.4/T2).

Check that decimal literals yield the correct values (see IG 2.4/T2).

T3. Check that leading zeros in decimal literals are Ignored (see IG 2.4/T3).

Check that trailing zeros in the fractional part of real literals are ignored (see IG 2.4/T3).

Check that decimal literals can be as long as the maximum input line length (see IG
2.4/T3).

T4. Check that negative exponent values are forbidden in integer literals.

Check that negative exponent values are allowed in real literals (implicitly checked by IG
2.4.1 /T1 3).

TS. Check that leading/trailing points are not permitted in real literals (see IG 2.4/T5). -

2-

Version 1 (Dec 86) 2.4.2 Based Literals

T6. Check that underscore characters in decimal literals do not affect the represented value.

TI 3. Check that decimal values of 'LARGE and 'SMALL are represented exactly (as long as the
line length is sufficiently long).
ImplImntadon Guidelhe: Use digit values of 5-29, in separate tests.

2.4.2 Based Literals
Semantic Ramifications

si. The same literal value can be written in different ways in the source text of a program, e.g.,
0.01E and 0.1; 2#0.01# and 0.25; and 16#0.F# and 4#0.33#. Real literals that do not
represent model numbers need not have the same representation in an executed program. For
example, 0.1 is not a floating point model number, so different occurrences of 0.1 need not have
the same representation, and the representation for 0.1 need not be the same as that for
0.01 E1. Of course, any representation of 0.1 must lie within the correct model interval for the
floating point type (RM 4.5.7).

s2. The TEXT_10 input routines read real values according to the syntax of a real literal. Since
the syntax of a based real literal allows any letter to occur between the sharp signs (#), this
means the reading of a real literal cannot stop just because a letter greater than F is found while
attempting to read a real literal. See IG 14.3.8/S for further discussion.

s-. RM 2.10/3 allows a based literal to be written with colons replacing each sharp. This
affects lexical analysis. Two-character lookahead is needed to process based literals that use
colons instead of sharps. Consider.

X INTZGER range 0. .2:- 1;
Y INTEGZR range 0..2:10::- 1;
Z INTG.R range 0..2#10#:- 1;

When a digit is followed by a colon, it is not possible to tell if the sequence is the start of a
based number or if the colon is the beginning of the := compound delimiter. This ambiguity can
only be resolved by looking at the character that follows the colon.

Changes from July 1962

s4. There are no significant changes.

Changes from July 1980

ss. There are no significant changes. A'

Legality Rules

Li. The base value must be greater than or equal to 2 and less than or equal to 16 (RM
2.4.2/1).

L2. The letters and digits occurring between sharps must have a value less than the value of
the base (RM 2.4.2/4).

L3. The exponent for an Integer based literal must not contain a minus sign (RM 2.4.1/4).

L4. An integer based literal must not contain a point (RM 2.4/1).

L5. If one sharp Is replaced with a colon, the other must also be replaced (RM 2.10/3).

L6. No based literal can contain more characters than the maximum Input line length permitted I
by an implementation (RM 2.23).

2-7 ,

* •' i ."~..p.. . ..*. f

W11 W - -iry -U V 1WP -g c~W~ j '~u~u ' wi-~ - - -ww w

F 2.5 Character Literals Version 1 (Dec 86)

Test Objectives and Design Guidelines

Ti. Check that a based literal always yields a nonnegative value.

T2. Check that nonconsecutive embeddeo L..iderscores are permitted in every part of a based
literal, and do not affect the value.

T3. Check that based literals with bases 2 through 16 all yield correct values.

T4. Check that the digits and extended digits of a based literal are within the correct range for
the number's base.

T5. Check that negative exponents are forbidden in integer based literals.
Implementaton Guideline: Use an exponent of -0 in one case.

Check that negative exponents are allowed in real based literals (implicitly checked by IG
2.4.1/T13).

T6. Check that the base must not be less than 2 or greater than 16.

17. Check that letters In a based literal may appear in upper or lower case.

T8. Check that underscores may not be adjacent to the '#' (see IG 2.4/T1).

T9. Check that 'E' and 'e' may appear In based lterals (see IG 2.41T2).

T10. Check that leading zeros in based literals are ignored (see IG 2.4/T3).

Check that based literals can be as long as the maximum input line length (see IG 2.4/T3).

T11. Check that two-character lookahead Is used for based literals having colons in place of ,
sharps.

2.5 Character Literals -.9.-

Semantic Ramifications 1t
si. The type of a character literal is determined contextually (see IG 8.7). The determination

uses the rules for resolving the type of a subprogram identifier, since a character literal is
considered to be declared as a function (RM 3.5.1/3.

S2. Character literals can be overloaded (RM 8.7/1).

package P is
type ENUR is ('A', 'B'); -- overloads 'A' in CHARACTER
VENUM ENUM :- 'A'; -- legal
N _NURE : EN :- 'C'; -- illegal; 'C' does not have type ENUM.

end P;

S3. Of course, the character literals must be visible.

with P;
package Q is

V : P.NM :- 'A'; -- illegal; P.'A' not visible
end Q;

* S4. The type of a character literal is determined In part by the visibility of declared character
literals:

with P; use P;
package R is I.

2-8
• " '. '--. ,_ . ,- ,' 'o-.,-.-'=' , = ,. r ..%- . ., ,-,.' ,, , , ,, .. "..'; :.,-.,-,'.,' .-,, '. ". "._' .'- "'-.-,',;''-, '.p

Version I (Dec 86) 2.6 String Literals

9 : BOOLIAN := 'A' = 'D'; -- legal
C : IOOL3Z : 'A' = 'A'; -- illegal

end R;

Since the only visible 'D' is STANDARD.'D' (RM C/13), 'A' and - are uniquely resolvable in the
first case. 'A' - 'A' is illegal because the operand can have either type ENUM or type
CHARACTER, and the equality operators for ENUM and CHARACTER values are both visible.
s5. It is not always possible to replace a character string with a catenation of character strings.
For example, although a multidimensional array aggregate can be written using a string literal,
e.g., (1 ..2 => "EF"), it is not legal to replace the literal with a catenation of literals, e.g., (1 ..2 =>
"E" & "FU) (see IG 4.3.2/S).

Changes from July 1982

so. There are no significant changes.

Changes from July 1980

S7. There are no significant changes.

Legality Rules

LI. A character literal cannot extend across a line boundary (RM 2.2/3).
L2. The character enclosed In apostrophes must be one of the 95 ASCII graphic characters,

including space (RM 2.5/1).
L3. The type of a character literal Is determined by the visibility of corresponding character

literal declarations, and by the context in which the literal is used (RM 8.7/1-2).

Test Objectives and Design Guidelines

T1. Check that all character literals can be written.
Implementatoen Guideline: Check the position number within CHARACTER.

Check that upper and lower case characters are distinct.
T2. Check that nongraphic characters are not allowed in character literals, including format

effectors.
Implemontaton Guideline: Check all nongraphic characters except those signifying end of line (see IG 2.2/T1
for end-of-line test).

T3. Check that forms such as lf'b'in'a'..'c' and T'BASE'FIRST are lexically analyzed correctly.
T4. Check that the type of an overloaded character literal is correctly determined, using the

visibility of enumeration types and operations on these types.
Implementalion Guideline: Use a case like 'A' - 'D', which is legal, and a case like 'A' -A' which is not legal.

2.6 String Literals
Semantic Ramifications

SI. The lower bound of a string literal Is determined according to the rules for positional
aggregates (RM 4.2/3; see also IG 4.2/S).
S2. Although the note In RM 2.6/6 suggests that it is always possible to substitute a catenation
of string literals for a single string literal, in fact, there are several contexts in which this

• substitution is not allowed, either because the bounds of the catenation will not be the same as

2-9

.1'.I.1'.,, - .,,.;. . , ., .. .,.,-,. - .. . ,.,... - . . - .- . -..; ".

2.6 String Literals Version 1 (Dec 86)

the bounds implied for the literal, or because the rules of the language require that a string literal -:..4
be used, not an expression yielding a string value. For example, although the value of --.;"
catenated string literals is equivalent to thr 'Rlue of a string literal, the bounds of the catenation
need not be the same as the bounds that w. ,Id be associated with the literal:

subtype STR is STRING (2..4);
procedure P(X : STR (2..4));

The call P("ABC) is legal since the string literal is given the bounds of the formal parameter.
However, the call P("A" & "BC") Is illegal since the lower bound of this catenation is the lower
bound of the left operand, "A" (RM 4.5.3/4), and the lower bound of "A" is the lower bound of its
index subtype (RM 4.2/3 and RM 4.3.2/9), i.e., 1. Hence, "A" & "BC" has the bounds 1 ..3, and
these bounds do not satisfy (i.e., equal) the bounds of the formal parameter.

s3. The use of a string literal can be legal where a catenation would be illegal. In particular,
string literals can be used when writing aggregates of a multidimensional array type, but a
catenation of string literals cannot be used in place of the string literal:

type MULTI is array (l..3, 1..2) of CHARACTER;
VARI MULTI (l..3 => "AB");

VAR2 MULTI (1..3 => ('A', 'B');
VAR3 MULTI (l..3 => "A" & "B"); -- illegal

The catenation is illegal because RM 4.3.2/2 only allows string literals (or aggregates) to be
used to give the value of the last dimension of a multidimensional array aggregate.

S4. String literals are never padded in assignment or comparison contexts.
ss. The character literals corresponding to the graphic characters contained within a string
literal must be visible at the place of the string literal (RM 4.2/5). Moreover, since a string literal
creates an array of values whose components must have a particular type, the characters used
within the literal must belong to the corresponding character type. For example:

package P is
type NS is array (1..5) of CHARACTER;

end P;

with P;
package Q is

VAR P.NS "ABCDE"; -- legal

end Q;

The string literal is legal because the character literals are of type CHARACTER and are directly
visible within 0. In addition, string literal formation and assignment are basic operations (RM

"- 3.3.3/4,7) declared in P, and are visible throughout P's scope (RM 8.3/18). Since P's scope
includes 0, the use of these operations is legal within 0. But suppose the component type of
the array is declared directly within a package:

package R is
type INUM is ('A', 'B', 'C', BLUE); ..

type STR is array (l..3) of INUM;
end R;

with R; 4"

package S is - -

VAR R.STR := "ABC": -- illegal

end S;

%.

2-10

Version 1 (Dec 86) 2.6 String Literals

The string literal is illegal because the character literals for type ENUM are not directly visible. If
we added a use clause to package S so the enumeration literals were directly visible, then
"ABC" would be a legal literal of type R.STR, but "ABD" would not be legal because the only
visible '1' Is a value of type CHARACTER, and the string literal requires values of type ENUM.
s6. Evaluation of a string literal can raise CONSTRAINTERROR if the characters used in the
string literal do not satisfy the constraint of the literal's component type:

type NO-CHAR is new CHARACTER range ASCII.NUL .. ASCII.BEL;
-- no graphic characters

type NO LIT is array (POSITIVE range <>) of NO CHAR;
X : NO LIT (1..3) := "AC"; -- CONSTRAINTZRROR

"ABC" raises CONSTRAINTERROR because none of the values 'A', 'B', or 'C' belong to the
NOLIT component subtype. (Since NOCHAR is derived from CHARACTER, NOCHAR is a
character type and all the character literals in CHARACTER are derived for NOCHAR's base
type. Hence, 'A', 'B', and 'C' are values of NOCHAR's base type, and they are visible, so
"ABC" is a legal string literal.)
S7. See IG 4.2/S for a discussion of how the type of a string literal can be determined. (In
particular, the characters used within a string literal do not help determine its type.)
se. A string literal can also be written using % signs as string brackets instead of quotation
characters (RM 2.10/4). When enclosing % signs are used, the sequence of characters must
",ot contain a quotation character, and any % sign in the string's value must be doubled in the
enclosed sequence of characters.

Changes from July 1982
sq. There are no significant changes.

Changes from July 1980

sio. There are no significant changes.

Legality Rules

Li. A string literal cannot extend across a line boundary (RM 2.2/3).
L2. Nongraphic ASCII characters are not permitted in string literals (RM 2.2/2).
L3. If a percent sign occurs at the beginning of a string literal (replacing a quotation character),

the final quotation character must also be replaced, the enclosed sequence of characters
must not contain any quotation characters, and any percent characters within the original
sequence of characters must be doubled (RM 2.10/4).

L4. The type of a string literal must be determinable solely from the context in which the literal
appears, but with the understanding that the literal is a value of a one-dimensional array
type whose component type Is a character type (RM 4.2/4).

L5. The character literals corresponding to the graphic characters contained within a string
literal must be visible at the place where the string literal appears (RM 4.2/5).

Exception Conditions

El. CONSTRAINT-ERROR is raised for a null string literal if the lower bound Is 'FIRST of the
index base type (RM 4.2/3).

E2. CONSTRAINTERROR is raised for a string literal if any character in the literal does not
belong to the component subtype (RM 4.2/3 and RM 4.3.2/11).

2-11

~*5 a t -~ i 5 .. -hi --- 5 mr -*% * a* * u i % ,

f T.J

2.7 Comments Version 1 (Dec 86)
J.

Test Objectives and Design Guidelines
Ti. Check that string literals started with a quotation character cannot end with a percent -

character, and vice versa.

T2. Check that " must be doubled when used within string literals.

T3. Check that string literals cannot cross line boundaries (see IG 2.2/T1).

T4. Check that all printable characters are permitted in string literals.
Implementation Guideline: Check that the replacement characters (see RM 2.10) are represented correctly in a
string literal, e.g.. I is represented as '1'. not as ASCIIBAR.

T5. Check that nongraphic characters cannot be included in string literals. ,
J

T6. Check that all ASCII characters, Including control characters, can appear anywhere in
string values.
Implementation Guideline: In particular, check that string values can include NUL and DEL.

17. Check that a string literal having the maximum permitted line length can be generated.

T8. Check that upper and lower case letters are distinct within string literals.

T9. Check that string literals have the appropriate bounds (see IG 4.3.21T1 4).

2.7 Comments
Semantic Ramifications

S1. Although the horizontal tabulation character Is allowed in a comment, no other control.-:,-t. .
characters are allowed (RM 2.2/2). However, A1-00339 allows (but does not require) an
implementation to accept an extended character set as long as the additional characters only
appear in comments. (This allows understandable comments to be written in languages other
than English, e.g., French and Japanese.)

Approved Interpretations p

s2. An implementation is allowed to accept an exten:ed character set (i.e., graphic characters
whose codes do not belong to the ISO seven-bit -r-ed character set (ISO standard 646) as
long as the additional characters appear only in cc.-, -,ents (i.e., the additional characters only
appear after two adjacent hyphens and precede the end of the line) (A-00339).

Changes from July 1982

S3. There are no significant changes.
Changes from July 1980 ,.

s4. There are no significant changes.

Test Objectives and Design Guidelines

Ti. Check that a comment is terminated by the end of the line, i.e., not by the next -- , whether
on the same line or on the next line.

T2. Check that legal Ada statements and pragmas contained in comments have no effects
when contained in comments.

T3. Check that consecutive hyphens in a string literal are not treated as the beginning of a .-
comment. ...- '

V.,

2.12 1

&S.I

~~u-----.WW-W WWr VU VMJ'W

Version 1 (Dec 86) 2.8 Pragmas

Check that a single double quote can appear in a comment.

T4. Check that every graphic character can appear in a comment.

Check that horizontal tabulation characters can appear in a comment (see IG 2.2/T6).

TS. Check that nongraphic characters (other than horizontal tabulation and end-of-line
characters) cannot appear in a comment.

2.8 Pragmas
Semantic Ramifications

si. A pragma may follow any semicolon except one appearing in a discriminant part or a
formal part. Syntactically, a formaLpart declares the formal parameters of an entry, an accept
statement, or a subprogram; therefore, forbidding pragmas in formal parts means pragmas are
not allowed after the declaration of such formal parameters. Pragmas, however, can appear
after generic formal parameter declarations, since these declarations do not, syntactically,
constitute a formal-part. Since pragmas end with a semicolon, one pragma can follow another.

s2. Pragmas are allowed "at any place where the syntax rules allow a construct defined by a
syntactic category whose name ends with 'declaration,' 'statement,' 'clause,' or 'alternative,' or
one of the syntactic categories, variant and exceptionhandler (RM 2.8/5). This means a
pragma can precede any construct terminated by a semicolon. In particular, pragmas can
appear at the beginning of a component list, at the beginning of a declarative part or sequence
of statements, before the first declarative item in the visible or private part of a package, before
the first declaration In a task specification, before a select alternative, before an entry call in a
conditional or timed entry call, and before the alignment clause in a record type representation.

..- eIn addition, pragmas can appear after comments if they could appear when the comment is not
present (i.e., comments are ignored when determining the legality of a pragma's position).

S3. Pragmas are not allowed "In place of" a construct. For example, a sequence of statements
must contain at least one statement; a pragma cannot be given in place of the required
statement

s4. Pragmas are also allowed "at any place where a compilation unit would be allowed," i.e., a
sequence of "compilation units" presented to a compiler can consist of one or more pragmas,
and a sequence of pragmas can appear before any compilation unit. Although pragmas are
allowed before and after compilation units, there is no ambiguity in compilations containing more
than one unit, since the pragmas that can occur before compilation units are different from those
that can appear after.

s. If a compilation unit contains a "pragma" that does not appear in one of these allowed
places, the program is illegal, e.g., the occurrence of a LIST pragma in the middle of a
statement or after a semicolon in a formal part is illegal.

Ss. The position of most pragmas Is further restricted by the RM in terms of the syntactic
context In which they can appear, e.g., an INLINE pragma is only permitted in a declarative part
or after a library unit In a compilation. If a pragma does not appear in its required place, it "has
no effect" (RM 2.8/9). For example, placing an INLINE pragma in the statement list of a library
subprogram would have no effect on the compilation unit. In particular, the unit would not be
considered illegal; the pragma appears In a place allowed for pragmas in general. It just does
not appear In a place allowed for the INLINE pragma.

S7. Similarly, an Invalid pragma argument has no effect on the compilation unit; such pragmas
are ignored. For example, a PRIORITY pragma with an out-of-range value or a nonstatic
argument is not Illegal, but is merely ignored. Also, an INLINE pragma whose argument is not

2-13 ,
I

4 d~~/ E~ d %' ~ ~ - .f., ./' . -' .~ . ~ . ~ .* - -r, . -.

2.8 Pragmas Version 1 (Dec 86)

declared previously in the same declarative part (see RM 6.3.2/2) is ignored, but is not illegal. "
Finally, names appearing in arguments need not be visible according to the usual rules. In .- .- *,
short, a syntactically well-formed but ot 'wise improper argument is never illegal. For
example, the pragma INTERFACE require, i language name. Note that PL/I is not a name
according to the Ada syntax. Therefore,

pragma INTERFACE (PL/I, SIN); -- ignored

must be ignored; PUI can only be considered an expression. On the other hand,

pragma INTERFACE (APL\360, SIN); -- illegal

is illegal, because the back-slash character is allowed only in string literals, character literals,
and comments.

Se. Pragma names are not reserved. In addition, the normal visibility rules do not apply to
them (RM 8.3/1), so they never become hidden or overloaded as a result of a declaration. For
example, a declaration such as

procedure LIST (I : INTEGER);

has no effect on the visibility of the LIST pragma.
S9. Although RM 2.8/8 states that predefined pragmas must be supported (i.e., recognized) by
every implementation, this does not mean an implementation must obey the pragma. Some
pragmas give "permission" to the implementation to perform some action (e.g., pragma
SUPPRESS; RM 11.7/3,4). The implementation does not have to take advantage of such
permission.

SiO. A compiler that does not recognize a pragma will be unable to determine the type or value
of an expression used in an argument it overloaded identifiers occur in the argument; in fact, the
compiler will be unable to determine whether a name should be parsed as a name or as an
expression. The compiler must verify that the argument is syntactically well-formed (or else it
would not be able to determine where the pragma ends). But the compiler is not allowed to ,p
reject a program if the argument contains identifiers that cannot be associated with any visible ,
ceclaration, or contains ve'.r4oaaed identifiers th:' .-. t he resolved uniquely. In short, if an
argum~ent is invalid tor aly of these reasons, the p' mas "nave no effect" on the rest of the
program; in particuiar, the program cannot be reje ' For example,

VAR : STRING(l..5);
pragma WHOKNOWS (VAR (1, 3));

The pragma (and containing compilation unit) is not iegal, even though VAR seems to have too
many subscripts. The "VAR" that appears in this implementation-defined pragma need not have
anything to do with the visible declaration of VAR.

S i. The RM does not state whether listing is initially enabled or disabled. The choice is
implementation dependent, e.g., under the control of a compiler option. '"

I W

S12. To deduce the allowed position of each pragma (i.e., the position in which the pragma is
allowed to have an effect), it Is first necessary that the pragma appear in a legal position, i.e.,

* after a semicolon delimiter except within a formal part or discriminant part; or

* at any place where the syntax rules allow constructs whose names end with
"declaration", "statement", "clause", or "alternative"; or ,,

at any place where the syntax rules allow the category, variant or exception- .
handler; or ell,"

2-14

Version 1 (Dec 86) 2.8 Pragmas

at any place where a compilation unit is allowed;

s13. Given that the pragma appears in a legal position for it to have an effect, any additional.,
restrictions listed in Appendix B or stated in the body of the RM must also be obeyed, as
specified for each pragma:

" LIST and PAGE may appear wherever a pragma may appear (RM B/6 and RM ON
B/10).

" MEMORYSIZE, STORAGEUNIT, and SYSTEMNAME may only appear at
the start of a compilation before the first compilation unit (RM B/7, RM B/13,
and RM B/15).

" OPTIMIZE may only appear in a declarative part (in particular, not in a package
specification) (RM B/8). --V

" PRIORITY may only appear in a task specification or immediately within the
outermost declarative part of the main program (RM B/1 1). .

*CONTROLLED and SHARED must appear immediately within the declarative
part or package specification in which the argument is declared, after the
declaration of the argument (RM B/2 and RM B/12).

*INTERFACE must appear immediately within the declarative part or package
specification In which its second argument is declared, after the argument's I
declaration, or it must appear after the declaration of a subprogram library unit
and before any subsequent compilation unit (the second argument must be the
name of the library unit) (RM B/5); see also IG 13.9/S.

* INLINE must appear immediately within a declarative part or package
specification and after the declaration of each subprogram or generic
subprogram named in the pragma, or after a subprogram or generic
subprogram library unit in a compilation and before any subsequent compilation ...

units (the argument must be the name of the library unit) (RM B/4, RM
6.3.2/2-3, and IG 6.3.2/S). (Note: the argument can be the name of a
subprogram declared by generic instantiation.)

* ELABORATE must appear Immediately following the context clause of a
compilation unit; each argument must be the simple name of a library unit
mentioned by the context clause (RM B/3). -'

" PACK must appear In the same context that a representation clause for its
argument would appear (RM B/9).

" SUPPRESS must appear immediately within a declarative part or package
specification, and must name a check identifier and the name of an object, type,
subtype, subprogram, task unit, or generic unit declared earlier in the
declarative part or package specification (RM B/14). '.

S14. Although new implementation-defined pragmas are allowed, the RM does not allow
extensions of language-defined pragmas, e.g., by adding new arguments or new rules
governing their use.
s5s. Implementation-deflned pragmas must be such that deletion of the pragma never changes
the legality of the program. For example, an implementation-defined pragma must not have the
effect of changing the character set, of enabling the subsequent inclusion of assembly language
code, or of enabling language extensions.

sis. Expressions in pragmas never contain occurrences that force the default representation of
a type to be determined. For further discussion, see IG 13.1 .b/S.

r-.5

I.

g ~ - 4% .£. ... ~ ~. ~ ~. ~ -4 < d 4' .*''U' 1' U 4 ~ ? s -. . .*]

.,5 .-

2.8 Pragmas Version 1 (Dec 86)

* ' S17. Although implementation-defined pragmas must not affect the legality of programs, they
can increase the set of erroneous programs. For example, consider a pragma that says a
subprogram will not be called recursively:

pragma NONRECURSIVE (PROC);

This pragma is equivalent to an assertion that the named subprogram will never be called
recursively. An implementation can generate code that takes advantage of this information.
Such code will have unpredictable results If the subprogram is, in fact, called recursively. This
means the set of erroneous Ada programs will have been enlarged. However, since the
presence or absence of the pragma does not influence the legality of the subprogram body or its
callers, the pragma is allowed. Similar reasoning would allow a pragma ASSERT, whose
argument is evaluated and, if false, raises an exception.
Changes from July 1982

Si8. Pragmas may appear where the syntax allows declarations, statements, clauses, or
alternatives, but not in place of these constructs.

S19. It is now stated explicitly that pragmas are allowed as compilation units.
S20. The pragmas defined in Annex B must be supported by every implementation.

S21. Pragmas containing names of compilation units need not appear after the named unit.

Changes from July 1980

S22. The expression given as the argument to a pragma need not be static.

S23. Implementation-defined pragmas do not affect the legality of a program, whether .. .
recognized or not.

S24. INCLUDE is no longer a predefined pragma.

S25. ELABORATE, PAGE, and SHARED are now predefined pragmas.
S26. The pragma SYSTEM is now called SYSTEM-NAME.
Legality Rules

L1. A pragma must onl, appear as a compilation L' -or before or after any syntactic construct
terminated (as opposed to separated) by a se.,miicalon (RM 2.8/3-5).

Test Objectives and Design Guidelines

Implementatbor; Guideline. Several tests are designed to check the treatment of pragmas whose identifier is not
"ecognized b tie compiler. A highly non-mnemonic name should be used.

T'. Check that no pragma is allowed in the following contexts.
lmplementaton Guideline: Check LIST and an unrecognized pragma.

a. after the reserved word exception In a block, subprogram body, package

body, or task body;

b. in an expression, statement, or actual parameter part;

c. in a discriminant part or formal part;

d. as an alignment clause in a record type representation;

e. as the only statement in a sequence of statements, declarations, clauses, or
alternatives.

2-16

*,...;'', . -2.' .' . . *. % :- , ; '';.j. * -. * . --* -- .'.-.-.-.'. .-.-. .' _....* *-.","'i,'"'''. 2,.. "'- ' -. . -C,-C--

Version 1 (Dec 86) 2.9 Reserved Words

T2. Check that a predefined or an unrecognized pragma may have arguments involving
" 0' identifiers that are not visible, or overloaded Identifiers without enough contextual .

It . information to resolve the overloading, or visible identifiers used incorrectly (e.g., wrong %

types, incorrect number of subscripts, procedure call, operator symbol, etc.), or an arbitrary
number of arguments, optionally in named notation.
Implementation Guideline: For each of the pragmas having an argument, try an unexpected form of argument.

T3. Check that the argument to a predefined or unknown pragma cannot be a declaration,
subtype indication, or assignment statement.
Implementation Guideline: Leave off the terminating semicolon.

T4. Check that an entity with the name of a predefined pragma can be declared and does not
hide the pragma. j.

Implementation Guideline: The following names should be used: CONTROLLED, ELABORATE, INLINE.
INTERFACE, LIST, MEMORY SIZE, OPTIMIZE, PACK, PAGE, PRIORITY, SHARED, STORAGEUNIT.
SUPPRESS, and SYSTEMNAME).

Check that an unrecognized pragma with the same identifier as a declared entity or with a
reserved Identifier (check both cases) does not make the program illegal.

T5. Check that LIST and PAGE work correctly (check both ON and OFF).
Implementation Guideline: Check that when LIST or PAGE are used between compilation units or at the
beginning or end of a compilation, there Is no problem.
Implementation Guideline: Check the use of LIST(OFF) at the beginning of a private part.
Implementation Guideline: Check LIST(OFF) and PAGE in the middle of a line.
Implementation Guideline: Check that these pragmas can appear at the beginning of a sequence of .
statements, declarations, alternatives, and clauses.
Implementation Guideline: Include a pragma that occurs after a comment.

• T6. For each implementation-defined pragma and an unrecognized pragma, check that:

% the arguments must be names or expressions, and

* deletion of the pragma from a program does not make the program illegal.

2.9 Reserved Words
Semantic Ramifications

s t. DIGITS, DELTA, and RANGE are reserved words used both in declarations and as
predefined attributes (RM 3.5.8/4, RM 3.5.10/4 and RM 3.6.217). The lack of boldface type for
these attributes does not imply they are unreserved.

Changes from July 1982

S2. There are no changes.

:* Changes from July 1980

t4 S3. "abs" Is now a reserved word.

Legality Rules

L1. Reserved words cannot be given user-defined meanings via declarations (RM 2.9/3).

Test Objectives and Design Guidelines

* TI. Check that all the reserved words are actually reserved.

.. .*-. T2. Check that only the specified set of reserved words Is actually reserved.

2-17

2.10 Allowable Replacements of Characters Version 1 (Dec 86)

Implementation Guideline: Consider reserved words and keywords in languages other than Ada. e.g.. P_/I
(IBM F and optimizing versions, MULTICS, standard, PL/C, etc.), Pascal, JOVIAL (J73, J731, J73C, J3. J3B).
Tacpl, CMS-2, SPL/I, COBOL, FORTRAN 77, Algol 60, Algol 68. Check that these are not reserved in Ada
unless they are the same as an Ada reserved v, ;t I.

T3. Check that all predefined attributes (axcept DIGITS, DELTA, and RANGE) and all
predefined type and package names are not reserved.

2.10 Allowable Replacements of Characters
Semantic Ramifications

St. The allowable replacement characters are not an option to the implementation, but an
option to the writer of Ada programs. Each Implementation must support these replacements.
s2. In a based number and in a string literal, the replacement characters must replace both the
or"* at the beginning and the end of the literal. This is not the case when I replaces 1. The
following is legal.

type ENUM is (El, E2, Z3, E4);
E : ENUM;

case E is
V when El ! E2 1 E3 =>

DOSOMETHING;
when E4 =>

null;
end case;

S3. In addition, when checking whether discriminant parts, subprogram specifications, etc.,
conform (see RM 6.3.1), the use of the replacement characters does not affect conformance
since the replacements do not change the meaning of a program (RM 2.10/5 and Al-00350).
For example, the following formal parts conforTn to each other:

procedure P (S : STRING := (1 1 3 => 'x')); -- P1
-- VerticaI ±.azzs ia aggragate

procedure P (S : STRING := (1 ! £ 3 => 'x')); -- conforms to P!
-- Exclamation points in aggreg-ata

procedure P (S . STRING := (1 I 2 3 => 'x')); -- conforms to P1
-- One of each in aggregate

%W
%. procedure Q (S : STRING := "Foo"); -- Q1

-- Double quotes in string

procedure Q (S : STRING := %Foo%); -- conforms to Q1
-- Percent signs in string

S4. The replacement of # with a : In a based literal affects the lexical processing of a program
because two-character lookahead Is needed to see if a colon Is part of a based number or part
of an assignment compound delimiter:

X : INTEGER range 0..2:- 1;
Y : INTEGER range 0. .2:10::= 1;
Z INTEGER range 0..2#10#:= 1;

-,-

| 2-18'p..i
5* - p.. , ' ". .. ' ,•... ._._o'...;. .'- . '- . .'.,.•. -.. . - - .'. ,,. ,..

Version 1 (Dec 86) 2.10 Allowable Replacements of Characters

Changes from July 1982

Ss. There are no significant changes.
Changes from July 1980

ss. There are no significant changes.

Legality Rules

L1. The vertical bar can only be replaced by an exclamation mark if the vertical bar is being
used as a delimiter (RM 2.10/2).

L2. Both # characters In a based literal must be replaced by : when replacement characters
are used (RM 2.10/3).

L3. Both " characters for a string literal must be replaced by % if replacement characters are
used (RM 2.10/4).

L4. A string literal bracketed with percent signs cannot contain a quotation character (RM
2.10/4).

Test Objectives and Design Guidelines

Ti. Using colons instead of sharps, check that nonconsecutive embedded underscores are
permitted in every part of a based literal, and do not affect the value. I

T2. Using colons instead of sharps, check that based literals with bases 2 through 16 all yield
correct values.

T3. Using colons instead of sharps, check that the digits and extended digits of a based literal
are within the correct range for the number's base.

T4. Using colons instead of sharps, check that negative exponents are forbidden in integer
based literals.
Implementation Guideline: Use an exponent of -0 in one case.

TS. Using colons Instead of sharps, check that the base must not be less than 2 or greater than

16.
0

T6. Using colons instead of sharps, heck that letters in a based literal may appear in upper or
lower case.

17. Using colons instead of sharps, check that underscores may not be adjacent to the colons.
T8. Using colons instead of sharps, check that 'E' and 'e' may appear in based literals.

T9. Using colons instead of sharps, check that leading zeros in based literals are ignored.
Using colons Instead of sharps, check that based literals can be as long as the maximum
input line length.

Ti 0. Check that a based literal cannot start with a # and end with a: and vice versa.
T21. Check that a string literal delimited by a % character must not contain a" character.

Check that a % character must be doubled to appear in a string literal delimited by a %
character.

T31. Check that where I is used as a separator, I can be used instead.
Implementation Guideline: Check all contexts: choices in a case statement alternative or variant part.
component associations of an aggregate, discriminant associations of a discriminant constraint, and in an
exception handler.

2-19

.% %

Version 1 (Dec 86) 3.2 Objects and Named Numbers

Chapter 3 p

* Declarations and Types

3.1 Declarations P

Semantic Ramifications

s1. The concept of an entity is important in defining the semantics of renaming declarations,
which declare a new name for an entity but not a new entity (see IG 8.5/S). P

S2. A named number is an entity because it is declared by an object declaration.

s3. The term "object" is further defined in RM 3.2/1-7.

Changes from July 1982

s4. A generic instantiation is no longer regarded as generating implicit declarations.

Ss. Elaboration also applies to compilation units.

Changes from July 1980

E.. The list of Ada entities has been extended by adding generic units and entry families.

S7. The concept of elaboration is now strictly a run-time concept. The legality of a declaration
is now clearly independent of whether or not it is ever elaborated. -

3.2 Objects and Named Numbers
Semantic Ramifications

Si. A function call does not return an object since the result of a function call is not listed in RM
3.2/2-7. A function call returns a value (RM 6.5/1).

S2. Although the syntax allows the declaration of an object with an unconstrained array type (or "" %
"

an unconstrained record type with discriminants that have no defaults), the rules in RM 3.6.1/6 0
and RM 3.7.2/8 forbid such forms of object declaration for variables. These rules, however, do
allow the declaration of a constant whose subtype indication denotes an unconstrained array or
record type. In this case, the subtype of the constant is determined by the initial value (RM
3.6.1/7 and RM 3.7.2/9). For example:

X : conastant STRING := "ABC"; 0

X has bounds 1.3.

S3. The := in object declarations represents the assignment operation since RM 3.2.1/8
specifies that Initial values "are assigned" to objects. On the other hand, the := that specifies
the default initial value for a subprogram In parameter does not represent the assignment
operation. It is a notation used to specify a default actual parameter value, which is why in
parameters having limited types can have default expressions (see IG 6.4.2/S).

S4. Since assignment is not declared as an operation for a limited type (RM 7.4.4/1), no initial
value can be provided for a limited type in an object declaration. Since constant declarations
(except for object declarations having the form of a deferred constant declaration; RM 7.4/2)
require an initialization expression, the lack of assignment means a constant object-declaration S
can never be written for a limited type.

3-1I
%i

-v-, ~ ~ _V _1 ._-. -, .1,-- -;,',..,...,,' -11 !1.:",'-" .,,_.., , ,. .,,.,,, .,. . ..6,,:, .J ..U. .. , J,..,.,...." '."• .

3.2 Objects and Named Numbers Version 1 (Dec 86)

ss. The effect of evaluating functions appearing in multiple declarations is supposed to be the ..-.

same as the effect of the equivalent sequence of single declarations (AM 3.2/10). For example, V ,
suppose F is a function that returns succesr v\ integer values, starting with the value one. Now "-' -
consider the effect of the folowing declaration:

type AnR i array (X&TURAL range <>) of INTEGER;
S1, 52 : ARt (1..V) :- (others => F):

The multiple object declaration must be considered equivalent to:

S1 : ARR (1..F) : (others => F);
S2 : AR (1..) := (others => F);

Since the subtype indication of an object declaration is evaluated before the initialization
expression (RM 3.2.1/5-6 and RM 3.2.1/15), these declarations are, in turn, equivalent to:

S1 ARR (1.-7) :(1..1 => F);

S2 : ARR (1..V) := (F, F, F);

SI has bounds I..1 and initial value (1..1 => 2). S2 has bounds 1..3, and its initial value
requires that F be evaluated three times. Since the order of evaluation of the expressions in an
aggregate is not defined (RM 4.3.2/10), S2 can have any of the following values: (4, 5, 6), (5, 4,
61 (4, 6, 5), (6, 4, 5)1 (6, 5, 4), and (5, 6, 4). No other set of values and subtypes is allowed for
SI and S2. p.

se. Similarly, consider a record declaration with default discrminants defined with the same .,'

function F:

type RIC (Di, D2 : INTEGER := F) is .*.,

record null; end record.
RI, R2 : REC;

Here F must be evaluated once for each default discriminant needed in an object declaration,
and since there are, in effect, two object declarations, F must be evaluated four times. Since
the order of evaluation of default expressions is not defined (RM 3.2.1/15), all that can be said
about RI is that its initial discriminant va!.es :) . :t do; ,ed whether RI .D' equals
I or 2. R2's discriminants have the values 3 and 4.

S7. Now consider the declaration:
,%"

S3, S4 : array (1..F) of ARA (1..F) (others => (others => F)):

The Fs in the constrained array definition are evaluated (in an undefined order); therefore, S3
either has the bounds 1..1 or 1..2, and similarly, its component type is either ARR (1.2) or ARR -
(1-.1). In either case, its initial values are 3 and 4. S4 has bounds 1..5 or 1 ..6. .,

se. Since multiple object declarations are considered different declarations, the use of a
constrained array definition In a multiple object declaration declares objects having different
types: WN

, F: array (1.-10) of INTEGER;

E and F cannot be assigned to each other or compared for equality because they have different
(anonymous) base types.

Changes from July 1982

s9. There are no significant changes. '. .
3-.2., .%

." ,"- ." .. _"_'/ ...- _'.'- '._' __.' -_____ -"" """ " " " .. "" "" """ 3-2 "

~~UuUnyM'yUURMW~UWuWuWWW WV W5"WMW W MW W WWv 'M WViVW% WVW WW%-v WVw WN -~---'

Version 1 (Dec 86) 3.2.1 Object Declarations

Changes from July 1980

sio. The semantics of multiple object declarations is different - the subtype indication or array
type definition is evaluated once for each named object, and so is any initialization expression.

Si 1. An unconstrained array definition is not allowed in a constant declaration.

Test Objectives and Design Guidelines

T1. Check that in a multiple object declaration, the subtype indication and the initialization
expression are evaluated once for each named object that is declared, and the subtype
indication is evaluated first. Check that the evaluations yield a result equivalent to the
corresponding sequence of single object declarations.
Implementation Guideline: Check for all types: enumeration, integer, float, fixed, array, record, access, and

.. private. Use constraints containing function calls to ensure that the subtype indication and initial value are
evaluated once for each object, and that the subtype indication is evaluated first.
Implementation Guideline: Check for both variable and constant declarations.
Implementation Guideline: Include object declarations that use subtype indications and declarations that use a
constrained array definition. Use at least one constrained array definition that has a component type with an
index or discriminant constraint. to ensure that these constraints are also evaluated at the correct time.

Check that default discriminant expressions are evaluated once for each declared object in
a multiple object declaration.
Implementation Guideline: Repeat this check for a generic unit when the multiple object declaration has a
generic formal type and the actual parameter is a type with default discriminants.

T2. Check that if a multiple object declaration (for a variable or a constant) uses a constrained
array definition, the declared objects have different types (see IG 3.2.1 /T6).

.- T3. Check that when several record components are declared in a single component
.", declaration, the subtype indication is evaluated once for each declared component, and

any initialization expression is evaluated once for each component when an object of the
type is declared (without an explicit initialization) (see IG 1.7MT).

'9 T4. Check that when the full declaration of several deferred constants is given as a multiple
declaration, the initialization expression is evaluated once for each deferred constant (see
IG 7.4.3/T2).

3.2.1 Object Declarations

-" Semantic Ramifications
St. Although the value of a loop parameter can change, it is defined to be a constant by RM

3.2.1/2, so it cannot be used as the target of an assignment or passed as an in out or out
parameter.

S2. The name declared by a renaming declaration is not included in the list of declared
constant objects because a renaming declaration does not declare a new object; it only declares
a new name for an entity (RM 8.5/1). If the renamed entity is a constant, then the new name
denotes a constant (RM 8.5/4) and so cannot be used in contexts where a variable is required

3s (e.g., on the left side of an assignment statement).

S3. If a constant has an access type, the designated object is nonetheless considered a
variable. It is only the access value that cannot be modified.
S4. The value of a constant cannot be modified by an assignment statement because of the
restrictions stating that: 1) the target of an assignment must be a variable (RM 5.2/1); 2) an

,~-,., actual in out or out subprogram or entry parameter must be a variable (RM 6.4.1/3); and 3) an

*; 3-3

.5 "" " " " -. -' ,', * .. 5. ; " -., :", , ." ' ,, " . .."', "*. ". " .' . ".. '".."'""""' ' - """"""'" ''r,.,..,, . ."

3.2.1 Object D leetalons Version 1 (Dec 86) I

actual in out gmneel parameter must be a variable (RM 12.3.1/2). Since these are the only .,.

contexts that alow modification of an object's value (directly or indirectly by assignment), and - .

since constants cwat be used in these cr-r'exts, it follows that a constant's value cannot be
modified by an assignment operation.

S5. A task object is a variable even though it cannot be assigned to. This effect of the
definitions in RM 3.2.1/2-3 Is Intentional, to allow task objects (and other objects having a limited
type) to be passed as in out parameters of subprograms, entries, and generic units.

se. Variables can be updated automatically by the underlying hardware when certain events
such as I/O transfers occur. Such updates do not contradict the statement in RM 3.2.1/3 that 7.

assignment is th only way to update the value of a variable because implicit updates by a
system-defined tlsk are allowed if the variable is marked as a shared vanable (see RM 9.11/9).
An implementation cannot assume that the value of a shared variable is unchanged between
assignments made within a particular task.

S7. Although declarations are elaborated in the order of their occurrence (RM 3.9/3 and RM
7.2/3), it is not generally efficient for an implementatior, to allocate space for an object just when
its declaration is elaborated. It is generally more efficient to allocate all needed space in a
single operation. This is possible if all expressions occurring (implicitly or explicitly) in an object
declaration are free of side effects, as is often the case. But when expressions in object
declarations have side effects, the needed space cannot be easily computed in advance
because the nl*es specify the order in which the exp,-es.;ions are to be evaluated. For example,
consider:

X : XNTIGR range 1 .. F+1 F: -- = 2, then 3
Y : constant STRING (1..F+X =>); -- F = 4
Z : STIUG (I..); -- F =5 .-.

If F returns successive integer values starting with the value 2, then X will have the subtype
INTEGER range 1..3 with initial value 3. Y w, have the subtype STRING (1 ..7), and Z, subtype y
STRING (1..5). The space for Y cannot be computed until both Fs in X's declaration have been
evaluated. In particular, it would be incorrect to evaluate Y's initialization expression (to
determine Y's subtype, and consequently, the soace needed to nold Y) before evaluating X's
i;:alization expression. ntaz. , oK,.cts are created S
(see RM 3.2.1/6) because in the case of unconstr1- I array arid record constants, the initial
value determines the subtype of the constarn and, t -re, r-w much soace is needed.',,

S8. More than one default expression can be specK: for a;"

type LlNa is-
record

A, B : INTEGER "3 "
end record;

type O'T3R is -

record (4,
C : INNER (4, 5)

end record; 5',

X

RM 3.2.1/14 speclie that default initializationc are considered from the outermost composite 9*,

type to the imnnlnl. Thus, in the above example, X.C.A equals 4, and the default expression . -.
given for componenft A and B is not evaluated. "-. S..-

sq. If an object declaration's subtype indication denotes an Uncorstrain(d record type that has

3-4

*545. ~~~~~ %5 '

Version 1 (Dec 86) 3.2.1 Object Declarations
I

default discriminants, the default expressions are not evaluated if an explicit initialization
expression is given (RM 3.2.1/6). ..

Sio. If default expressions are specified for several components of a record, RM 3.2.1/6 says all
the expressions must be evaluated before any values are assigned to a component. Even so,
constraint checks for a component can be performed as each default expression is evaluated;
the requirement to check that an Initial value belongs to a component's subtype is stated ,
independently of the rule specifying when assignments are to be performed (see RM 3.2.1/16,
which specifies the check, and RM 3.2.1/15 which specifies the sequence of operations). In
particular, the required check is not a part of the assignment operation. Consequently, these
checks can be performed any time prior to assignment of an initial value. For example:

type R is
record

A, B, C : INTEGER range 0 1 = F;
end record:

X : R;

Assuming F retums the values 1, 2, and 3 on successive calls, CONSTRAINTERROR can be
raised after the second call, preventing any third call from being made.

S1 1. RM 3.2.1/16 requires that initial values of subcomponents belong to the subtype of the
component. For components having an array type, this means no subtype conversion is
performed:

type S is
record

STR : STRING (2. .3) "AB";
end record;

Xl : STRING (2. .3) := "AB"; -- no CONSTRAINT ERROR
X2 :; -- CONSTRAINT ERROR raised

No CONSTRAINTERROR is raised for X1 because a subtype conversion is applied to the
initial value, "AB*, before checking that it belongs to the subtype STRING (2.3). The subtype
conversion gives "AB" the bounds 2..3. No such conversion is performed for the initialization of
X2.STR, and since "AB" has bounds 1..2 (see RM 4.2/3 and RM 4.3.2/9), CONSTRAINT-
_ERROR will be raised. This shows that the := used to define default initial values of
components does not Imply exactly the semantics of the assignment statement. (Note: the
same effect holds for :- used to define default initial values of subprogram parameters.
Moreover, the aggregate (STR -> "AB") will raise CONSTRAINTERROR since no subtype
conversion is applied to "AB (RM 4.3.2/11).) .
S12. RM 3.2.1/16 does not require a subtype conversion for array constants declared with an
unconstrained array type since the subtype Is determined by the initial value.
S13. A scalar variable can be given an Implicit initial value (see RM 3.2.1/17) if the variable is a
subcomponent with a specified default value.

S14. RM 3.2.1/18 says "The execution of a program is erroneous if it attempts to evaluate a -
scalar variable with an undefined value." This means that an implementation can assume that a
scalar variable always has a value that satisfies its constraint (because an out-of-range value
can never be assigned to such a variable either by an assignment statement, by default
initialization, or when returning from a subprogram with a scalar in out or out parameter). The
use of a scalar variable as an in out actual generic parameter, or as an out subprogram
parameter, is never erroneous, even if the variable has an undefined value when an
instantiation of the generic unit is elaborated or when the subprogram is called. Such uses are

3-5

-11 A

3.2.1 Object Declarations Version 1 (Dec 86)

not erroneous because only the names of such actual parameters are evaluated (RM 6.4.1/4, .. .
RM 6.4.1/7, RM 12.3/17, and AI-00365). (For example, if the variable is given as the indexed
component A(I), only the object denoted by A(l) is determined; its value is not considered.) The
use of an undefined scalar variable as a subprogram in out parameter is, however, erroneous,
because the value must be checked against the formal parameter's constraint (RM 6.4.1/5-8).

Si5. A constant having an array or record type can have an undefined scalar component:

R1 RIC; -- undefined component values
Cl constant REC := RI;

An attempt to reference a scalar component of C1 is intended to be considered erroneous
(AI-00374).

Si. Evaluation of the name of a scalar variable or constant is not erroneous (even if the
variable has an undefined value) if the name occurs as the prefix for the attributes ADDRESS,
FIRSTBIT, LASTBIT, POSITION, or SIZE. In these cases the value of the prefix is not
needed (AI-00155):

X INTEGER;
Y INTEGER X'SIZE; -- not erroneous

S17. Although RM 3.2.1/18 says the execution of a program is erroneous if it attempts to apply
a predefined operator to a variable that has a scalar subcomponent with an undefined value, it
;s not erroneous to apply a logical operator to an array variable having undefined components it
the operands of the logical operator have different lengths; in such a case, CONSTRAINT-
_ERROR is raised before any array component is evaluated (AI-00426). For example,
execution of the following program is not erroneous:_:" .

type ARR TYPE is array (INTEGER range <>) of BOOLEAN;
type R (D : INTEGER) is

record
A : ARR TYPE (1 .. D);

end record;
R1 R(1):
R2 R(2);
R3 : (2)= Rl.A or R2.A; -- C,NSTRAINTERROR is raised (AI-00426)

S18. The assignment of an array object is not erroneous even if some or all subcomponents
have undefined scalar values since assignment is not an operator (RM 3.3.3/4). The use of
reiational operators, logical operators, and cstenation is erroneous, however, if either operand
has an undefined scalar subcomponent. This means that implementations can assume that
values of subcomponents always satisfy the corresponding subcomponent constraints
whenever these operators are used.

Si9. Although it is convenient to speak of "the use" of a variable or an operator as erroneous,
strictly speaking, it is only the evaluation of such a variable or an operator that is erroneous; a
program cannot be rejected as erroneous unless an evaluation actually occurs:

declare
X : INTEGER;

begin
if FALSE then

Y :=X+ 1;
end if; .. ,

end;

3-6

a aaa a ,~.~

,.1

Version 1 (Dec 86) 3.2.1 Object Declarations
p

A program containing this block cannot be called erroneous because the statement requiring
evaluation of an undefined scalar variable can never be executed. "p-
S20. The evaluation of the attribute X'SIZE is never erroneous, even if X has an undefined

value when the attribute is evaluated. The evaluation of the attribute requires an evaluation of
the name serving as the prefix, and an evaluation of a simple name just determines the denoted 4-

object 'RM 4.1/9).
5/

S21. If the full declaration of a private type declares a scalar type and a variable of the private ,
type has an undefined value, an equality comparison using the variable will be erroneous
because the predefined equality for the private type is the predefined equality for the type
actually used to represent the private type. Since the actual type is a scalar type, RM 3.2.1/18
will apply.

S22. If a record type with default discriminants is used as the subtype indication in an object
declaration for a variable, each default discriminant value must be checked for compatibility with
its use within the declared object, as specified in RM 3.7.2/5 (see AI-00308). For example:

type R (D : INTEGER := -1) is A
record UP

COMP : STRING (D .. 10); 5-"-

end record;

X R; -- CONSTRAINTERROR I
-- '

When the default value of the discriminant is checked for compatibility with its use in declaring
X.COMP, CONSTRAINT ERROR will be raised since the index range -1..10 is not null and -1
does not belong to STRING's index subtype, POSITIVE (RM 4.3.2/11). Similarly, consider:

type R2 (D : -NTEGIR :- -2) is
record

case D is
when -10 .. -2 =>

C1 :R(D)
when others =>

C2 INTEGER;
end case;

end record;

Y R2; -- CONSTRAINTERROR

CONSTRAINTERROR is raised because the default discriminant value, -2, is used. Y
contains component C1 when the discriminant value is -2. Since -2 is not a compatible -

discriminant value for this component, CONSTRAINTERROR is raised. If the default
discnminant value had been -1, then the initial value of Y would not have contained component
C1 and no exception would be raised (see IG 3.7.3/S and AI-00358). %.

Changes from July 1982 I
S23. Dependence on the order of evaluation of subcomponent initializations is no longer
erroneous. (This change means that Implementations cannot assume that the same value is
produced for each initialization expression, no matter in what order the expressions are
evaluated.)

S24. Only scalar variables and scalar components can have undefined values. All composite
objects are considered as having defined values.

3-7 NO.

,. , ,. ; . -. v *- .,~ '.* .. . ',-. * .,., .* -%- 5.,- %*,, * , , % , .,.... :' ',','
:k ' : : i i i ii-

3.2.1 Object Declarations Version 1 (Dec 86)

Changes from July 1980

S25. Only an attempt to evaluate a scalar variable (including a scalar subcomponent) is
considered erroneous.

Approved Interpretations

S26. When the discriminant of an object is determined by default, CONSTRAINT ERROR is
raised if a discriminant value is not compatible with the type of the object (Ai-00308). See IG
3.7.2/S for further discussion of such compatibility checks. a.

S27. A constant can have an undefined scalar component. An attempt to use the value of such
a component is considered erroneous (A-00374).

S28. Evaluation of the name of a scalar variable (or constant) having an undefined value is not
erroneous it the name occurs as the prefix for the attribute ADDRESS, FIRSTBIT, LASTBIT,
POSITION, or SIZE (A1-00155).

S29. If the operands of a predefined logical operator do not have the same number of
components. the execution of a program is not erroneous; CONSTRAINTERROR is raised
(Al-OC426)

Legality Rules

1. Te rw., .ype of an initialization expression in an object declaration must be the same as
, tme base ype or the object being initialized (RM 3.2.1/ 1).

L2. Object declarations containing the word constant must have an initialization expression
d_. (RM 3.2 1'2), except for deferred constant declarations (i.e., except when the object being

declarec 'as a private or limited private type, the declaration appears in the package that
declares '. ,rivate type, and the declaration appears prior to the full declaration of the
private iy'e .RM 7.4/4)).

L3 An nit:ahi-tton expression is not allowed for objects having a limited type (RM 7.4.4/6).

4 A const>', declaration is not allowed in a package if: 1) its subtype indication is a private
--t constraint; 2) the decl!rnti'(- of-curs ;n the package that declares

-, . ine constant deciaratiur uccurs betore the full declaration of the
, F.. 7 4,4). (Such a deciaration is in :!legal deferred constant declaration.)

.-5I' ; red in an object declarati ;, must not have been declared in any
1.. ; _rcton the same declarative rucjion, except that the full declaration of a

".0 deferrei ,.orstant must be preceded by a deferred constant declaration for the same
!dentifie- ;.1 3 3 '5 and RM 7.4.3/1).

.r No twQ :dentifiers in an object declaration's identifier list can be identical (RM 3.2!10 and

.- _ The u. ,f a r;ame denoting a declared object is not allowed in the object's subtype

rdicat: 1n constrained array definition, or Initialization expression (RM 8.3/5).

Exception Condi!ons

For an oi, ject declaration that specifies an initial value and that declares:

ca - <a:.r vanable or constant, CONSTRAINTERROR is raised if the initial ..-.
e s outside the range specified by the subtype indication (RM 3.2.1/16,
; 4, and RM 3.5/3).

a? Pf, null constrained array variable or constant, CONSTRAINT ERROR is

3-8

Version 1 (Dec 86) 3.2.1 Object Declarations

raised if corresponding dimensions of the initial value and the object do not
have the same length (RM 3.2.1 il 6 and RM 5.2/2).

. a null constrained array variable or constant, CONSTRAINTERROR is raised
if the initial value is not a null array value.

" a constrained variable or constant with discriminants, CONSTRAINTERROR "..
is raised if corresponding discriminants of the initial value and the object do
not have the same value (RM 3.2.1/16, RM 3.3/4, and RM 3.7.2/6).

" a constrained access variable or constant, CONSTRAINTERROR is raised if
the initial value is not null, the designated type:

" is an array type, and the index bounds of the object designated by the
initial value do not equal those imposed by the access subtype (RM
3.2.1/16, RM 3.3/4, RM 3.8/6, and RM 3.6.1/4).

" has discriminants and the discriminant values of the object designated
by the initial value do not equal those imposed by the access subtype
(RM 3.2.1/16, RM 3.3/4, RM 3.5/6, and RM 3.7.2/6).

E2. For an object declaration that does not specify an initial value, CONSTRAINTERROR is
raised if any default value (for a subcomponent) does not belong to the subtype of the
subcomponent being initialized (see IG 3,7/E for further details) (RM 3.2.1/16).

E3. For an uninitialized object declaration whose subtype indication denotes an unconstrained
type with discriminants that have defaults, CONSTRAINTERROR is raised if any default
discriminant value does not belong to the discriminant's subtype or if the value is not
compatible with its use within the record. (The value is only checked for subcomponents
that exist for the subtype defined by the default value, and only for subcomponents whose
subtype definition depends on a discriminant (AI-00358)) (AI-00308; see also IG 3.7.2/S).

E4. CONSTRAINTERROR can be raised when the subtype indication or constrained array
definition is elaborated. See IG 3,3,2/E and IG 3.6.1 .b/E for further information.

E5. STORAGEERROR is raised by an object declaration if there is insufficient storage
available to hold the object (RM 11.1/8).

Test Objectives and Design Guidelines

T1. Check that objects having a limited private type or a subcomponent of a limited private type
cannot be given initial values.

Check that objects having a task subcomponent cannot be given initial values (see IG
9.2/T1).

T2 Check that a task object cannot be given an initial value (see IG 9.2/T1).

T3. Check that constant object declarations must have an explicit initialization expression.
Implementation Guideline: Check for all nonlimited types.
Implementation Guideline: Include a case when a default value exists for every component of the object.

T4. Check that unconstrained array defin'tions are not permitted in object declarations.

T5. Check that an identifier declared by an object declaration cannot have been declared
previously in the same declarative region (see IG 8.3/T1 -T8).

Check that an identifier denoting a declared object cannot be used in its own declaration
(see IG 8.3/T1 1).

T6. Check that if several identifiers are declared in the same object declaration with an array
type definition, they each have a unique type.

,"o,

3.2.1 Object Declarations Version 1 (Dec 86)

Check that objects declared with an array type definition in separate object declarations

each have a unique type.

T7. Check that object declarations are E . orated In the order of their occurrence, i.e., that
expressions associated with one declaration (Including default expressions, if appropriate)
are evaluated before any expression belonging to the next declaration.
Implementation Guideline: Include a check for objects having a generic formal type with default values.

Check that expressions in the subtype indication or the constrained array definition are
evaluated before any initialization expressions are evaluated.
Implementation Guideline: Include a case where no explicit initial value is provided and the subtype indication
contains an index or discriminant constraint.
Implementation Guideline: Include a case where the constrained array definition's component declaration
contains an index or discriminant constraint.

T8. Check that if an explicit initialization expression is given for an object declaration, no
default expressions are evaluated.
Implementation Guideline: Include a check for default discriminant expressions.

Check that if a default expression is evaluated for a component, no default expressions for
any subcomponents are evaluated.
Implementation Guideline: Include a check for a generic formal type.

Check that if a discriminant constraint is given and if no initial value is specified, default
expressions for the discriminants are not evaluated, but default expressions for other
components are evaluated.
Implementation Guideline: Include a check for a generic formal type.

TI 1. Check that when a variable or constant having an enumeration, integer, float, or fixed 'v.-
is declared with an initial value, CONSTRAINTERROR is raised if the initial value les ';"'

outside the range of the subtype.
Implementation Guideline: Check for a generic formal type (see IG 12.3.3/T5).

T12. Check that when a variable or constant having a non-null array subtype is declz.: .d with an
initial value, CONSTRAINTERROR is raised if corresponding dimensions of the initial
value and the subtype do not have the same length.
Implementation Guideline: Check for generic formal types also.

Check that CONSTRAINTERROR is raised for the declaration of a null array objv if the
initial value is not a null array.

Ti 3. Check that when a variable or constant having a constrained type with discriminants is
declared with an initial value, CONSTRAINTERROR is raised if corresponding
discriminants of the initial value and the subtype do not have the same value.
Implementation Guideline: Use both record types and private types with discriminants.
Implementation Guideline: Include a check for a generic formal type with discriminants.

Ti 4. Check that if the subtype indication in an object declaration denotes an unconstrained type
with default discriminants, and no explicit initial value is provided in the object declaration,
CONSTRAINTERROR is raised if a default discriminant value is not compatible with the
discriminant's subtype or with its use within the declared object (see IG 3.7.2/T1 3-T1 6).

Ti5. Check that when a variable or a constant having a constrained access type is declared
with an initial non-null access value, CONSTRAINTERROR is raised if an index bound or
a discriminant value of the designated object does not equal the corresponding value
specified for the access subtype.

T1 6. Check that when a variable having a record or private type is declared without an explicit

3-10

N, "%. r
" ' "% , "

""" P
% '4 °

" t
" ° '

°' ' /
't -' " " €

"r".
- '/ '" % , '* .. '

% :
%
, / .%"" ."" "%..' -" ""."=/ "." "". " "" ".''

'
' ""

,
". =" ' '

Version 1 (Dec 86) 3.2.2 Number Declarations
e

initialization, CONSTRAINT ERROR is raised if a default value for a subcomponent does 0%
not belong to the component's subtype (see IG 3.71T8).

T17. Check whether all default Initialization expressions are evaluated before any value is
checked to see if it belongs to a component's subtype.
Implementation Guideline: Try one case where an out-of-range default discriminant value is used later to
define a component subtype, and a case where a non-discriminant default value does not belong to its
component subtype.
Implementation Guideline: Repeat the check for a generic formal type.

3.2.2 Number Declarations
Semantic Ramifications

si. In many ways, the name introduced by a number declaration acts as a macro for a literal
having the value of the Initialization expression. However, since a number declaration is stated
to be "a special form of object declaration" (RM 3.2/8), a named number is considered to be an
object. This means that an address clause can be specified for a named number:

ONE : constant := 1;
for ONE use at...

if an implementation accepts this representation clause, then it means that storage is provided
to hold the specified value at the specified address. Of course, such an address clause would •
be illegal for a literal, since a simple name denoting an object must be used (RM 13.5/3-4), and
a literal is not a simple name.

S2. A named number can be used where its equivalent literal could not be used:

" :" constant := -1;

for I inM1 .. 10 loop -- legal
for I in -1 .. 10 loop -- illegal

The signed literal is illegal when the other bound of the range in a loop is also a literal (see IG
3.6.1 .a/S and RM 3.6.1/2), but the named number can be safely used in place of the literal.

S3. The type of a named number is determined by the type of the initialization expression, and
this type is determined by the form of the literals and attributes used in the expression. See IG
4.10/S for further discussion.
Changes from July 1982

S4. There are no significant changes.

Changes from July 1980

ss. There are no significant changes.

Legality Rules
S

L. The initializing expression in a number declaration must be a static expression having the -
type universal integer or universal real (RM 3.2.2/1).

1-2. An Identifier declared in a number declaration must not have been declared in any
preceding declaration of the same declarative region (RM 8.3/15 and RM 7.4.3/1).

L3. No two identifiers in a number declaration's identifier list can be identical (RM 3.2/10 and S
t,,. RM 8.3/15).

3-11

3.2.2 Number Declarations Version 1 (Dec 86)

L4. Use of a name denoting a named number is not allowed in the initialization expression for

the named number (RM 8.3/5). " "- :

Test Objectives and Design Guidelines

T1. Check that the following attributes cannot appear in a number declaration because:

they do not return universal Integer or universalreal values: ADDRESS,
BASE, CONSTRAINED, FIRST (for a scalar or array subtype), IMAGE, LAST %
(for a scalar or array subtype), MACHINEOVERFLOWS, MACHINE-
_ROUNDS, PRED, PRIORITY, RANGE, SUCC, TERMINATED, and VAL.

" they do not return static values: COUNT, LAST-BIT, LENGTH, FIRST-BIT,
POSITION, and STORAGESIZE. .%

" they do not return static values when their prefixes are not static types: POS
and SIZE.

" the returned value is not static if the argument is not static: POS.

Check that a user-defined function, operator, or the operator "&" cannot appear in a
number declaration.
Check that a string literal or character literal cannot appear in a number declaration.

T2. Check that an integral number name cannot be used in a context requiring a real value,

and a real number name cannot be used in a context requiring an integer v -'.
Implementation Guideline: Check discrete ranges, initialization expressions, discriminant value: hoices in
case statements and variant parts, assignment statements, equality comparisons, qualified expres,. . --al
parameters, and the value of delta or the bound of a range of a real type definition. , z. .

T3. Check that the following attributes can appear in number declarations:

* for prefixes denoting a static scalar type: SIZE.

- e for prefixes denoting a static scalar type and for static arguments: POS.

* for static floating point prefixes: DIGITS, EMAX, EPSILON, LARGE,
MACHINE EMAX, MACHINEEMIN, MACHINEMANTISSA, MACHINE
_RADIX, MANTISSA, SAFEEMAX, SAFELARGE, SAFESMALL, SMALL

e for static fixed point prefixes: AFT, DELTA, FORE, LARGE, MANTISSA,
SAFE_EMAX, SAFELARGE, SAFESMALL, SMALL.

Check that certain SYSTEM constants can appear in number declarations: FINEDELTA.
MAXDIGITS, MAXINT, MAXMANTISSA, MEMORY-SIZE, MIN_INT, TICK, end
STORAGEUNIT.

T4. Check that an identifier in a number declaration cannot have been declared previously in
the same declarative region (see IG 8.3/T1 -T8).

Check that the declared identifier cannot be used in the initialization of its own declaration
(see IG 8.3/T1 1).

T5. Check that integer and real literals, as well as named numbers, can be used in the
declaration of named numbers (see IG 4.10/M.

3-12

,}. ' "

Version 1 (Dec 86) 3.3 Types and Subtypes

3.3 Types and Subtypes
Semantic Ramifications

Si. Scalar types are not the only types whose values have no components. Values of access
types and private types without discriminants also have no components.

S2. The classes of types defined In RM 3.3/2 are mutually exclusive and collectively
exhaustive, i.e., every type that can be declared in Ada belongs to exactly one of these classes.
However, other classes also exist:

* numeric types are integer types and real types (RM 3.5/1).

" realtypes are fixed point types and floating point types (RM 3.5.6/1).

" discrete types are integer and enumeration types (RM 3.5/1).

" limited types are limited private types, types having a component of a limited
type, and task types (RM 7.4.4/2).

s3. The name declared by a type declaration sometimes denotes a constrained base type (a
subtype) rather than a base type (see IG 3.3.1/S).

s4. Since a type is a subtype of itself (RM 3.3/4), the terms type and subtype are, strictly
speaking, interchangeable. The RM, however, tends to use the term "type" to mean base type,
vnd the term "subtype" to mean a constrained base type or a type mark declared with a subtype
declaration.

ss. The visibility rules forbid certain forms of recursive type declaration, namely, those in which
a type mark is used in its own declaration (RM 8.3/5):

type T is
record

A : T; -- illegal; T not yet visible
end record;

type U is array (1..10) of U; -- illegal; U not yet visible

type R is digits R'DIGITS; -- illegal; R not yet visible

task type S is
entry START (X S); -- illegal; S not yet visible

end S;

s6. Private types and incomplete types present additional possibilities for illegal recursive type
definitions:

package Q is
type P0 is private;

type P1 is private;
subtype 5P1 is Pl;

type P2 is private;
subtype 5P2 is P2;

private

3-13

3.3 Types and Subtypes Version I (Dec 86)

type PO is access PO; -- illegal; 8.3/5
type P1 is new SP1; -- illegal; 7.4.1/4 -- -\ ,
type P2 is access SP -- legal

type V;
type V is access V; -- illegal; 8.3/5

end Q;

The full declaration of PO is illegal because the previous declaration of P0 is hidden and the
current declaration is not yet visible (RM 8.3/5). The same reasoning makes the full declaration
of incomplete type V illegal. The full declaration of P1 Is illegal because RM 7.4.1/4 fo- irs 'he
use of any name denoting an incompletely declared private type in a derived type definition.
The full declaration of P2 is allowed because the declaration of SP2 is visible.

S7. Indirect forms of recursive type declarations are forbidden by RM 3.3/8. For example, the
full declaration of R2, below, is illegal because of this rule:

package P1 is
type R1 is private;
type R2 is private;

private
type R1 is

record
ER1 : R2;

end record;
type R2 is

record
ER2 : R1; -- illegal

end record;
end P1;

Similar examples can be constructed using array type declarations as the full declaru.; ns of R 1
and R2. Also, it would be illegal if R2's full declaration were a derived type declaration:

type R2 is new RI; -- illegal ..
S8. Now consider more complex examples:

package P is
type T is private; -- (1)
subtype ST is T;

private
type A is array (1..0) of ST; -- (2); builds on (1)
type R (D : BOOLEAN TRUE) is

record
case D is

when FALSE =>
null;

when TRUE =>
C A; -- (3); builds on (2)

end case;
end record;

3-14

.- A * -.. 1

Version 1 (Dec 86) 3.3 Types and Subtypes
"

-- Now consider alternate full declarations of T that have components N

-- of type T, and so are illegal.
type T is now A; -- illegal
type T is array (1..0) of ST; illegal

type T is array (1 .0) of R; illegal
type T is array (1..0) of R(FALSE); illegal
type T is new R(rALSE); illegal

The constrained array type declarations are illegal even though the only allowed value is a null
array (i.e., even though the only allowed value has no component), since T is a subtype, not a
base type (RM 3.6/6-8). Similarly, the last two declarations are illegal even though R(FALSE) ki-

has no subcomponents of type T (R's base type has a subcomponent of type T).

sq. The following declarations are legal, although not very useful:

type M BA

type AM is access M;

type M is -. 'V
record

E : AM; -- legal
end record; 0

type W;
type X is access W; ;
type W is access X;

task type T;
subtype U is T;
task body T is

X : U; -- legal

The declaration of these types is legal because the types M, X, W, and T do not have any
subcomponents of type M, X, W, and T, respectively. (Of course, after a task of type T is
activated, another task of type T will have been created, and its activation will in turn create a.V
third task, etc. Therefore, although legal, the activation of a task of type T will cause an
unlimited number of task objects to be created.)

Si o. For a scalar subtype, a value belongs to the subtype if it lies in the range specified for the
subtype (since this is what it means to satisfy a range constraint; RM 3.5/3). An array value
belongs to a constrained array subtype if It has the bounds specified for the subtype's index
constraint (RM 3.6.1/4). A value of a type with discrminants belongs to a constrained subtype if
corresponding discriminant values of the value and of the subtype are equal (RM 3.7.2/6). An .
access value belongs to an access subtype if the value is null or if the designated object
satisfies the constraint Imposed on the designated type (RM 3.8/6).

Changes from July 1982

si 1. There are no significant changes.

Changes from July 1980

S12. The term subcomponent is introduced and defined.

t3;15

.4-
4*%'%

S .% .-. ... =.o.- .- .- - .. .o, . .= %• % % % % % % %= - * ° 'C% C%

3.3.1 Type Declarations Version 1 (Dec 86)

Legality Rules .-"-• ,

.1-

L1. No type can be declared so that a sCir-omponent of the base type would have its own type
(RM 3.3/8).

Test Objectives and Design Guidelines

Ti. Check that the type declared by a type declaration cannot have subcomponents of the "%

declared type. .

Implementation Guideline: Check recursive type declarations using record, array, and private types.

T2. Check that a type mark cannot be used in its own declaration.

T3. Check that certain forms of almost recursive types can be declared - in particular, a
record having a component of an access type whose designated type is the record type; an
access type whose designated type Is an access type that designates the first access type;
and similarly, a private type whose full declaration declares an access type designating the
private type.

3.3.1 Type Declarations

Semantic Ramifications

S1. The name declared by a full type declaration is not necessarily the name of a base type.
The name declared for a numeric or derived type denotes a subtype of an ,. ymous base
type (RM 3.4/1, RM 3.5.4/5, RM 3.5.7/11, and AM 3.5.9/9). The name dec: -ed by a
constrained array type declaration declares both an array base type and an array suotyp,:
3.6/6). Both the subtype and the base type are declared by such full type declarations.

s2. NUMERIC ERROR (or CONSTRAINT ERROR; see AI-00387) can be raised when an
array type definition is elaborated for a constrained array type if the number of components in a
dimension exceeds the largest value of the index base type. See IG 3.6.1/6 for further
discussion.
Approved Interpretations

S3. CONSTRAINTERROR can be raised instead of NUMERICERROR (AI-00387).

Changes from July 1982

s4. There are no significant changes.

Changes from July 1980

s5. There are no significant changes.

Legality Rules

L1. If a discnminant part is given in a full type declaration, the type definition must be a record
type definition (RM 3.7.1/3).

1-2. The identifier declared in an incomplete type declaration or a private type declaration must
not have been declared in any preceding declaration of the same declarative region (RM
8.3/15).

L3. The identifier declared in a full type declaration must not have been declared in any
preceding declaration of the same declarative region except that the full declaration of an :-. .
incomplete or private type must be preceded by an incomplete or private type declaration
for the same identifier (RM 8.3/15, AM 7.4.1/1, and AM 3.8.1/3). .

3-16

WN4.

-N 1 .7k.Sj~S*

IUw~VFWUWUUUvw ww v~wvw~a d vw w u wvWvWuvlvrrwwwU UI WV WJV ~W' V VWV - , W'JqQt WVW1M WUWVwr.

Version 1 (Dec 86) 3.3.2 Subtype Declarations

Exception Conditions

El. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) can be raised when a
constrained array type declaration is elaborated If the number of components specified for
a dimension lies outside the range of the Index base type (see RM 11.1/6, IG 3.6.1/S and S
AI-00387).

Test Objectives and Design Guidelines

T1. Check that a discriminant part is not allowed In a type declaration If the rest of the A-
declaration is an enumeration, integer, real, array, access, or derived type definition.

T2. Check that the identifier declared by a type declaration, incomplete type declaration,
private type declaration, or subtype declaration cannot have been declared previously in ".-...
the same declarative region.
Implementation Guideline: Check for all forms of declarative regions: within a single package specification,
within a package specification and its body, within a package body. within the declarative part of a block, within
the declarative part of a subprogram body (include type declarations that duplicate a formal parameter name),
within a generic unit declaration (for type declarations that duplicate identifiers declared as formal parameters -
of the generic unit and of a generic subprogram). ... ,

Check that two full declarations cannot be given for the same incomplete or private type.
Implementation Guideline: For the incomplete type case, check that if one full declaration is given in the private P
part of a package specification, another cannot be given in the package body. e
Implementation Guideline: Check for both generic and non-generic units.

3.3.2 Subtype Declarations ..
Semantic Ramifications

S1. The rules of the language are such that non-scalar constrained subtypes cannot be further
constrained, but subtypes of scalar types can be further constrained, e.g.:

subtype SMALL is POSITIVE range 1.. 10;
subtype SMALLER is SMALL range 2..5;

The compatibility requirement for scalar types (see RM 3.5/4) ensures that the bounds of a
range constraint cannot "widen* the range of a subtype:

'-...

subtype BIGGER is SMALL range 2..11; -- incompatible constraint

Because the constraint Is incompatible with the range specified for subtype SMALL, ..
CONSTRAINTERROR will be raised (RM 3.3.2/9). " '

Changes from July 1982

S2. There are no significant changes.

Changes from July 1980

S3. There are no significant changes.
Legality Rules

L1. If a range constraint appears after a type mark in a subtype Indication, the type mark must
denote a scalar base type or subtype (RM 3.5/4), and the subtype indication must not
appear in an allocator (RM 4.8/4).

L2. If a floating point constraint appears after a type mark in a subtype indication, the type
mark must denote a floating point base type or subtype (RM 3.5.7/14), and the subtype
indication must not appear in an allocator (RM 4.8/4).

3-17 .'

I,,;;.. : ' ,V,.%?% ,f :;v; ',. . ,.. ,, P ,~- , ,, *... ,......... * ..-. 2 -. . ,,
', , : ,,", , ,., ,."."e"'" .'J, :"", "" .'." "."' ." '"' . ."' ." ' ."." './"' . . ""'

3.3.2 Subtype Declarations Version 1 (Dec 86)

L3. If a fixed point constraint appears after a type mark in a subtype indication, the type mark
must denote a fixed point base type or subtype (RM 3.5.9/13), and the subtype indication
must not appear in an allocator (RM 4 3 1).

L4. If an index constraint appears after a type mark in a subtype indication, the type mark must
denote an unconstrained array type or an access type whose designated type is an
unconstrained array type; the index constraint must provide a discrete range for each index
of the array type, and the base type of each discrete range must be the same as that of the
corresponding index (RM 3.6.1/3).

L5. It a discriminant constraint appears after a type mark in a subtype indication, the type mark
must denote an unconstrained (record or private) type with discriminants or an acctss type
whose designated type is an unconstrained (record or private) type with discriminants;
exactly one value must be specified for each discriminant, and each value must have the
type of the corresponding discriminant (RM 3.7.2/1 and RM 3.7.214).

L6. The identifier declared by a subtype declaration must not have been declared in any ,
preceding declaration of the same declarative region (RM 8.3/15).

Exception Conditions
El. CONSTRAINTERROR is raised if the constraint specified in a subtype indication is not

compatible with the condition specified by the type mark (RM 3.3.2/9). (Detailed
compatibility checks are specified in the sections for each class of type for which a
constraint is allowed.)

Test Objectives and Design Guidelines

Implementation Guideline: For obiectives T1-TS, check all contexts in which a subtype indication can appear: ac, S
type definition, allocator, component of a record or array type declaration, derived type declaration, and object
declaration. Include the use of constrained array type definitions and access type definitions in generic formal
parameter declarations.

Ti. Check that in a subtype indication, a range constraint is not allowed if the '7e mark
denotes an array, record, access, task, or private type.

T2. Check that in a subtype indication, a floating point constraint is not allowed if the type mark
denotes an enumeration, integer, fixed point, array, record, access, task, or private type.

T3. Check that in a subtype indication, a fixed point constraint is not allowed if the ty mark
denotes an enumeration, integer, floating point, array, record, access, task, or private type.

4 Check that in a subtype indication, an index constraint is not allowed if the type mark
denotes an enumeration, integer, floating point, fixed point, constrained array, recc.rd,
constrained access, task, or private type; also, an access type whose designated type is
one of these types.
Implementation Guideline: IG 4.8/T2 checks the use of such subtype indications in an allocator.

T5. Check that in a subtype indication, a discriminant constraint is not allowed if the type mark
denotes an enumeration, integer, floating point, fixed point, array, constrained record,
constrained access, task, or private type; also, an access type whose designated type is
one of these types.
Implementation Guideline: IG 4.8/1T2 checks the use of such subtype indications in an allocator.

T6. Check that the identifier declared by a subtype declaration cannot have been declared
earlier in the same declarative region (see IG 3.3.1/T2).

T21. Check that a subtype can be declared by a subtype declaration (checked implicitly by other .
tests).

3-18

Version 1 (DeC 86) 3.3.3 Classification of Operations
S

3.3.3 Classification of Operations
Semantic Ramifications

si. T'BASE'BASE is a legal prefix of an attribute since the prefix of the second BASE is
T'BASE, which denotes a type.

s2. T'BASE'BASE'FIRST is legal if T'BASE'FIRST is legal since the base type of a base type is
the same base type (RM 3.3/4); T'BASE'BASE names the base type of T'BASE, which is
already a base type (the base type of T). Since T'BASE'BASE and T'BASE name the same
type, if T'BASE'FIRST is legal, so is T'BASE'BASE'FIRST, and both have the same meaning.

S3. The declaration:

C : array (1 .3) of INTEGER := 1 & 2 4 3;

is legal because it is equivalent to the following sequence of declarations (RM 3.6/6-8):

subtype anl_5 is INTEGER range 1..5;
type anonarr is array (anon1_5 range <>) of INTEGER; 5
-- implicit declaration of array operations, including G operations
C : anon an' (1 3) :- 1 & 2 & 3; P%

However, the following is illegal:

package P is
type T is range 1 .. P."+" (l, 1); -- illegal

RM 3.5.4/4-5 says the type declaration is equivalent to:

package P is
type anon is new predefined integer_ tpe;
subtype T is anon range 1 .. P."+" (, 1);

The implicit declarations of integer operations do not, however, occur immediately after the
implicit type declaration because RM 3.3.3/2 says these operations are declared "immediately
after the type definition", I.e.,

package P is
type T is range 1 .. P."+" (i, 1); -- illegal
-- implicit declarations of integer operations

Since the operations are declared after the type definition, there is no visible "+" operation
declared within P that can be referenced by P."+", and so the name P."+" is illegal.

S4. The following examples are illegal for the same reason: the referenced operation is I
declared after the full type declaration:

package Q is
type T is digits 3;
function F return T;

end Q;

with Q;
package P1 is

type T1 is new FLOAT range 1.0 .. Pl."+"(1.0, 1.0), -- illegal
-- premature use of "+" declared for T"

3-19
e

3.3.3 Classificatlon of Operations Version 1 (Dec 86)

type T2 is new Q.T range 0.0 .. Q.T(Pl.F); -- illegal
-- premature use of derived subprogram F -

type T3 is new BOOLEAN range FALSE..BOOLEAN (P1.TRUE); -- illegal
-- premature use of derived enumeration literal

type T4 is private; -- declares for T4

type T5 is private; -- declares "=" for T5
type T6 is private;

private
type T4 is range 1 .. BOOLEAN'POS (PI."="(i,l)); - illegal
-- premature use of implicit conversion to type T4

type T5 is access BOOLEAN range
FALSE .. P1.'-"="(new BOOLEAN, null); -- illegal

-- premature use of allocator and null literal operations

type T6 is array (FALSE .. P1."="("AB", ('A', 'B'))) -- illegal
of CRARACTER;

-- premature use of string literal and aggregate operations
end P1;

S5. Component selection operations are declared after a record type definition.

package P2 is
type T7 (D : INTEGER) is private;
-- selection operation for component D implicitly declare, -re

private
function F return T7;
type T7 (D : INTEGER) is

record
C1 INTEGER F.D; -- legal
C2 INTEGER F.Cl; -- illegal

end record;

-- selectors for .C1 and .C2 implicitly declared here
end P2;

The use of F.D in the initialization of component C1 is legal because th:. selection operation for
component D has been declared and is visible, and the use of the name of discriminant D is
explicitly allowed within the record type definition for T7 (RM 3.7/3). The use of F.C1 is ille§al,
however, for two reasons: the component selection operation for C1 has not yet been declared,
and RM 3.7/3 rules out the use of a component name (other than a discrminant component)
within its containing record type definition.

Changes from July 1982

s6. The place where a type's operations are implicitly declared is explicitly defined.

Changes from July 1980

S7. The attribute 'BASE is defined.

U, S8. The class of basic operations is defined.

Legality Rules..-

Li. An attribute having the form prefix'BASE must be used as the prefix in the name of another
,. attribute, and the prefix of the BASE attribute designator must denote a type or subtype.

3-20

'." -. -.-. . • ",

V W

Version 1 (Dec 86) 3.3.3 Classification of Operations

L2. If T denotes an enumeration type, the name T'BASE can only be used as a prefix of one of
the following attributes: BASE, FIRST, IMAGE, LAST, POS, PRED, SIZE, SUCC, VAL,
VALUE, WIDTH.

L3. If T denotes an integer type, the name T'BASE can only be used as a prefix of one of the
following attributes: BASE, FIRST, IMAGE, LAST, POS, PRED, SIZE, SUCC, VAL,
VALUE, WIDTH.

L4. If T denotes a floating point type, the name T'BASE can only be used as a prefix of one of
the following attributes: BASE, DIGITS, EMAX, EPSILON, FIRST, LARGE, LAST,
MACHINEEMAX, MACHINE EMIN, MACHINEMANTISSA, MACHINEOVERFLOWS,
MACHINERADIX, MACHINE ROUNDS, MANTISSA, SAFEEMAX, SAFELARGE,
SAFE_SMALL, SIZE, SMALL.

1-. If T denotes a fixed point type, the name T'BASE can only be used as a prefix of one of the
following attributes: AFT, BASE, DELTA, FIRST, FORE, LARGE, LAST, MACHINE-
_OVERFLOWS, MACHINEROUNDS, MANTISSA, SAFELARGE, SAFESMALL, SIZE,
SMALL.

L6. If T denotes an array type, the name T'BASE can only be used as a prefix of one of the
following attributes: BASE, SIZE.

L7. If T denotes a record type, the name T'BASE can only be used as a prefix of one of the
following attributes: BASE, SIZE.

L8. If T denotes a private type or subtype with discriminants, the name T'BASE can only be
used as a prefix of one of the following attributes: BASE, CONSTRAINED, SIZE.

L9. If T denotes an access type, the name T'BASE can only be used as a prefix of one of the
". -. following attributes: BASE, SIZE, STORAGE-SIZE.

Ll 0. If T denotes a task type, the name T'BASE can only be used as a prefix of one of the
following attributes: BASE, SIZE. STORAGE-SIZE.

Test Objectives and Design Guidelines

Ti. Check that T'BASE cannot be used by Itself as an attribute in any context requiring a type
mark or a name that denotes a type.
Implementaton Guideline: The required contexts are:

e for a name that denotes a type: generic actual parameter (when the formal parameter is a private
type or an array type).

* for a type mark: in an access type definition, allocator, declaration of a record or array component. A',

derived type definition, discrete range, membership test, object declaration, discriminant
specification, generic parameter declaration, specification of an index subtype, formal parameter
declaration, qualified expression, renaming declaration, and type conversion.

T2. Check that operations are declared Implicitly after the type definition in a type declaration.
•,4 Implementation Guideline: See the examples of illegal type declarations given in the Semantic Ramifications

section.

T1 1. Check that T'BASE Is allowed as the prefix only of attributes suitable for use with the type
denoted by T (see IG sections for each class of type and their attributes).

Check that the prefix of 'BASE must denote a type (see IG sections for each class of type
and their attributes).

Check that when ST is a subtype, ST'BASE'attribute returns the correct values for the base
• type rather than for the subtype (see IG sections for each class of type and their attributes).

3-21

• % o .- .. , ,% ". ,% . -° 'p %~ , * * .' o -. • " % % . % - *' . .- . *" . . -= - . ', .. . ' . -° % " - - . % . -

3.4 Derived Type Definitions Version 1 (Dec 86)

3.4 Derived Type Definitions .,;-' .'-

Semantic Ramifications " .

Si. The term "derived type" is defined explicitly in RM 3.4/1 to be a base type. For example:

type NY NATURAL is new NATURAL;

NATURAL is the parent subtype; NATURAL's base type, INTEGER, is the parent (base) type.
The derived type declared by this type declaration is an anonymous type derived from the
parent type, INTEGER. The derived subtype is MYNATURAL. MYNATURAL'BASE'FIRST
has the same numeric value as NATURAL' BASE'FIRST, but the types of these va',-(-..re
different, since the base types are different. Similarly, MYNATURAL'FIRST and
NATURAL'FIRST have the same value but different types, i.e., INTEGER(MY-
_NATURAL'FIRST) = NATURAL'FIRST.

S2. Although a derived type declaration declares both a base type and a subtype, a derived
type declaration such as:

type NT is new INTEGER TYPE range 1..5;

cannot be considered precisely equivalent to:

type %NTBASE% is new INTEGERTYPE'BASE;
subtype NT is %NT BASE% range 1..5;

The equivalence is not exact because operations implicitly declared for NT'. e :ype are

placed after the type declaration that actually occurs in the text, not after sotn fictional
declaration of %NT BASE% (see RM 3.3.3/2). This makes a difference: ".,"

package P is
type T is new BOOLEAN;
function F return T;

private
package Q is

type U is new T range FALSE .. T(Q.F): -- illegal
-- Q.F is inplicitly declared here

end Q;
end P;

Since Q.F is declared implicitly after the type declaration that occurs in the text, it is not visible
prior to that point, and so cannot be referenced in the declaration of U.

S3. Similarly, CONSTRAINTERROR is raised when the following declaration is elaborated:

type T is new POSITIVE range 0 .. 100;

CONSTRAINTERROR is raised when the subtype indication POSITIVE range 0.. 100 is
elaborated, since zero does not belong to the subtype POSITIVE. CONSTRAINTERROR is
raised even though the base type of T includes the value zero and even though POSITIVE
mainly serves to indicate the parent base type. No exception would be raised if a derived type
declaration were considered exactly equivalent to:

type %ANON% is new POSITIVE'BASK;
subtype T is %ANO% range 0 .. 100;

s4. The RM says a derived type belongs to the same class of types as its parent type (RM
3.4/4). The classes of types mentioned in the RM are: scalar, discrete, enumeration, integer, " '5.,
real, floating, fixed, numeric, composite, array, record, access, private, limited private, limited,

3-22

.-, ., .-.-... .. .*...- * .- ., .'- -..-... . -.. . . . *.. '..~- * , ... *.- .-- - - .- .- ..- . -.- - .. .- .,,

Version 1 (Dec 86) 3.4 Derived Type Definitions

and task. Various rules in the language are defined as applying to these classes of types. Each
of these rules, therefore, applies to a derived type whose parent belongs to one of these
classes.

Ss. All the values of the parent (base) type are included in the set of values of the derived type,
e.g., consider:

type ENUM is (El, 32);

type NEW ENI is new ENFM range E2 .. E2:

The expression

NEW ENUM'BASZ'FIRST = El

is legal and raises no exception since El is implicitly declared as a value of type NEWENUM,
and an equality operation is implicitly declared for the base type, ENUM'BASE. It is always
possible to create a value of the derived (base) type, e.g.,

package P is I
type T (D : INTEGER) is

record
C : INTEGER:

end record;
subtype T2 is T(2); -

function CREATE (DISC INTEGER) return T;
end P;

package body P is
function CREATE (DISC : INTEGER) return T is
begin

return (DISC, 3);
end CREATE;

end P;

with P;
procedure Q is "N

type NT is new P.T2;
begin

if CREATE(2) /= NT'(2,3) then -- no exception

if (3, 3) = NT' (2,3) then -- no exception •

end Q;

CREATE returns a value belonging to NT's base type (RM 3.4/14); no exception is raised even
though the value does not belong to the derived subtype, NT. Similarly, the aggregate, (3, 3), is W-
a value of NT's base type, even though it is not a value that belongs to subtype NT.

S6. The rule for conversion between derived types allows one type to be converted to another if
both types are derived from a common ancestor or if one type is derived, directly or indirectly,
from the other (RM 4.6/9).
S7. Although predefined operators and enumeration literals are subprograms, they are not Z.
considered derived subprograms. For example, when BOOLEAN is declared in STANDARD, S
the relational operators are implicitly declared to take arguments of type BOOLEAN and return a
result of type BOOLEAN:

3-23

W S.,N

'P kr.,. :T," "' ' ,,,, ',..'.,.': ','".:'"" ," 4 ,"/,. ." ', . ,.,,. '.,., X-..'..'z,.' '

4!

3.4 Derived Type Definitions Version 1 (Dec 86)

package STANDARD is %.

type BOOLEAN is (FALS TRUE);
-implicit declaratioii of

-- function "<" (L, R : BOOLEAN) return BOOLEAN;

end STANDARD;

The relational operators are not derivable functions because they are declared implicitly (RM
3.4/11). When declaring a type derived from BOOLEAN, the relational (and other operators that
are predefined for boolean types; see RM 3.5.5/15) are implicitly declared rather than '-

For example:

package P is
type NB is new BOOLEAN;
function "<" (L, R : NB) return NB;

end P:

package Q is
type NNB is P.NB; y

end Q;

Among the predefined operators implicitly declared for type NB are (RM 4.5.1/2 and RM
4.5.2/3):

function "and" (L, R : NB) return NB;
function "<" (L, R : NB) return BOOLEAN; . . :

The types returned by these predefined operators are specified in RM 4.5 for each operator. If
these operators had been declared by derivation, the "<" operator would return the type NB,
since each occurrence of the parent type, BOOLEAN, would be replaced by the derived type,
NB. This is illustrated by the operators implicitly declared for type NNB:

function "and" (L, R : NNB) return NNB; -- predefined operator
functcn. -' (L, R : NNB) return BOOLEAN; -- predefined operator
function "<" (L, R NNB) return NNB: -- derived subprogram

The first two operators shown above are implicitly declared because of RM 3.4/6 and the rules
defining what operators are predefined for boolean types. The third operator is an i"-Lplici'..
declared denved subprogram, since the explicit declaration of "<" in package P make:; t'_,
subprogram denvable (RM 3.4/11). As part of the derivation process, each use of the pa - rt
tyoe in the explicit declaration of "<" Is replaced by a use of the derived type, so "<" returns a
value of type NNB.

Se. Implicitly declared subprograms can, of course, be named explicitly. For example, one can
wnte Q."and" and Q"

s9. RM 3.4/6 says that for every predefined operator of the parent type there is a
corresponding operation for the derived type. This rule needs to be interpreted carefully:

• 'type FLT is digits 5;
* -- has predefined operator ILT ** INTEGER

type NT is new INTEGER;
-- no FLT ** NT operator is declared . -

The rule does not rean that every visible predefined operator having an operand of the parent
type, INTEGER. is rr.plicitly declared for NT. It means that NT has the same set of predefined
operators as does INTEGER. In particular, it has the operator NT INTEGER.

10"

3-24

N. N '. - WW . . . n -

Version 1 (Dec 86) 3.4 Derived Type Definitions

Sl0. If a default expression exists for a component of the parent type, the same expression
exists for the derived type, and the expression has the same meaning it had for the parent type,
i.e., names of objects in the expression still denote the same entities:

package P is
X : INTEGER :- 5;
type 1 c is

record
C : INTEGER X;

end record;
end P;

package Q is
X :INTEGER :=6;
type NEW REC is new P.REC;
RVAR : NEW REC;

end Q;
RVAR.C has the value 5, not the value 6.

Si1. Default expressions for subprogram parameters are treated in the same way when the
subprogram is derived - the entities denoted by the names in the default expression do not
change when the subprogram Is derived.

S12. If an aspect of a parent type's representation has been specified by an implicit or explicit '-'
representation clause, and no explicit representation clause is given for the same aspect of the
derived type, the representation of the parent and derived types are the same with respect to
this aspect (RM 3.4/10 and AI-00138). For example,

type A is (Al, A2, A3);
for A'SIZE use 3;
type B is new A;
type C is new B;

A'SIZE = B'SIZE C'SIZE = 3. A different size specification could be given for type B or type C
(AI-001 38). 5

S13. Implicitly declared subprograms can be hidden by an explicitly declared subprogram, but
the extent to which the implicitly declared program is hidden depends on where the explicit
declaration appears. For example:

package P is
type T is range 1. 10;
function F return T; .

end P;

with P;
pragma ELABORATE (P);
package Q is

type NT is new P.T-
-- implicit declaration of F occurs here
X : NT := F; -- denotes implicitly declared F

private .
function F return NT; -- hides implicit declaration of F

end Q;

3-25

3.4 Derived Type Definitions Version 1 (Dec 86)

with Q;
package R is

type NNT is new Q.NT;
- F implicitly declared here

end R;

The explicit declaration of F hides the derived subprogram F within O's package body and
private part, but the implicitly declared F is visible outside of package Q and prior to F's explicit
declaration (RM 8.3/17). Thus, the F appearing in X's declaration denotes the implicitly
declared F (whose body has been elaborated, so it can be Invoked without raising PROGRAM-
_ERROR (see RM 3.9/5, 8)). Moreover, F's declaration in the visible part of 0 means that it is a
derivable subprogram of the second kind (RM 3.4/11). Thus R.NNT derives the function that
was originally declared in package P.
S14. It is possible for a derived subprogram to be hidden completely throughout its scope:

with P; -- the P declared in the previous example
package Q1 is

type NTI is private;
function F return NTI;

private
type NTI is new P.T;
-- implicit declaration of F

end Q1;

The derived F is hidden by the explicit declaration that occurs prior to the derived type
declaration.

Si 5. A derived subprogram is not further derivable if an explicitly declared subprogram with the
same profile and designator is given in a visible part:

package P is
type T is range 1..10;
function F return T;

end P;

with P;
pragmna ELABORATE (P);
package Q is

type NT is new P.T;
-- derived F implicitly declared here
X : NT := F; -- uses derived F

function F return NT;
type REC is

record
C : NT := F; -- uses explicitly declared F

end record;
end Q;

with Q;
package R is

type NNT is new Q.NT; (r
-- derives explicitly declared Q.F;

* end R:

3-26

' ." .- .," - ,'- ., .. .- .- - ," r. - . ,- .- .,- .. .- - - ., .- - - . . . _ " . . .' .- _ . _. -. -=. .v .. ,,, . ..- ., ,.
-

N

Version 1 (Dec 86) 3.4 Derived Type Definitions

Subprogram P.F is derivable and a corresponding subprogram is implicitly declared for type NT
in package 0. The derived subprogram is visible until the explicit declaration of F occurs, so the
derived F is called to initialize OX, and the new F is used to initialize component C of the record
type. The explicit declaration of F in 0 means the implicitly declared F is no longer derivable
(RM 3.4/11). Thus NNT derives the function explicitly declared in 0 rather than the implicitly '.
declared function. (In addition, the name Q.F refers to the explicitly declared F; RM 8.3/7.)

S16. A type derivation can derive two subprograms with identical profiles (Ai-00012):

package P is
type T is private;

package Q is
type U is rance 1..10;
procedure PROC (Xl : T; Y1 : U);
procedure PROC (X2 : U; Y2 : T);

end Q; S
private

type T is new Q.U; -- legal (AI-00012)
end P;

Even though the subprograms derived for T are homographs, PROC (X1 : T; Y1 : T) and PROC
(X2 : T; Y2 : T), the type derivation is legal (AI-0001 2).

S17. A type derivation is not illegal if a derived subprogram has the same identifier as a non-
ovarloadable entity previously declared in the same declarative region:

package P is
type T is range 1.-.10;
function F return T; B

end P;

package Q is .
F : INTEGER; -

type NT is new P.T; -- derived F is hidden
end Q; I

Sis Subprograms are not derivable until after the end of the visible part. For example:

package P is
type T is (3l, Z2); .'.

function F return T;
type NEW T is new T;

function -"<" (L, R : T) return BOOLEAN;
end P;

The function F is not derived for NEWT since the type derivation occurs prior to the end of the
visible part. In addition, the explicitly declared "<- for T is not derived for NEWT. NEWT
only has the implicitly declared predefined "<"- operator.

,'

sig. When the parent type is declared in the visible part of a package specification, only those
subprograms declared in the visible part where a parent type is declared can be derived. For
example, consider:

t
%

3-27 %

1 01 e N

3.4 Derived Type Definitions Version 1 (Dec 86)

package P is "
type T is new INTEGER;
procedure PP(X : T);

and P;

with P;
package Q is

procedure RR(X : P.T);
end Q;

'a, with P, Q;
package S is

procedure SS(X : P.T);
type U is new P.T;

end S;

Q.RR is not derived by the declaration of U. Only P.PP is derived.

S20. If the parent type is not declared in the visible part of a package specification, then no
subprograms are derived except those (if any) that were derived for the parent type. For
example, using package P from the previous example:

with package P;
procedure R is

type NT is new P.T; -- derives procedure PP
procedure R1 (X : NT) is ... end R1;

begin -'"" *

declare
type NNT is new NT: -- derives only procedure PP

If procedure RI had been given the name PP, this newly named procedure would not be
derived for NNT; instead, NNT would derive the same procedure PP as before, even though this .4
procedure is now hidden by the explicit declaration of the renamed R1.
S21. RM 3.4/12 says that among the implicitly declared subprograms for a derived type, "the
implicit declarations of any derived subprograms occur last." The fact that these subprogram
declarations occur last has no detectable semantic consequences.

S22. For purposes of understanding the semantic effect of calling a derived subprogram, RM
3.4/14 states that each actual parameter is replaced by a type conversion of the actual
parameter to the parent type. The existence of such conversions does not affect overloading
resolution:

package P is 2
type T is array (1 10) of CHARACTER;
function F (X : T) return T;

end P;

package Q is
type NT is new P.T-
Y : NT := Q.F("ABC"); -- unambiguous
Z NT NT(P.F(P.T("ABC"))); -- ambiguous conversion operand

end Q;

The second call is ambiguous because the type of "ABC" cannot be determined from the .* -
context; "ABC" could have type STRING, T, or NT since string literals for any of these types can
be written within 0. The fact that the first call is semantically equivalent to:

3-28

N.,

Version 1 (Dec 86) 3.4 Derived Type Definitions

NT (P.F(1. T ("ABC")))

is irrelevant.
S23. Care must be taken in determining the subtypes associated with parameters of derived
subprograms. For example:

package P is
type MY INT is range 1..100; F-.

subtype MY fINT_50 is MYINT range 1 50;
subtype MY_INT_51 is MY INT range 51. .100; A

A : MY INT;

function "+" (L, R : MY INT) return MY INT;
function G (X : MY INT_50) return MYINT_51;

end P;

A + 0 raises CONSTRAINTERROR for the new "+" operator because 0 is not in the range of
MY INT values and *+P has been redefined to accept only MY INT arguments. The new
declaration of "+" is semantically equivalent to:

function "+" (L, R : MY INT'BASE range 1..100) -- illegal notation ,
return MYINT'BASE range 1..100; -- illegal notation *

(The notation MYINT'BASE range 1..100 cannot actually be written, since MY INT'BASE is
not a legal type mark; moreover, the formal parameter and return type must be specified with a
type mark, not a subtype indication. However, this notation suggests the semantic effect of the
actual declaration in a way that is particularly useful when we next discuss the effect of deriving
this subprogram.)

S24. Now suppose we define a new package:

with P;
package R is

type NEWER is new P.MYINT range 51. .90;
RD : NEWER := 90; S

end R;

The derived "" subprogram uses the base type for NEWER and the range constraint declared
for the original "+" operation:

function "+" (L, R : NEWER'BASE range 1- •100)
return NEWER'BASE range 1.-.100); •

Hence, RD + 2 will not raise CONSTRAINT ERROR even though 2 is not in the range of . ,
NEWER values. Moreover, If the redefined "+" implements the usual rules for addition,
CONSTRAINTERROR will not be raised by RD + 2 even though the value returned lies
outside the range of NEWER values, since the result is implicitly converted to the derived (i.e.,
base) type NEWER'BASE, which has the range of the parent type, MYINT'BASE, and MY-
_INT'BASE has a range that includes the values 1..100. CONSTRAINTERROR will only be
raised if the result returned by "+" lies outside the range permitted by the original operation,
P."+". For example CONSTRAINTERROR would be raised by RD + 14, because this yields a
value greater than 100.
Applying the same rules to G, we get: 0

3-29

SI
",' . " ". , : ": :': '::':: " ''' '''' " . .. '. . ' " . . ".'. . . " -'. ...-.. " '-. . '. '. . ,, ... ' % ,.. : ; . ' " .

." . ."." "'F '.''."". .%."'-" " ;"€".":"" "" . "" "-."''". ." "" "':" " -" -" -' "."",""."",, ",": . ", ',- "- " ' ":':"' "- ""

3.4 Cerived Type Definitions Version 1 (Dec 86)

function G(X : NEWER'BASE range 1..50)
return NEWER'BASE range 51..100-

In this case, every call to G with a NEWER , riable will raise CONSTRAINTERROR, since no
NEWER value lies in the range 1..50. However, a call with a literal, e.g., G(5) would be
acceptable, since the literal is converted to NEWER's base type (RM 4.6/15).

S2s. The parent type in a derived type definition cannot, in some circumstances, be a derived
type (RM 3.4/15). According to RM 3.4/1, a derived type definition is the only means of
producing something called a derived type. In particular, an integer type definition does not
create a derived type, since an integer type definition does not syntactically include a dpivnd
type definition:

package P is
type T is range 1 .10;
type NT is new T; -- legal
type NNT is new NT; -- illegal; NT is a derived type

end P;

The parent type T is not a derived type despite the equivalence stated in RM 3.5.4/5, since no
derived type definition appears in the declaration for T.

Approved Interpretations
.j-.

S26. If an aspect of a parent type's representation has been specified by an implicit or explicit
representation clause and no explicit representation clause is given for the same aspect of the
derived type, the representation of the derived and parent types are the same with respect to
this aspect (A1-0138).-

S27. An explicit length clause for STORAGESIZE of a task type, for SIZE (of any type), or for
SMALL of a fixed point type, an explicit enumeration representation clause, an explicit record
representation clause, or an explicit address clause for a task type can be given for a derived
type (prior to a forcing occurrence for the type) ever, if a representation clause has also beun2
given (explicitly or implicitly) for the same aspect of ti s parent type's representation (AI-001 38).
(But only a length clause is allowed for a derives type if the parent type has derivable
s,jbprograms.)

S28. Two derived subprograms can be homograph ';',!-00012).

Changes from July 1982

S29. Each denvable subprogram of the parent type is declared implicitly for the derived type.

S30. A derived type declared immediately within the visible part of a package cannot be usec as
the parent type of a derived type definition, within the same visible part.

Changes from July 1980

S31. For a derived boolean type, the predefined relational operators return a result of type
BOOLEAN.

S32. A representation clause can be given for a parent type after it is used in a derived type
definition.

Legality Rules

11. If a derved type is declared immediately within the visible part of a package, then within
this visfbie part. this type must not be used as the parent type of a derived type definition
(RM 3 4115).

3-30

R .X W.._ . . . -U. 6. -W V% ,W , ,V 7 ., 6 W WV ; VV WU,- . , .p ,

Version 1 (Doc 86) 3.4 Derived Type Definitions

Exception Conditions

The only exceptions are those raised by elaboration of a subtype indication (see IG
3.3.2/E).
Test Objectives and Design Guidelines

Ti. Check that the required predefined operations (and only these predefined operations) are
declared (implicitly) for derived enumeration types:

* excluding boolean types: the enumeration literals of the base type,
assignment, membership tests, qualification, explicit conversion to and from
the parent type, the relational operators (<, <=, =, /=, >=, and >), for prefixes
denoting an enumeration type or subtype, the attributes BASE, FIRST, LAST,
SIZE, WIDTH, POS, VAL, SUCC, PRED, IMAGE, and VALUE, and for
prefixes denoting an object having an enumeration type, the attributes SIZE
and ADDRESS.

for derived boolean types: the enumeration literals TRUE and FALSE,
assignment, membership tests, qualification, explicit conversion to and from
the parent type, the relational operators (<, <=, =, /=, >=, and >) (check that
these operators return values of type BOOLEAN), the logical operators (not,
and, or, xor), the short- circuit control forms (and then, or else) (check that
the logical operators and short-circuit control forms return values of the
derived boolean type), for prefixes denoting a boolean type or subtype, the
attributes BASE, FIRST, LAST, SIZE, WIDTH, POS, VAL, SUCC, PRED,
IMAGE, and VALUE, and for prefixes denoting an object having a boolean
type, the attributes SIZE and ADDRESS.

U Implementation Guideline: Check that the attributes return values of the derived (base) type rather than the
derived subtype, when appropriate.
Implementation Guideline: For attributes or operations that depend on the subtype, check that appropriate
results are obtained even when the subtype is nonstatic.
Implementation Guideline: Check that no additional operators or attributes are declared for a derived type.

Check that all values of the parent (base) type are present for the derived (base) type
when the derived type definition is constrained.

Check that any constraint Imposed on the parent subtype is also imposed on the derived
subtype.
Implementation Guideline: Use two cases: 1) the derived type definition contains an explicit constraint, and 2)
the type mark in the derived type definition already is constrained.

T2. Check that the required predefined operations (and only these predefined operations) are I
declared (implicitly) for derived integer types: integer literals, assignment, membership
tests, qualification, explicit conversion of integer and real types (including conversion to
and from the parent type), implicit conversion from universalinteger, the relational
operators (<, <=, -, /-, >-, and >), the arithmetic operators (unary +, -, and abs, binary +,
-, ,/, ', mod, and rem), for prefixes denoting an integer type or subtype, the attributes
BASE, FIRST, LAST, SIZE, WIDTH, POS, VAL, SUCC, PRED, IMAGE, and VALUE, and
for prefixes denoting an object having an integer type, the attributes SIZE and ADDRESS.

Check that all values of the parent (base) type are present for the derived (base) type
when the derived type definition is constrained.

Check that any constraint imposed on the parent subtype is also imposed on the derived
subtype.
Implementation Guideline: Follow the implementation guidelines for T1.

2-31

" .,', / £, - ":= " _,' ',' 3..,. : "'V;,('P -' ""' " -" '"° "" '' '"' '*- " ',' - """ ' - ""

3.4 Derived Type Definitions Version 1 (Dec 86)

T3. Check that the required predefined operations (and only these predefined operations) are
declared (implicitly) for derived floating point types: real literals, assignment, membership
tests, qualification, explicit conversic -om an integer, floating point, or fixed point type
(including to and from the parent typt. ., imp!icit conversion from universalreal 'alues,
relational operators (<, <=, =, /=, >=, and >), arithmetic operators (unary +, -, anc abs,
binary +, -, *, /, and **), for prefixes denoting a floating point type or subtype, the attributes
BASE, FIRST, LAST, SIZE, DIGITS, MANTISSA, EPSILON, EMAX, SMALL, LARGE,
SAFE EMAX, SAFESMALL, SAFELARGE, MACHINERADIX, MACHINE_MANTISSA,
MACHINE_EMAX, MACHINEEMIN, MACHINEROUNDS, and MACHINE-
_OVERFLOWS, and for prefixes denoting an object having a fixed point type, the attributes
SIZE and ADDRESS.

Check that all values of the parent (base) type are present for the derived (base) type
when the derived type definition is constrained.

Check that any constraint imposed on the parent subtype is also imposed on the derived
subtype.
Implementavon Guideline: Follow all implementation guidelines for T1.

T4. Check that the required predefined operations (and only these predefined operations) are
declared (implicitly) for derived fixed point types: real literals, assignment, membership
tests, qualification, explicit conversion from an integer, floating point, or fixed point type
(including to and from the parent type), implicit conversion from type universalreal,
relational operators (<, <=, =, /=, >=, and >), arithmetic operators (unary +, -, and abs,
binary +, -, . and /), for prefixes denoting a fixed point type or subtype, the attributes
BASE, FIRST, LAST, SIZE, DELTA, MANTISSA, SMALL, LARGE, FORE, AFT, SA.E-
SMALL, SAFE LARGE, MACHINEROUNDS, and MACHINEOVERFLOWS, and fc',

prefixes denoting an object having a fixed point type, the attributes SIZE and ADDRESS.

Check that all values of the parent (base) type are present for the derived (base) type
when the derived type definition is constrained.

Check that any constraint imposed on the parent subtype is also imposed on the derivea
subtype.
Implementation &.jdehne: Follow all implementation guidei.rss for T1.

T5. Check that the required predefined operatior .,o on -. these predefined operations) are
declared m mpolcit!y) for derived array types. li ;paicular:

for denved one-dimensional array types whose component type is not a
character or boolean type: assignment (except when the component type is
limited), aggregates (except when the component type is limited), membership
tests, indexed components, qualification, explicit conversion to and from the
parent type. explicit conversion between the derived type and an array typewhose index type is convertible to that of the derived type and whose

component type is the same as that of the derived type, slices, equality and
inequality (unless the component type is limited), catenation (unless the
component type is limited), the relational operators (<, <=, >, and >=) if the
component type is an enumeration or integer type, for prefixes denoting an
array type or subtype, the attributes BASE and SIZE; for prefixes denoting a

.0 constrained array subtype, an array object, or an array value, the attributes
FIRST, FIRST(I), LAST, LAST(l), RANGE. RANGE(1), and LENGTH.
LENGTH(!); and for prefixes denoting an object, the attributes SIZE and 7
ADDRESS. .

* for derived one-dimensional array types whose component type is a character

3-32

.. -, - --., ,.. ..:- -.:....-.. . ..

Version 1 (Dec 86) 3.4 Derived Type Definitions

type: assignment, aggregates, membership tests, indexed components,
qualification, explicit conversion to and from the parent type, explicit
conversion between the derived type and an array type whose index type is
convertible to that of the derived type and whose component type is the same
as that of the derived type, slices, string literals, equality and inequality, 1

catenation, the relational operators (<, <=, >, and >=), for prefixes denoting an
array type or subtype, the attributes BASE and SIZE; for prefixes denoting a
constrained array subtype, an array object, or an array value, the attributes
FIRST, FIRST(1), LAST, LAST(l), RANGE, RANGE(I), and LENGTH,
LENGTH(1); and for prefixes denoting an object, the attributes SIZE and
ADDRESS.

" for derived one-dimensional array types whose component type is a boolean
type: assignment, aggregates, membership tests, indexed components,
qualification, explicit conversion to and from the parent type, explicit
conversion between the derived type and an array type whose index type is
convertible to that of the derived type and whose component type is the same
as that of the derived type, slices, equality and inequality, catenation, the
relational operators (<, .=, >, and >=), the logical operators (not, and, or, and
xor) returning the derived type, for prefixes denoting an array type or subtype,
the attributes BASE and SIZE; for prefixes denoting a constrained array %
subtype, an array object, or an array value, the attributes FIRST, FIRST(1),
LAST, LAST(l), RANGE, RANGE(I), and LENGTH, LENGTH(I); and for
prefixes denoting an object, the attributes SIZE and ADDRESS.

* for derived multidimensional array types: assignment (except when the
component type is limited), aggregates (except when the component type is
limited), membership tests, indexed components, qualification, explicit
conversion to and from the parent type, explicit conversion between the
derived type and an array type whose index types are convertible to those of
the derived type and whose component type is the same as that of the derived
type, equality and inequality (unless the component type is limited); for
prefixes denoting an array type or subtype, the attributes BASE and SIZE; for
prefixes denoting a constrained array subtype, an array object, or an array
value, the attributes FIRST, FIRST(N), LAST, LAST(N), RANGE, RANGE(N),
and LENGTH, LENGTH(N); and for prefixes denoting an object, the attributes
SIZE and ADDRESS. (Check that N in the attributes must not be less than 1
or greater than the number of dimensions, and must be a static
universalinteger expression.)

Check that all values of the parent (base) type are present for the derived (base) type
when the derived type definition is constrained.

lImplementution Guidelin.: Define a CREATE function that returns a value of the derived type that does not
belong to the derived subtype, and check that no exception is raised when the equality operator is used.

Check that any constraint imposed on the parent subtype is also imposed on the derived
subtype.
Implementation Guideline: Follow all implementation guidelines for T1.

T6. Check that the required predefined operations (and only these predefined operations) are
declared (implicitly) for derived record types. In particular:

* for a derived record type without discriminants: assignment (if the parent type
is not limited), aggregates (if the parent type is not limited), membership tests,
selection of record components, qualification, conversion to and from the

3-33 .

J.

3.4 Derived Type Definitions Version 1 (Dec 86)

parent type, the equality and inequality operators (if the parent type is not .. '

limited); for prefixes denoting a record type or subtype, the attributes BASE .- "- ' .I

and SIZE; for prefixes denc. " a record object, the attributes SIZE and
ADDRESS; and for prefixes L* oting a component of a record object, the
attributes POSITION, FIRST_BI. , and LASTBIT.

for a derived record type with discriminants: assignment (if the parent type is
not limited), aggregates (if the parent type is not limited), membership tests,
selection of record components (including discriminants), qualification,
conversion to and from the parent type, the equality and inequality operators
(if the parent type is not limited); for prefixes denoting a record type or
subtype, the attributes BASE and SIZE; for prefixes denoting a recc. ., jtct,
the attributes SIZE, CONSTRAINED, and ADDRESS; and for prefixes
denoting a component of a record object, the attributes POSITION, FIRST-
-BIT, and LASTBIT.

Check that all values of the parent (base) type are present for the derived (base) type
when the derived type definition is constrained.
Implementation Guideline: Define a CREATE function that returns a value of the derived type that does not
belong to the derived subtype, and check that no exception is raised when the equality operator is used.

Check that any constraint imposed on the parent subtype is also imposed on the derived
subtype.
Implementation Guideline: Follow all implementation guidelines for T1.

17. Check that the required predefined operations (and only these predefined operations) are
declared (implicitly) for derived access types. In particular: . %"

9 for derived access types whose designated type is not an array type, a task
type, a record type, or a type with discriminants: assignment, allocators,
membership tests, qualification, explicit conversion to and from the parent
type, the literal null, formation of a selected component with the selector all,
the equality and inequality operations; fcr prefixes denoting an access type or
subtype, the attributes BASE, SIZE, and STORAGESIZE; and for prefixes
denoting an access object, the attributes SIZE and ADDRESS.

• for derived access types whose designated type is an array type: assignment,
allocators, membership tests, qualificat$or, explicit conversion to and from the
parent type, the literal null, formation of a selected component with the
selector all, the equality and inequality operations, formation of indexed
components, formation of slices (if the designated type is a one-dimensional
array type); for prefixes denoting an access type or subtype, the attributes
BASE, SIZE, and STORAGE_SIZE; for prefixes denoting an access object or
value, the attributes FIRST, FIRST(N), LAST, LAST(N), RANGE, RANGE(N),
LENGTH, and LENGTH(N); and for prefixes denoting an access object, the
attributes SIZE and ADDRESS. (Check that N in the attributes must not be
less than 1 or greater than the number of dimensions, and must be a static
universaljinteger expression.)

* for derived access types whose designated type is a task type: assignment,
allocators, membership tests, qualification, explicit conversion to and from the
parent type, the literal null, formation of a selected component with the
selector all, selection of entries and entry families of the designated task type.
the equality and inequality operations; for prefixes denoting an access type or a. ,-.
subtype, the attributes BASE, SIZE, and STORAGESIZE; for prefixes "-'

denoting an access object, the attributes SIZE and ADDRESS: and for

3-34

I=, ' °''= , % ,' - RV %.. ''°'' " *'',=,,. .., '""","" .".",' . .. ". - , . ." :"- ": """.:, -," .,..-,-.-

Version I (Dec 86) 3.4 Derived Type Definitions a

prefixes denoting an access object or value, the attributes TERMINATED and
CALLABLE.

- for derived access types whose designated type is a record type (with or
without discriminants) or a onvate type with discriminants: assignment, •
allocators, membership tests. c alification, explicit conversion to and from the
parent type, the literal null, f'ormation of a selected component with the
selector all, selection of the ccmoonents and discriminants of the designated
type (only the oiscriminarit, t.. a prvate type), the equality and inequality V
operations; for prefixes denonng an access type or subtype, the attributes
BASE, SIZE, and STORAGE SIZE: and for prefixes denoting an access
object, the attributes SIZE and ADC:RESS.

Check that all values of the pa'ent Kbsao , type are present for the derived (base) type
when the derived type definition is consxrained.
Implementation Guideline. Define a CREATE . .'fton that returns a va'.e -f the derived type that does not
belong to the derived subtype. and check ihz' J Aception is raised when the equality operator is used. S
Check that any constraint irnocse -: ;: .rent subtype is also imposed on the derived .

subtype.
Implementation Guideline: Follow all :mp;eies,,:ldelines for T1.

T8. Check that the required predefined ooel'-tlons (and only these predefined operations) are
declared (implicitly) for derived task types: formation of calls to entries and entry families of •
the parent type; qualification; mernbership tests; explicit conversion to and from the parent
type; for prefixes denoting a type, the aitribute BASE; for prefixes denoting a task object or
type, the attributes STORAGESIZE, SIZE, and ADDRESS; and for prefixes denoting a
task object or value, the attributes CALLABLE and TERMINATED.

T9. Check that the required predefined operations (and only these predefined operations) are
declared (implicitly) for derived private types. In particular:

" for derived private types that are not limited: assignment, membership tests,
qualification, explicit conversion (to and from the parent type), the equality and
inequality operators, seiection of discriminant components (if the parent type
has discriminants); for prefix :s cenoirig private types or subtypes, the
attributes BASE, SIZE, anJ CC, \ TRA;NED; for prefixes denoting an object.
the attributes SIZE and ADDRtS3; and for prefixes denoting an object with
discriminants, the attribute CONSTRAINED. ."

" for derived private types that are limited: membership tests, qualification.
explicit conversion (to and from -e parent type), selection of discriminant
components (if the parent type has discriminants); for prefixes denoting private
types or subtypes, the attn,.,_e- BASE. SIZE, and CONSTRAINED; for
prefixes denoting an object, Me attnbutes SIZE and ADDRESS; and for
prefixes denoting an object witi. ,iic rrninants, the attribute CONSTRAINED.

Check that all values of the parent i'base) type are present for the derived (base) type
when the derived type definitior is ccr- ,ed

Implementation Guideline: Define a CREATE ;rctior ntat returns a value of the derived type that does not
belong to the derived subtype, and check .- eotion is raised when the equality operator is used.

Check that any constraint imposed :., > oarent subtype is also imposed on the derived
subtype. k

Implementation Guideline: Follow a'i "''olrt' 3 r: ' 1,enes for T1.0

Ti 1. Check that a derived type decaif',oin s not considered exactly equivalent to an

...,. ,, .,

3.4 Derived Type Definitions Version I (Dec 86)

anonymous declaration of the derived type followed by a subtype declaration of the derived ,...
subtype. In particular, check that a derived function cannot be used in the derived type
declaration itself and that CONSTF " 'NTERROR can be raised when the subtype
indication of the derived type declara.,- is elaborated (even though the constraint would
satisfy the derived (base) type).
Implementadon Guideline: Be sure to explicitly convert th. derived function in the derived type declaration so
the subtype indication has the correct types for its expression. Use a subtype indication that has a range
constraint, index constraint, and discriminant constraint.

I.

Ti 2. Check that default expressions in derived record types and derived subprograms are
evaluated using the entities denoted by the expressions in the parent type.
Implementaion Guideline: The parent type should be a derived type as well as a nonderived tyra

T13. Check that a representation clause can be given for a derived type whetner or not the

corresponding aspect of the parent's representation has been specified with an explicit
representation clause (see IG 13.1 .c/T4).

TI 4. Check that a derived subprogram is visible and further derivable under appropriate
circumstances. In particular, check the following cases:

the derived subprogram is implicitly declared in the visible part of a package
and:

a subprogram is later declared explicitly (by a subprogram declaration, a
renaming declaration, or a genenc instantiation) in:

the same visible part: the derived subprogram is visible until the
occurrence of the explicit redeclaration and then only the explicitly .-.

declared subprogram is visible; moreover, only the explicitly
declared subprogram is further derivable.

e in the private part: the derived subprogram is visible until the
occurrence of the explicit redeclaration and then only the explicitly
declared subprogram is visible; the implicitly declared derived
subprogram is further derivab'e.

a in the package body: the denved subprogram is visible until the
occurrence of the explicit re:-eclaration and then only the explicitly
declared subprogram is vsibie; the implicitly declared denvec
subprogram is further derivable.

* no subprogram is later declared explicitly that is a homograph of the
denved subprogram: the derived subprogram is further derivable.

• the derived subprogram is declared (implicitly) in the private part after an
explicit declaration (use all three forms of explicit declaration) of a subprogram
having the same profile (this is only possible when the derived type definition
is for the full declaration of a private type): the derived subprogram is hidden
and not visible either in the private part or body, nor is it further derivable if the
explicit declaration occurred in the visible part; it is derivable if the explicit
declaration occurs in the private part.

e a derived subprogram is further derivable if the derived type declaration
occurs in a declarative part, even if the derived subprogram is subsequently
hidden by an explicit declaration.

Check that the same effects occur for an implicitly declared predefined operator and an

4 ,'

3-36

Version 1 (Dec 86) 3.5 Scalar Types

explicitly declared operator homograph. That is, check that, in appropriate cases, the
explicitly declared operator is derived and hides the implicitly declared operator for a

""- derived type, and that the derived operator can be further derived in appropriate cases.

Ti 5. Check that a derived type declaration is allowed if the declaration derives two subprograms A
that are homographs (see IG 8.3/T9 and AI-00012).
Implementation Guideline: Check that it a derived subprogram has the same profile as an enumeration literal,
the derived type declaration is legal, and the derived subprogram hides the enumeration literal (see IG
8.3fT32). 4_,f

Ti 6. Check that a subprogram declared in the visible part of a package specification cannot be %
derived until the end of the visible part. L
Implementation Guideline: Check that the sunprogram is derivable in the private part or body of the package.
Include a check when the package is a generic package and the parent type is itself derived from a generic
formal type or a nongeneric type.

Check that if a type is declared outside the visible part of a package. and if subprograms "",

are explicitly declared for this type, the subprograms are not denvable.
Implementation Guideline: Include types declared in a private part as well as types declared in a declarative 0
part,

T17. Check that a type declared w;i:. a denv:e type definition in the visible part of a package
cannot be used as the parent type in a derived type declaration occurring later in the same
visible part. .-
'mplementation Guideline: The derived type should be an enumeration, integer, float, fixed, array. record,
access, task, and private type. Include a case where the type is declared by a numeric type definition.

Check that a type declared in the visible part of a package with an enumeration type
definition, integer type definition, real type definition, array type definition, record type
definition, or access type definition, can be used as the parent type in a derived type
definition occurring later in the same visible part. Similarly, check for a task type
declaration.

T18. Check that calls of derived subprograms are performed correctly, i.e., check that no call is
ambiguous because of the implicit type conversions tMat must be performed, and that the
constraints checked for parameter and result subtypes are the constraints of the parent
subprogram, not the constraints of the derived subtype.
Implementaton Guideline: Use named parameters in some calls. "

3.5 Scalar Types
Semantic Ramifications

S1. The term "integer type" includes all predefined integer types, e.g., INTEGER, SHORT- ,-
INTEGER, LONG INTEGER, etc. It also includes types derived from an integer type and the

type universal integer.

S2. The term "enumeration type" includes any user-defined or predefined enumeration type, as
well as types derived from enumeration types.

S3. The term "real type" includes all the predefined floating point types, e.g., FLOAT, LONG-
FLOAT, etc., as well as user-defined fixed and floating point types. It also includes the type ,.

universal real (but not the type universal fixed), types derived from real types, and the type
DURATION. %

S4. The attributes FIRST and LAST return values belonging to the base type of their prefix.
This means no exception is raised when the prefix denotes a null range, e.g.:

°'p

3.5 Scalar Types Version 1 (Dec 86) ,.

subtype T is INTEGER range 1..0;-
... T'FIRST ... -- no exception

s5. A'RANGE is a legal attribute (a rang,. .tribute) if A denotes a constrained array subtype,
an array object, or an array value, or if A has an access type whose designated type is an array
type (RM 3.6.2/2 and RM 3.8.2/2). Such an attribute defines a nonstatic range, since the prefix

*. of the attribute is not a static scalar subtype (RM 4.9/8 and RM 4.9/11). This means the range
attribute cannot be used in a context where a static range is required. Syntactically, a range is
allowed in the following contexts: 5

* component clause (RM 13.4/2)

*discreterange (RM 3.6/2)

a range-constraint (RM 3.5/2)

e relation (RM 4.4/2)

* The range used in a component clause must be static (RM 13.4/2). A discrete range used as
the choice in a case statement or variant part must be static (RM 3.7.3/4 and RM 5.4/5); the
choice in an aggregate must also be static If there is more than one component association (RM '"

4.3.2/3). Finally, the range of an integer type definition must be static (RM 3.5.4/3).
Consequently, a range attribute cannot be used in these specific contexts.

S6. When the expressions in a range have a real type, any comparison of the bounds with real
values is subject to the rules given in RM 4,5.7 (since the predefined relational operators are
used (RM 3.5/3)). In particular, even if S'LAST < S'FIRST evaluates to TRUE (i.e., even if S
appears to have a null range), there can be some value X (e.g., S'FIRST) such that X in S also
evaluates to TRUE. The reason is that, if either S'FIRST or S'LAST are not model numbers and
they have values within S'SMALL of each other, the result given by any relational operation is
nondeterministic.

Changes from July 1982
S7. There are no significant changes. -

Changes from July 1980

S8. A range attrbute can be used as a range.

* Legal Rui
L1. The only attribute allowed as a range is the RANGE attribute (RM 3.5/2).

L2. The simple expression in a range must have a scalar type (RM 3.5/3).

L3 When a range constraint is used in a subtype indication, the type of the simple expressions
(or the oounds of a range attribute) must be the same as the base type of the type mark of
the subtype indication (RM 3.5/4).

L4 When a range is used in a membership test, the type of the simple expressions (or the
bounds of a range attribute) must be the same as the base type of the simple expression
(RM 4.5.2/10).

L5. When a range is used in the choice of an aggregate, the type of the simple expressions (or
the bounds of a range attribute) must be the same as the type of the corresponding array
index (RM 4.3.2/1).

L6 When a range is used in the declaration of an entry family or an array type, or in a slice or
loop parameter specification, the simple expressions in the range must have the same type
(RM 3.6 1 '2).

3-38
II -a"

,4 .,

Version 1 (Dec 86) 3.5 Scalar Types

L7. When a range constraint is used in an integer type definition, b,-th bounds of the range
must be static expressions having an integer type; the expressions need not have the
same integer type (RM 3.5.4/3).

L8. When a range constraint is used in a real type definition, both bounds of the range must be
static expressions having a real type; the expressions need not have the same real type
(RM 3.5.7/3).

L9. A range attribute cannot be used in an integer type definition or a real type definition (it is
not static; see IG 3.5.4/S) (RM 3.5.7/3 and RM 3.5.9/3).

L10. If a range constraint is used in a subtype indication, the subtype indication must not appear
in an allocator (RM 4.8/4).

Li 1. The prefix of the attribute FIRST or LAST cannot be a record, an access, or a private type
(RM 3.5/7, RM 3.6.2/2, and RM 3.8.2/2).

Exception Conditions

El. If a range constraint is used in a subtype indication, either directly or as part of a floating or
fixed point constraint, CONSTRAINT_ERROR is raised if the range is not null and at least
one of the bounds does not belong to the subtype denoted by the type mark of the subtype
indication (RM 3.5/4 and RM 3.3.2/9).

Test Objectives and Design Guidelines •

T1. Check that in each context requiring the syntactic construct "range", a range attribute can
be used except that when a static range is required or the range has the wrong type, the
range attribute is illegal.
Implementation Guideline: The legal contexts are: in an enumeration or integer subtype indication of an object
declaration or component subtype definition (see IG 3.6.2/T4), in a membership test (see IG 4.5.2.a/T2 and IG
4.5.2.d/T31), as a nonstatic choice in an aggregate (see IG 4.3.2/T24), in the declaration of an entry family (see
IG 9.5/T41), in an index constraint (used in the declaration of an array type or subtype) (see IG 3.6.1 .b/T80), in
a slice (see IG 4.1.2/T7), and in a loop parameter specification (see IG 5.5.b/r6).
Implementation Guideline: The illegal contexts for a range attribute are: in a component clause (see IG-_,,
13.4/T11), as a choice in a case statement (see IG 5.4.aIT21) or a variant part (see IG 3.7.3/3), as a choice in
an aggregate having more than one component association (see IG 4.3.2/1), and as the range in an integer
type definition (see IG 3.5.4/T1).

T2. Check that the types of the bounds in a range must be the same (see IG 3.6.1.a/T2).

T3. Check that CONSTRAINT ERROR is raised for a subtype indication when the lower or
upper bound of a non-null range lies outside the range of the type mark.
Implementation Guideline: Check for enumeration, integer, fixed, and floating types.
Implementation Guideline: Include a subtype indication that uses a range attribute. S

Check that no exception is raised for a null range as long as the bounds lie within the
range of the base type.
Implementation Guideline: Check for enumeration, integer, fixed, and floating types.
Implementation Guideline: Repeat both checks when the type being constrained is a generic formal type.

T4. Check that the prefix of FIRST and LAST cannot be a record, an access, or a private type
(including a generic formal private type).
Implementation Guideline: The designated type for the access type should be a constrained array type.

T5. Check that the value returned for T'FIRST and T'LAST need not belong to subtype T (see
IG 3.5.5/T2, /T3, /T7, and/T; IG 3.5.8/Ti; and IG 3.5.1O/T7).

,% % %

S-p

• - "i.

,t t : l 1 1 - 1 . 1 t! ll I "l . r.l i"ll <'li l\ ='~~ll :"
='

''lt 'l
- ' '

I~i''l ll=l l,% l"l L' i- " "j I <* L
:

Ix " : [:: ; S

3.5.1 Enumeration Types Version 1 (Dec 86)
4.

3.5.1 Enumeration Types "" -

Semantic Ramifications

S . The operations declared for an enumeration type are:

basic operations
assignment (RN 3.5.5/1)
membership tests (RM 3.5.5/1)
qualification (RM 3.5.5/1)
conversion (the identity conversion) (RM 4.6/4)

operators
relational operators (RM 3.5.5/15)

functions
the enumeration &iterals themselves (RM 3.5.5/15)

attributes
ADDRESS (RM 13.7,2/3)
BASE (RM 3.3.3/9)
FIRST (RM 3.5/8)
LAST (RM 3.5/9)
SIZE (RM 13.7.2/4)
WIDTH (RN 3.5.5/4)
POS (RN 3.5.5/6)
VAL (RM 3.5.5/7)
SUCC (RM 3.5.5/8)
PRED (RM 3.5.5/9)
IMAGE (RM 3.5.5/11)
VALUE (RN 3.5.5/13)

S2. Character literals are implicitly declared as functions, even though such a declaration
cannot be given explicitly. In particular, they can be passed as actual parameters to generic
function parameters or be renamed:

function A return CHARACTER renames 'A';
S3. Two enumeration literals are overloaded (RM 3.5.1/5) even if their scopes do not overlap.

For example, two enumeration literals declared In parallel blocks are overloaded if they have the
same identifier. This "overloading," however, causes no overloading resolution difficulties, since
the visibility rules suffice to disambiguate overloaded literals whose scopes do not overlap.

S4. An enumeration literal appearing in an enumeration type definition is considered an
explicitly declared operation for purposes of the visibility rules (AI-00330). Because, from a
visibility viewpoint, an enumeration literal is explicitly declared, an explicit declaration of a
homograph is illegal (AI-00330):

package P is
type ENUM is (A, B, C);
X : ENUM := A; -- enumeration literal A

function A return ENUM; -- illegal
type B is ran.e 1. .10; -- illegal

end P;

S5. Although an enumeration literal is a declared function, an implementation must remember . ,.
that such functions were declared by an enumeration literal specification, because enumeration
literals can be used in static expressions, but user-defined functions cannot (RM 4.9/7).

3-40

Version 1 (Dec 86) 3.5.1 Enumeration Types

S6. When an enumeration type is the parent type in a derived type declaration, an
implementation must distinguish derived enumeration literals from derved subprograms:

package P is
type ENUM is (RED);
type PRIV is private;
function RED return PRIV;

private
type PRIV is new ENUM;
type NT is new PRIV;
-- literal RED and function RED declared here

end P;
The implicitly declared derived subprogram RED hides the implicitly declared enumeration literal
RED, since the enumeration literal is considered a predefined operation (RM 8.3/17 and
AI-00002).

S7. RM 3.5.1/3 requires that the identifiers given in an enumeration type definition be distinct.
RM 2.3/3 says, "Identifiers differing only in the use of corresponding upper and lower case
letters are considered the same." This means case is ignored in deciding whether two
identifiers in an enumeration type definition are distinct:

type E is (ALPHA, alpha); -- illegal

Case is, however, significant for character literals, so 'a', and 'A' are considered distinct.
s8. The IMAGE attribute does not preserve the case of an enumeration identifier as given in
source code. For example:

type COLOR is (Red, Green, Blue, Yellow);

COLOR'IMAGE(Red) equals "RED" (RM 3.5.5/11).

Approved Interpretations
s9. If an enumeration literal is declared with an enumeration type definition, then a function
having the same identifier as the enumeration literal and the same parameter and result type
profile cannot also be declared immediately within the same declarative region. Similarly, a
nonoverloadable declaration of the enumeration literal's identifier is not allowed immediately
within the declarative region containing the enumeration type definition (AI-00330).

S10. If the implicit declaration of a derived enumeration literal is a homograph of the implicit
declaration of a derived subprogram and these declarations occur immediately within the same
declarative region, then the derived enumeration literal (like a predefined operation) is hidden by
the other homograph. The derived enumeration literal is hidden within the entire scope of the
derived subprogram's declaration (AI-00002).

Changes from July 1982

s1 1. A character literal Is also considered the declaration of a parameterless function.

Changes from July 1980

S12. Enumeration literals are declared implicitly as parameterless functions.

Legality Rules

L1. The identifiers and character literals listed in an enumeration type definition must be
distinct from each other (RM 3.5.1/3). (For Identifiers, differences in case are ignored; RM
2.3/3.)

3-41

3.5.2 Character Types Version 1 (Dec 86)

L2. An identifier declared by an enumeration type definition must be distinct from any
nonoverloadable identifier declared in the same declarative region and must be distirct
from any explicitly declared function hr. i. -g the same parameter and result type profile (RM %
8.3/17 and AI-00330).

Test Objectives and Design Guidelines
.1

T1. Check that at least one enumeration literal is required (either an identifier or a character
literal), and that exactly one is permitted.

Check that enumeration literals can have the maximum length permitted for identifiers (see

IG 2.3/T3).

T2. Check that an enumeration literal belonging to one enumeration type may be declared in
another enumeration type definition in the same declarative region.
Implernentatori Guideline: Use all forms of declarative region.

Check that a function homograph cannot be declared explicitly in the same declarative
region as an enumeration literal (see IG 6.6/Ti and IG 8.3/T1 -T8).

T3. Check that duplicate enumeration literals (including character literals) are not permitted in a
single enumeration type definition.
Implementation Guideline: Check that differences in case are ignored for identifiers but not for character
literals.

T5. Check that an enumeration literal (including a character literal) is considered a function by
renaming it as a function (see IG 8.5/T19) and by passing it to a formal generic function
parameter (see IG 12.3.6/T3).

T6. Check that an enumeration type can have more than 256 enumeration literals.

3.5.2 Character Types

- Semantic Ramifications%-A

si. The operations deciared for a character type are the same as those declared for any
enumeration type:

basic operations
assignment (RM 3.5.5/1)
membership tests (RM 3.5.5/1)
riualification (RIM 3.5.5/1)
conversion (the identity conversion) (RM 4.6/4)

operalors
relational operators (RM 3.5.5/15)

functions
the enumeration literals themselves (RM 3.5.5/15)

attributes
ADDRESS (RM 13.7.2/3)
BASE (RM 3.3.3/9)
FIRST (RM 3.5/8)
LAST (R.M 3.5/9)
SIZE (RM 13.7.2/4)
WIDTH (RM 3.5.5/4)
POS (RM 3.5.5/6)
"'AL (RM 3.5.5/7)

3-42

eI.

Version 1 (Dec 86) 3.5.3 Boolean Type

SUMC (EM 3.5.5/8)
%PEED (EM 3.5.5/9)

SkIMAGE (RM 3.5.5/11)Q4VALUE (RM 3•.5.5/13)•

Changes from July 1982 3 5)
S2. There are no changes. ',

Changes from July 1980

S3. There are no significant changes.

Legality Rules

L1. A character literal must not appear more than once in the declaration of a character type
(RM 3.5.1/3).

Test Objectives and Design Guidelines

Ti. Check that an enumeration type containing a character literal is considered a character
type (see IG 8.7.b/T27).

3.5.3 Boolean Type
Semantic Ramifications

s1. The operations declared for a boolean type are the same as those declared for any
enumeration type plus short-circuit control forms and the logical operators:

basic operations 0
assignment (RM 3.5.5/1)
membership tests (RM 3.5.5/1)
short-circuit control forms (RM 3.5.5/1)
qualification (RM 3.5.5/1)
conversion (the identity conversion) (RM 4.6/4)

operators 0

relational operators (EM 3.5.5/15)
and or xor not (RM 3.5.5/15)

functions
the enumeration literals themselves (RM 3.5.5/15)

attributes:
ADDRESS (RM 13.7.2/3)
BASE (RM 3.3.3/9)
FIRST (RM 3.5/8)
LAST (RM 3.5/9)
SIZE (RM 13.7.2/4)
WIDTH (RM 3.5.5/4)
POS (RM 3.5.5/6) 7.
VAL (EM 3.5.5/7) ,.. ,_

SUCC (RM 3.5.5/8)
PRED (EM 3.5.5/9)
IMAGE (EM 3.5.5/11)
VALUE (EM 3.5.5/13)

S2. The declaration:

3-43

.....,.. ,....~~~~~~~~~......- ,........ " "v-'-..../'-'-"-...."...... -.."..,v.'.-'v;'"v...'

PVI)WIP'%F~ - - - I F -*-.w.4

3.5.4 Integer Types Version 1 (Dec 86)

istyp W 1300L is (FALSE, TRUE);

is nt abooeantype since it is not deri-ed, directly or indirectly, from the predefinm ty
BOOLEAN. in particular, values of type MY -BOOL cannot be used in contexts where a
boolean value is required, e.g., in the condition of an if statement.
S3. The posiflon number of the BOOLEAN value TRUE must be one and
BOOLEAN'PCS(FALSE) must equal zero. An implementation, however, is free to rep!'s~en[
these enumerator, literals any way it chooses. In particular, it might give TRUE the
representatior - , nd FALSE the representation zero. Of course, it would then have to take
care to ensure trnat FALSE was considered less than TRUE, and that the position number of
TRUE was one.

Changes f romn Juiy 1982
S4. There ars rnc char'qes.?

Changes iron; Ju~ 19080

S5. A booiea' -,pje is dotined as the predefined type BOOLEAN or as a type derived from a
boolean type.

Test Objectivev -)rd Design Guidelines

T2. Check that a~ type hiaving just the enumeration literals FALSE and TRUE is not considered
* ~a boolvar ~

Imp/ernent. -x* Cuiaefinjr Check that the type does not have boolean operations and its values cannot bo *
used in conditi inai expreasions.

3.5.4 lnteg* 'ry pes
Semantic Rarmficatiors

Si. The oparetin'- declared for an Integer type are:

bas~ccr ~i~n2(Rid 3.5.5/1)

41~zzAaptests4

qualf icarion
-rpJcit conversion (from any numeric type)
.ntyi 4 ci~t conversion (from universalinteger)

opar':c'rs (P.M 3.5.5/15)
*..iona'. operators

i.&y+ and-
mod ramn & be

at tr. .t a
ADDRESS (P.M 13.7.2/3)

~3~E (RM 3.3.3/9) -

(rzx 3.5/9)
RiM 13.7.2/4)

4 ~ ~ 4.i RM 3.5.5/4)
JAJCC 'P.-4 3.5.5/8)

(mo- 3.53544

3-4

Version 1 (Dec 86) 3.5.4 Integer Types

PRED (RM 3.5.5/9)
IMAGE (RH 3.5.5/10) %
VALUE (RH 3.5.5/12)

S2. Since the base type INTEGER exists, the following declaration must be accepted:

type U is range INTEGER'FIRST .. INTEGER' LAST;

However, it is not required that U's base type be INTEGER; an implementation might choose to i_:

represent U with the LONGINTEGER base type if LONGINTEGER is supported.

S3. A length clause given for a numeric type can affect the space used for stored values, but
does not affect the values of the base type. For example:

type T is range 0.. (2**8)1-1
for T'SIZE use 8;

If this representation clause is accepted, stored values of type T will occupy 8 bits.
Nonetheless, T's base type must be a signed type such that -T'LAST is a representable value.-0
Hence, if X is a variable having type T, the expression -1 = X cannot raise an exception; -1 is a
value of T's base type. In short, representation clauses for integer types only affect how values
are stored; computations using predefined operations still use the underlying base type, since
the predefined operations are declared for the base type, not the subtype.

-4-. Although a range constraint is allowed to contain a range attribute (RM 3.5/2), an integer 0
type definition cannot contain a range attribute:

type T is range A'RANGE; -- illegal

RM 3.5.4/3 requires that the bounds specified for an integer type definition be static, and
attributes of an array object or type are never static (RM 4.9/8). Of course, the range attribute
can be used in a subtype indication.

subtype ST is T range A'RANGE; -- legal

The range in a subtype indication is not required to be static.

S5. The equivalence given in RM 3.5.4/4-6 is not to be taken literally. In particular, all subtypes
declared with an integer type definition are static (AI-00023), even though the use of the N
conversion operation in RM 3.5.4/5 would suggest that such types are not static since an
expression containing a conversion is not static (RM 4.9). -.

S6. AI-00387 recommends, as a nonbinding interpretation, that implementations raise
CONSTRAINTERROR instead of NUMERICERROR when the Standard requires NUMERIC-
-ERROR to be raised. (The effect of a nonbinding interpretation is to allow implementations to
be validated if they follow either the Standard or the recommended interpretation; moreover,
nonbinding interpretations of the Standard are likely to become binding in a future version of the
Standard.) Because of the recommendation, ACVC tests will check whether or not NUMERIC-

ERROR is raised when the Standard requires it, but will also allow CONSTRAINTERROR to .-

be raised instead.

Approved Interpretations

S7. CONSTRAINTERROR can be raised in place of NUMERICERROR (AI-00387).
s8. Subtypes declared by an integer type definition are static (AI-00023).

Changes from July 1982 I

S9. There are no significant changes.

V V,

r- d f- t

3.5.5 Operations of Discrete Types Version 1 (Dec 86)

Changes from July 1980

Sl0. NUMERICERROR is raised by an i -licit conversion instead of CONSTRAINTERROR.

Legality Rules

L1. The bounds given in an integer type definition must each have some integer type, but they
need not have the same integer type (RM 3.5.4/3).

L2. Static expressions must be used to define the bounds of an integer type definition (RM
3.5.4/3). (In particular, a range attribute cannot be used.)

L3. An integer type definition is illegal if there is no predefined integer type (other than
universalintege) that covers the specified range of values (RM 3.5.4/6).

Test Objectives and Design Guidelines

Ti. Check that the bounds in an integer type definition must be static.
Implementation Guideline: In particular, check that a range attrbute is not allowed.

T2. Check that the bounds of an integer type definition need not have the same integer type.

T3. Check that an integer type is rejected if its upper bound exceeds SYSTEM.MAXINT or if
its lower bound is less than SYSTEM.MININT.
Implementation Guideline: Check these bounds in separate type declarations. The specified range should
cover only a few values.

T4. Check that the predefined integer types are equivalent to their base types, e.g.,
INTEGER'FIRST = INTEGER (INTEGER'BASE'FIRST).

3.5.5 Operations of Discrete Types
Semantic Ramifications

S1. POS is defined for integer types as well as enumeration types. In particular, the position
number for a negative integer value is the value itsel (RM 3.5.5/9), so position numbers can be
negative.
S2. The position number of a value is not to be c. M-iused with its representation; e.g.:

type ENUM is (A, B);

for ENUM use (A => 1, S => 3);
-- ENUM'POS (A) = 0
-- ENUM'POS(B) = 1

S3. Because certain attributes are defined as functions, they can be renamed. A renaming
declaration cannot be written, however, if an attribute returns or requires an argument of type
universal integer since the name of this type cannot be written. In addition, the RM describes
VAL as a "special" function because its parameter can have any integer type, but no such
function specification can actually be written. This means the only attributes that can be
renamed as functions are SUCC, PRED. IMAGE, and VALUE. These are also the only ones
that can be given as generic actual parameters.
S4. VAL's argument can have any integer type, e.g.:

LONG VAR : LONG INTEGER 5:
INT_VAR INTEER INTEGZR'VAL(LONGVAR):

The initialization expression for INT VAR is legal and does not raise an exception as long as
the value of LONG VAR is in the range of type INTEGER.

3-46

V-N N
'i '-- . -i ''.', v %" -" .",,.- .-.•5 • '-'-"- / . .-.-.. .-. . -.,-"-.-.. - . ."-

Version 1 (Dec 86) 3.5.5 Operations of Discrete Types

$s. The use of upper or lower case letters in VALUE's argument is irrelevant except when the
argument is a character literal. For enumeration literals that are identifiers, case is ignored (see
RM 2.3/3), and for integer, decimal, or based literals, case is similarly ignored (RM 2.4.1/3 and
RM 2.4.2/3). I

S6. An integer literal is not allowed to have a negative exponent (RM 2.4.1/4), so
INTEGER'VALUE("OE-0") must raise CONSTRAINTERROR.

Approved Interpretations

S7. The lower bound of the IMAGE of an enumeration value is one (AI-00234).

s8. It has been recommended (AI-00239) (as a nonbinding interpretation) that the image of a
nongraphic character be the sequence of letters given in italics in the declaration of type
CHARACTER (RM C/13). (The image given for nongraphic characters will affect the value
returned by the WIDTH attribute.)

Changes from July 1982

s9. The attribute WIDTH is defined explicitly to yield the value zero for a null subtype.

si0. The conditions for raising CONSTRAINTERROR for VAL are now stated correctly in
terms of the parameter value rather than in terms of the result. ,N

si The exception conditions for SUCC and PRED are rephrased in terms of T's base type
.- siead of in terms of T's subtype.

S12. The argument of PRED, SUCC, IMAGE, and POS must have base type T (instead of .4.

subtype T). r..

$13. The result of T'VAL has the base type of T. (Similarly, for SUCC, PRED, and VALUE).

S14. The lower bound of the result of T'IMAGE is one.

Changes from July 1980

S15. The attribute WIDTH is added.

S16. The attributes IMAGE and VALUE are no longer defined for real types.

S17. The attribute POS returns a value of type universalinteger.

s1s. The attribute T'VAL can no longer be renamed.

si9. The result of T'IMAGE starts with a leading blank if the value is non-negative.

s20. T'VALUE raises CONSTRAINTERROR (not DATAERROR) if its argument is ill-formed.

Legality Rules

Li. The short-circuit control forms are defined only for boolean types (RM 3.5.5/1).

L2. The arithmetic operators are not predefined for enumeration types (RM 3.5.5/15).

L3. The logical operators (and the not operator) are not predefined for numeric types or for
enumeration types other than boolean types (RM 3.5.5/15).

L4. The prefix of the attributes WIDTH, POS, VAL. SUCC, PRED, IMAGE, and VALUE must
have an enumeration or integer base type (RM 3.5.5/2).

L5. The base type of the prefix and base type of the argument of POS, SUCC, PRED, and
IMAGE must be the same (RM 3.5.5/6,8-10).

I

L6. The argument of the attribute VALUE must have the base type STRING (RM 3.5.5/12).

3-47

.r

3.5.5 Operations of Discrete Types Version 1 (Dec 86)

L7. The argument of the attribute VAL must have an integer base type (RM 3.5.5/7). ..,

Exception Conditions

El. The evaluation of T'SUCC raises CO" STRAINTERROR if its argument equals the last
value in the base type of T (RM 3.5.5/8).

E2. The evaluation of T'PRED raises CONSTRAINTERROR if its argument equals the first
value in the base type of T (RM 3.5.5/9).

E3. The evaluation of T'VAL(I), where I Is an integer value, raises CONSTRAINTERROR if I
does not equal a position number of a value in T's base type (RM 3.5.5/7).

E4. The evaluation of T'VALUE(S), where S is a string value, raises CONSTRAINTERROR if
-S is ill-formed, i.e.,

* T is an enumeration type and S does not have the syntax of an identifier
or a character literal (RM 3.5.5/13), or S is not the string produced by
IMAGE for a nongraphic character (RM 3.5.5/11); or

* T is an integer type and S does not have the syntax of an integer literal,
optionally preceded by a single plus or minus sign (RM 3.5.5/13); or

. the value represented by S does not belong to the base type of T (RM
3.5.5/13).

Test Objectives and Design Guidelines

T1. Check that the prefix of WIDTH, POS, VAL, SUCC, PRED, IMAGE, and VALUE cannot be - "
fixed or floating point types.
Implementadon Guideline: The argument to POS, SUCC, PRED, and IMAGE should have the same type as
the prefix.

T2. For an enumeration type other than a boolean o." character type, check the results and type
produced by the following attributes:

, WIDTH

e yields the number of characters in the longest enumeration literal,
belonging to the prefix subtype (not the prefix base type).

* yields zero when the subtype has a null range.

eIMAGE

yields an enumeration literal all in upper case, regardless of the case
used in the enumeration literal specification; no leading or trailing
blanks.
yields a string whose lower bound Is one (even when the enumeration
literal is not the first literal in the enumeration literal specification).

• VALUE

yields the correct value:

regardless of the use of upper or lower case in the input strng.

3-48l% %
.............. 5A

Version 1 (Dec 86) 3.5.5 Operations of Discrete Types

" regardless of the presence of leading or trailing blanks. .

• o. when underline characters are the only characters distinguishing
two enumeration values.

e even when the string contains the longest possible enumeration
literal.

" can yield a result that need not belong to the subtype of the prefix.

" raises CONSTRAINTERROR if there is no corresponding value in the
enumeration's base type.

* raises CONSTRAINT ERROR if the string contains a leading or trailing
horizontal tabulation character or another nongraphic character.

" raises CONSTRAINTERROR if the string is syntactically ill-formed:

e it contains consecutive underscores, or a leading or trailing
underscore.

* the first character is a digit.

o the string contains a blank between two identifiers.
Implementation Guideline: The identifiers should denote enumeration literals.

* the string contains a graphic character that is not a letter or a
digit.

" PRED and SUCC

- the result need not be in the subtype of the prefix.
Implementation Guideline: Use a loop to check that each value is produced.
Implementation Guideline: include a check for a type whoee representation has been
specified by a representation clause.

e CONSTRAINTERROR is raised appropriately (see IG 3.5.5/T5).

* POS

* the correct value is produced for each literal belonging to the base type
of the prefix.
Implementation Guideline: Include a check for a type whose representation has been
specified by a representation clause.

* VAL

" the correct value is produced even when the enumeration literal
corresponding to the value is hidden (e.g., by a user-defined function).
Implementation Guideline: Include a check for a type whee representation has been
speeifled by a representation clause.

" CONSTRAINTERROR is raised if the argument is negative or greater
than or equal to the number of enumeration literals in the base type of
the prefix.

* FIRST and LAST

o yield correct values for the subtype denoted by the prefix.
Implementation Guideline: Include a case where the prefix denotes a null subtype.

3-49

,.

~% % U * . : .. ., U -U ~ ~ ~ *. - *~ U - - . - U -

3.5.5 Operations of Discrete Types Version 1 (Dec 86)

Implementation Guideline: Repeat the tests for the case where the prefix is a generic formal discrete type (or a

subtype of such a type; the subtype range constraint can be written using the VAL or VALUE attribute).

T3. For an integer type, check the results jduced by the following attributes:

* eWIDTH

" yields the number of characters in the decimal representation of one of
the bounds of the prefix subtype (whichever bound yields the highervalue).

" yields zero when the prefix has a null range.

* IMAGE

" yields the decimal representation of the argument, with a preceding
blank or minus sign.

" yields a string whose lower bound is one.

oVALUE

'S. * yields the correct value:

* for decimal and based literals, with and without exponents.
e regardless of the presence of leading or trailing blanks, or leading

zeroes.
* underline characters embedded in the literal are ignored. .- ,.

,.w yields a result that need not belong to the subtype of the prefix.
Implementation Guideline: Include a string whose conversion might be expected to
raise NUMERIC-ERROR.

-"* raises CONSTRAINTERROR if there is no corresponding value
belonging to the base type.

* raises CONSTRAINTERROR if the string contains a leading or trailing
horizontal tabulation character.

. raises CONSTRAINTERROR if the string is syntactically ill-formed: .4

e the string contains consecutive underscores, or a leading or
trailing underscore.

e the string contains an underscore preceding or following the "E"
or "e" character of the exponent.

* the string contains an underscore in incorrect places for a based
literal.

e a negative exponent value Is specified.

* the number is terminated with a decimal point.

a for a based literal, the extended digits are not all within the correct
range for the number's base.

* for a based literal, the base is less than 2 or greater than 16.
4 . . ,"

%

3-50

4.. ' ' - " o" -P €,€-- " ",= -' "--- " .J " - .° " • • " • ° • "

Version 1 (Dec 86) 3.5.5 Operations of Discrete Types

" PRED and SUCC

" the result need not be in the subtype of the prefix.
Implementaton Guideline Use a loop to check that each value is produced.

" CONSTRAINT ERROR is raised appropriately (see T5).

" POS

" a negative value is produced for a negative argument value.

" VAL

" the correct result is produced for a negative position number as well as
a positive one.

" the argument need not have the type of the prefix.

" CONSTRAINTERROR is raised if the argument lies outside the range S
of the prefix's base type.

" FIRST and LAST

yield correct values for the subtype denoted by the prefix.
Implementation Guideline. Include a case where the prefix denotes a null subtype.

Implementation Guideline: Repeat the tests for the case where the prefix is a generic formal discrete type (or a
subtype of such a type; the subtype range constraint can be written using the VAL or VALUE attribute).

T4. Check that CONSTRAINTERROR is not raised when the argument to SUCC, PRED,
POS, and IMAGE does not belong to the prefix subtype.
Implementation Guideline: Include a check when the prefix is a generic formal discrete or integer type.

T5. Check that T'SUCC and T'PRED raise CONSTRAINTERROR when their arguments "J'

equal B'LAST and B'FIRST, respectively, where B is the base type of T.
Implementation Guideline: Check for both integer and enumeration types, including formal discrete and integer
types.

T6. Check that the argument to SUCC, PRED, IMAGE, and POS must have the base type of
the prefix and cannot have a fixed or floating point type.
Implementation Guideline: Try at least one tesi using SUCC with a nondiscrete type. e.g.. a fixed point type
with a delta of 1.0.

Check that the argument to VALUE must have the base type STRING.
Implementation Guideline" Use an array of character type as the argument.

Check that the argument to VAL must be an integer type.

17. For a character type, check the results produced by the following attributes:

e WIDTH

yields the number of characters in the longest enumeration literal I
belonging to the prefix subtype (not the prefix base type).
Implementaton Guideline: Use an enumeration type in which a character literal is the
longet literal.

" For the predefined type CHARACTER, check WIDTH for the image of a
nongraphic character.

,%; Implementetion Guidelne Al-00239 recommends that nongraphic characters have an
image such as NUL for CHARACTERVALIO). but this interpretation is nonbinding, so an "

S•€

•.1

3.5.5 Operations of Discrete Types Version 1 (Dec 86)

implementation might provide a different image, e.g., NUL' or '000. In any event, the
value of WIDTH for CHARACTER should reflect the representation chosen for "" ".
nongraphic characters. ,.

* IMAGE

9 yields a character literal, preserving the case of the graphic character.
Implementation Guideline: Check the results for each graphic character. Include a
check for a user-defined character type.

* yields a string whose lower bound is one.

•VALUE

yields the correct value for an argument that is a character literal or the
string representation of a nongraphic character.
Implementation Guideline: Check for all graphic and nongraphic characters.

o yields a result that need not belong to the subtype of the prefix.

o raises CONSTRAINTERROR if there is no corresponding value in the
prefix's base type.

o raises CONSTRAINTERROR if the string contains a leading or trailing
horizontal tabulation character or another nongraphic character.

o raises CONSTRAINTERROR if the string is syntactically ill-formed,
e.g., if the string is "", , a"a'", or 'ab'".

* PRED and SUCC

* the result need not be in the subtype of the prefix.
Implementation Guideline: Use a loop to check that each value is produced.

o CONSTRAINT ERROR is raised appropriately (see IG 3.5.5/75).
"" • POS

* the correct value is produced for each literal belonging to the base type
of the prefix.
Implementation Guideline: Include tests for the nongraphic characters.
Implementation Guideline: Include a check for an enumeration type whose
representation has been specified with a representation clause.

* VAL

* the correct value is produced even for nongraphic characters.

* CONSTRAINTERROR is raised if the argument is negative or is
greater than or equal to the number of enumeration literals in the base
type of the prefix.
Imp/ementabon Guideline: Include a check for a type whose representation has been
specified by a representation clause.

* FIRST and LAST

* yield correct values for the subtype denoted by the prefix.
Implementation Guideline: Include a case where the prefix denotes a null subtype. -,-,

Implementation Guideline: Repeat the tests for the case where the prefix is a generic formal discrete type (or a " '

subtype of such a type, the subtype range constraint can be written using the VAL or VALUE attribute).

3-52

F. Z" " "" % -S -

Version 1 (Dec 86) 3.5.5 Operations of Discrete Types

T8. For a boolean type, check the results produced by the following attributes:

WIDTH

" yields the correct value (4 or 5).

" yields zero when the subtype has a null range.

IMAGE

" yields the value "TRUE" or "FALSE".

" yields a string whose lower bound is one.

* VALUE
" yields the correct value:

" regardless of the use of upper or lower case in the input string.

" regardless of the presence of leading or trailing blanks.

" yields a result that need not belong to the subtype of the prefix.

" raises CONSTRAINTERROR if there is no corresponding value in the •
enumeration's base type.

" raises CONSTRAINTERROR if the string contains a leading or trailing
horizontal tabulation character.

i PRED and SUCC .

" the result need not be in the subtype of the prefix.

CONSTRAINTERROR is raised appropriately (see IG 3.5.5/T5).
•POS ""

V the correct value is produced for TRUE and FALSE.
•VAL -

the correct value is produced.

* CONSTRAINTERROR is raised if the argument is negative or greater
than one.

FIRST and LAST

* yield correct values for the subtype denoted by the prefix.
Implementation Guideline: Include a case where the prefix denotes a null subtype.

Implementabon Guideline: Repeat the tests for the case where the prefix is a generic formal discrete type (or a
subtype of such a type; the subtype range constraint can be written using the VAL or VALUE attribute).

% %

*.,.;_.

, 5--"-:.-... .r. . - . ,. ',.. .,.. .,. , , . '. .- - ,. ,,., . . ., . . ., . . ,_ .. .

3.5.6 Real Types Version 1 (Dec 86)

3.5.6 Real Types
Semantic Ramifications

A S1. Although the RM gives prominence the concept of model numbers, it is the safe
numbers that actually determine all the impoitant computational properties of real types. Safe
numbers are discussed in IG 3.5.7/S.

S2. The concept of "model" floating and fixed point numbers is used to specify the minimum
accuracy and range of values an implementation must allow for values of a given real type. An
implementation is free to use a more accurate representation than that specified by a type
definition. For example, a floating point type declaration might specify that floating point values
are to be maintained with at least 18 bits of accuracy. Suppose a floating point type supported
by the hardware provides 27 bits of accurac,. Since the hardware type provides more than the
required accuracy, it can be used by the implementation; truncation to 18 bits is not required.
Extra accuracy can also be provided if a machine performs floating point calculations in
"overlength" registers. In this case, calculations might be performed with more bits of precision
than is implied by the stored representation of values. In effect, different representations are
provided for the same real type - a stored representation and a representation used for results
of computations. If an optimizing compiler keeps results in registers, and these registers give
more bits of precision than the stored values, then a comparison such as A*B > C may return
different values, depending on whether C is the result of another computation, and hence, is in a
register, or is a stored value. Such uncertainties in computing with real values are reflected in
the properties of Ada's model for real numbers, and hence, are permitted. But an
implementation that takes advantage of the extra accuracy provided by a machine may surprise
its users, so care should be taken.

S3. An algorithm written to depend just on the properties of the model numbers is completely
portable. An algonthm that depends on the properties of the safe numbers is not portable, since
the range of safe numbers may differ from one implementation to the next. However, the
concept of safe numbers allows the RM to specify what the effect of real arithmetic operations
must be for certain values that lie outside the range of model numbers.

S4. An algorithm can easily use more than the im,; fntation-independent properti.. f a"real
ype and hence be non-portable. A diagnostic co. piler could issue warnings about such

transgressions but when portability is not a requr::3ent, it is not helpful to issue q warning.
Moreover, the programmer can achieve pcrtabilitvy q. one of two means: first, by using only the
guaranteed Ada properties of model numbers; second, by using machine parameters of the
underlying hardware types. The Ada method is crude, but simple; on the other hand, the
machine me-hoad can give a closer match to the actual hardware at the expense of some
additional complexity.

Approved Interpretations

s5. CONSTRAINTERROR can be raised instead of NUMERICERROR (AI-00387).

Changes from July 1982

S6. The set of safe numbers must include the set of model numbers for a type.

Changes from July 1980

S" The -,uton of safe numbers has been introduced.

* Implict conversion of a universalreal value raises NUMERICERROR instead of
-DNSTR A,'-T ERROR.

3-54

Version 1 (Dec 86) 3.5.7 Floating Point Types

3.5.7 Floating Point Types

' .,,., Semantic Ramifications ,

S1. The operations declared for a floating point type are:

basic operations (RM 3.5.8/1)
assignment%
membership tests
qualification
explicit conversion (from any numeric type)
implicit conversion (from universalreal)

operators (RM 3.5.8/15)
relational operators
unary + and -

binary + and -
* / ** abs

attributes
ADDRESS (RM 13.7.2/3)
BASE (RM 3.3.3/9)
FIRST (RM 3.5/8)
LAST (RM 3.5/9)
SIZE (RM 13.7.2/4)

-. DIGITS (RM 3.5.8/4)
MANTISSA (RM 3.5.8/5)
EPSILON (RM 3.5.8/6)
EMAX (RM 3.5.8/7)
SMALL (EM 3.5.8/8)
LARGE (RM 3.5.8/9)
SAFE EMAX (RM 3.5.8/11)
SAFESMALL (RM 3.5.8/12)
SAFELARGE (EM 3.5.8/13)
MACHINE-ROUNDS (RM 13.7.3/3)
MACHINE OVERFLOWS (RM 13.7.3/4)
MACHINE RADIX (RM 13.7.3/6)
MACHINEMANTISSA (RM 13.7.3/7)
MACHINEEMAX (RM 13.7.3/8)
MACHINEEMIN (RM 13.7.3/9)

S2. It is often believed that the RM's formula for computing the number of binary digits in the
mantissa of model numbers is incorrect. The usual argument is that if D digits of accuracy are
required, then it is sufficient if 2**(-B) <= 10**(-D), i.e.,:

-B * log(2) <= -D * log(10)
B >= D * log(10)/log(2)
B = ceiling[D * log(10)/log(2)] (since B is an integer)

This gives a value one less than the value specified in RM 3.5.7/6. But the correct
characterization of the requirement is that the largest relative error for model numbers must be
less than the smallest relative error for the corresponding decimal numbers. (The goal is to
guarantee that every D-digit decimal number can be represented as a unique model number,
and such a model number can, in turn, be uniquely mapped back to the original decimal

* number.) To develop an appropriate formula based on the minimum and maximum relative
error, recall that the relative error for a D-digit number is the place value of the least significant
digit divided by the number. For example, the relative error of the 2-digit number 25 is 1/25
(since 25 can represent any value between 24.5 and 25.5).

,% x 3.55

" =I l i liI l IH i i I l li

3.5.7 Floating Point Types Version 1 (Dec 86)

S3. The maximum relative error for a D-digit number is one divided by the smallest D-digit ..-.
number, e.g., for D = 2, the maximum relative error Is 1/10 = 10**(-D+1). The minimum relative

* error for a 2-digit decimal number is 1/9 ihich is slightly larger than 10**(-D), so a lower
bound on the minimum relative error is 1U -D). Corresponding calculations apply to B-digit
binary numbers. In short, in order to ensure that every decimal number has a unique model
number representation, it is necessary that:

max binary (model) number error <= min decimal number error, i.e.,. 2**(-B+I) <= 10**(-D)

This relation leads directly to the formula given in the RM. [A discussion of why model numbers .

can represent decimal numbers uniquely is given in I. B. Goldberg, "27 bits are not enough for
8-digit accuracy," CACM 10, 2 (Feb. 1967), pp. 105-106.]
S4. For a given specification of digits, the following table shows the minimum number of binary
mantissa bits required and the minimum exponent range. (Note that log(10)/log(2) is
approximately 3.32.)

DIGITS MANTISSA EMAX DIGITS MANTISSA EMAX

1 5 20 16 55 220
2 8 32 17 58 232
3 11 44 18 61 244
4 15 60 19 65 260
5 18 72 20 68 272

6 21 84 21 71 284
7 25 100 22 75 300
8 28 112 23 78 312
9 31 124 24 81 324
10 35 140 25 85 340

11 38 152 88 352
12 41 164 91 364
!3 45 180 95 380
14 48 192 98 392
15 51 204 30 101 404

s5. The requirement that the exponent range be at least -4*B .. 4*B may restrict what hardware
types can be used to represent a floating point type. For example, on the Honeywell 6000 in
double precision, the maximum exponent value is 2.0-127, so the longest mantissa length
allowed for model numbers is 31 bits or less. A 31-digit mantissa length corresponds to DIGITS
= 9, which is approximately half the actual precision provided by the hardware type.
Nonetheless, an implementation cannot use this hardware type to support a floating point type
requiring DIGITS = 10 since the required exponent range is not supported. For most machines,
the actual mantissa length of the hardware floating point types is the primary limitation
restricting what range of DIGITS values can be accepted; in these cases, the set of model
numbers guarantees a smaller exponent range than is actually provided. (The value 4*B as
EMAX was chosen because some minimal exponent range had to be guaranteed by a model
that only used the value of digits to determine a model range, and 4"B was thought to be a
reasonable compromise between user needs and what most machines provide.)

S6. As another example, consider a floating point type that uses hexadecimal representation
with the mantissa having six hexadecimal digits (24 binary digits) and a hexadecimal exponent - "-
range of -64 .. 63. The hexadecimal exponent range corresponds to the binary exponent range %.1i

3-56

;k L&.

Version 1 (Dec 86) 3.5.7 Floating Point Types

-256 .. 252. However, since the first three bits of the first digit of the hexadecimal mantissa can
be zero, the minimum number of mantissa bits in a binary representation is 24-3=21. Moreover,
for a binary mantissa, the exponent range must be adjusted to -256-3 .. 252, i.e., -259 .. 252. A
21 -digit binary mantissa for a model number requires an exponent range of -84 .. 84, so it is
clear that this hexadecimal floating point representation can be used as the base type for
floating point types requiing no more than 6 decimal digits of accuracy. The safe numbers
associated with this base type have an exponent range -252 .. 252, the largest symmetric
exponent range supported by the hardware type.

S7. In considering the semantics of floating point types, it is helpful to keep the following points
mind. These are discussed more fully below.

" The safe numbers of a floating point subtype are the safe numbers of the base
type (RM 3.5.7/9). The safe nurrbers of the base type are a subset of the
values of the type. Model numbers of a type are a subset of the safe numbers.

" All floating point operations (except assignment) are performed using safe
numbers.

" The model numbers of a tvpe or suot7, pe - are determined solely by the value
of T'DIGITS. The model numbers serve to define a minimal set of safe
numbers that must be supported when a digit's value is accepted (by an
implementation) in a real type definition.

The model numbers are a subset of the safe numbers because the mantissa length for a
model number is less than or equal to the mantissa length for safe numbers; in addition, the
exponent values for safe numbers can lie outside the range -4*B .. 4*B. The safe numbers are
a subset of the values of a type because the mantissa length for a base type can exceed B (so
values can be represented that fall between two safe numbers) and because values of the type
can have exponent values that lie outside the range allowed for safe numbers.

s9. Arithmetic and relational operations are performed on safe numbers because these
uperations are declared just for a base type. RM 3.5.7(10-12) says that a floating point type
declaration having the form:

type T is digits D range L ..R:

is semantically equivalent' to the following sequence of declarations:

type %FP is new predefinedfloating_pointtype,
subtype T is %FP digits D range %FP (L) .. %FP (R);

The only arithmetic and relational operators declared for type T are those declared for its base
type %FP. Consequently, all arithmetic and relational operations are performed using the safe ,

numbers of the base type. If T'BASE'DIGITS > TDIGITS (i.e., if the base type has greater
accuracy than is required by T's declaration), then these operations will be performed with
greater accuracy than is required for T. For example, consider:

type T is digits 3;
X T : 126.0;
Y T 158.0;

'This equivalence does not hold in all respects. !n particular it implies that T is a nonstatic type because 6
conversions are not allowed in static expressions (RM 4.9), but A1 00023 says T is intended to be considered a statictype.

- "r S

3.5.7 Floating Point Types Version 1 (Dec 86)

126.0 and 158.0 are both model (and safe) numbers, i.e., they must be represented exactly as
values of type T. Now consider X X, which equals 15876.0. If T'BASE'DIGITS >= 5, then .". ;
15876.0 is also a safe number, so the expr on:

X * X = Y * 100. 0 + 38. 0 + -8. 0

must evaluate to TRUE; every arithmetic operation in this expression uses and yields safe
numbers, so the equality must be evaluated exactly (RM 4.5.7). The fact that the model
numbers of subtype T have only 3 decimal digits of accuracy (RM 3.5.7/15) is not relevant here.
If calculations were performed with only 3 digits of accuracy, the result of Y * 100.0 + 38.0 need
not equal 15838.0, and the equality comparison could yield FALSE.

sio. RM 3.5.8/16 says:

The operations of a subtype are the corresponding operations of the type except for the
following: assignment, membership tests, qualification, explicit conversion, and [certain
attributes]; the effects of these operations are redefined in terms of the subtype.

What does redefining the effects of certain operations "in terms of the subtype" mean? Let us
first consider the effects for conversion. Using the variables of the previous example and
continuing to assume that T'BASE'DIGITS is 5 or greater, it must be the case that X*X =
15876.0 evaluates to true, since 15876.0 is implicitly converted to T's base type (RM 3.5.8/1),
and 15876.0 is a safe number for the base type, as is the value of X*X. The same holds for an
explicit conversion: X*X = T(1 5876.0). The explicit conversion first converts 15876.0 to T's base
type (RM 4.6/4) and then checks to see if the converted value belongs to subtype T; no rule
allows the operand to be converted to a model number for T (i.e., a model number accurate to
only 3 decimal digits). The only sense in which the effect of conversion to subtype T is
"redefined" is that the converted value is checked against subtype T's range, not against the -
range of T's base type. (Such checks are performed using T's predefined operations (RM
3.5/3), i.e., using the safe numbers of the base type.) For example:

subtype ST is T range 15838.0 .. 15976.0;

The range, 15838.0 .. 15976.0 is equivalent to T(1 5838.0) .. T(i 5876.0), and if the base type
has at least 5 digits of accuracy, the bounds for . '- are safe numbers. The conversion.
ST(15838.0), must not raise any exception, e.g., it 15,- 38.0 were represented with three decimal
digits of accuracy, it would have a mantissa of 11 bits, and would fall in the model interval
15832.0 .. 15840.0. It would be incorrect to co.-,-are 15838.0 with an incorrect lower bound
such as 15840.0. (One can check that ST has the correct lower bound by evaluating ST'FIRST
= 15840.0 - 1.0 -1 .0, which must evaluate to TRUE; if fewer than 5 digits of accuracy are being
used, the result will not be determined exactly, and could evaluate to FALSE.)

s1 1. Membership tests and qualification are similarly defined in terms of comparisons using the
predefined relational operators, and so must be evaluated using the safe numbers of the base
type rather than the model numbers of a subtype.

* Si 2. In short, the accuracy with which membership tests, qualification, and explicit conversion
are performed is not affected by a subtype declaration. The only sense in which these
operations are "redefined" in terms of a subtype is with respect to the range checks that must be
performed.

S13. Assignment is a bit different. The intention is that values need only be stored with the
accuracy specified for a subtype. For example, consider:

- Z : ST; -- has bounds 15838.0 .. 15976.0

in particular, values stored in Z need only be represented with 3 digits of accuracy, even if the
base type has more accuracy. This means a value being stored in Z can first be modified to a

3-58!! "
p ',J.

Rp.-"

Version 1 (Dec 86) 3.5.7 Floating Point Types
I

%r

3-digit model number, then checked against Z's bounds, and if the check shows that the '
C modified number belongs to ST's range, the modified value can be stored in Z. It is important

z that the 3-digit approximation be done before the range check is made. For example, consider:

Z := 15838.0; 0

If 15838 is approximated to 11 bits of accuracy (3 decimal digits), it can be stored as the model
number 15832.0, it is important to check the actual value being stored against ST's range; in
this case, 15832.0 In ST'RANGE will yield FALSE, so CONSTRAINTERROR would be raised.
If the value of the right-hand side were checked before being reduced to 3 digits of accuracy,
:hen the check would find that 15838.0 does belong to ST's range, but the value assigned would p
3e 15832.0, which is outside ST's range. Note that after such an approximation of a base type's
value, Z = 15838.0 will evaluate to FALSE, since 15832.0 and 15838.0 are different model
numbers when the base type has 5 digits of accuracy.

S14. From an implementation viewpoint, these considerations only mean that all operations for
subtype T (with the possible exception of assignment) must be performed using operations of
the base type. An implementation can safely round (or truncate) values to model numbers of
the subtype only when executing an assignment statement. (Such an approximation is not
allowed when temporary storage assignments are performed. For example, when evaluating
X*X + Y'Y, if it is necessary to store one of the products, the product must be stored with the
accuracy of the base type.) % %

,3 5. If a range constraint is given in a floating point type declaration, then the base type must
be chosen not only to satisfy the specified value for DIGITS, but also so the bounds belong to
the range of safe numbers (RM 3.5.7/12). This means that the value specified for DIGITS does
not totally constrain the underlying base type: '.,5"

type T is digits FLOAT'DIGITS range FLOAT'FIRST .. FLOAT'LAST;

This declaration might be rejected by an implementation because FLOAT'FIRST and
FLOAT'LAST need not belong to the range of FLOAT's safe numbers and there need be no
predefined type that includes the values of FLOAT'FIRST and FLOAT'LAST in its range of safe -- -
numbers.

S16. Real literals are converted implicitly to an appropriate real type (RM 4.6/15). If a literal is a
safe number, it must be converted exactly (RM 4.5.7). If a literal is not a safe number, the I
converted value must lie between consecutive safe numbers (RM 4.5.7). Literals that are not
safe numbers need not be converted consistently. Fcr example, consider:

X := 0.1;
-- some calculation not changing X
if X = 0.1 then

The equality operation can yield FALSE because the representation of X can depend on
whether a register value or a stored value is used. If a register has more mantissa bits than
stored values, and if the literal 0.1 Is loaded into the register with maximum precision, then the
value representing 0.1 in the register can be different from the value stored in X.

I
S17. In a type definition of the form digits D range L .. R, L and R need not be expressions -
having the same floating point type, nor need they have a floating point type - L or R could be
fixed point expressions.

sis. If an implementation supports SHORTFLOAT and/or LONGFLOAT, SHORT-
_FLOAT'DIGITS < FLOAT'DIGITS < LONGFLOAT'DIGITS must hold. If an implementation
does not support these precisions, then these identifiers must not be declared in STANDARD.

-' . -

'p

S=

.5.. .'

4. .- . 4 ,i" W -I

3.5.7 Floating Point Types Version 1 (Dec 86)
p

Changes from July 1982 - ..

sI 9. There are no significant changes.

Changes from July 1980

S20. The value of MANTISSA has been increased by 1.

s21. The notion of safe numbers has been introduced.

Legality Rules

Li. The arithmetic operators mod and rem are not predefined for floating point types (RM
3.5.8/15).

L2. The expression following digits must be a static expression having an integer type (RM
3.5.7/3).

L3. In a floating point constraint, the expression following digits must have a value less than or
equal to SYSTEM.MAXDIGITS and greater than zero (RM 3.5.7/3 and RM 3.5.7/12).

L3. If a range constraint is provided in a floating point constraint used in a real type definition,
the bounds of the range constraint must be specified as static expressions having either a
fixed point type, a floating point type, or the type universal rea, the expressions need not
have the same real type (RM 3.5.7/3).

L4. If a range constraint is provided in a floating point constraint used in a real type definition,
the specified range must be included in the set of safe numbers defined for the base type
(RM 3.5.7/12).

1L5. If a floating point constraint follows a type mark in a subtype indication, then the type mark* '-".' >,
must denote a floating point base type or subtype (RM 3.5.7/14), and the subtype
indication must not appear in an allocator (RM 4.8/4).

Exception Conditions

El. If a floating accuracy definition appears in a subtype indication whose type mark is T,
CONSTRAINTERROR is raised if the value of the expression following digits is greater
than T'DIGITS (RM 3.5.7/14 and RM 3.3.2/9).

E2. If a floating accuracy definition with a range constraint appears in a subtype indication
whose type mark is T, CONSTRAINTERROR is raised if the specified range is not null
and one (or both) of the bounds does not lie in the range T'FIRST .. T'LAST (RM 3.5.7/14,
RM 3.5/3, and RM 3.3.2/9).

Test Objectives and Design Guidelines

T1. Check that

a. the expression after digits must be an integer type.

b. the expression after digits must not be negative or zero.

c. the expression after digits must be static.

d. the expression after digits must have a value <= SYSTEM.MAXDIGITS.

e. the expressions in a floating point range constraint must not have an integer
type. C;,-. ? .- ,

f. if a range is specified, the upper and lower bounds must be included in the "' "
range of safe numbers.

,,%

3-60

.

Version 1 (Dec 86) 3.5.7 Floating Point Types

T2. Check that SHORTFLOAT'DIGITS < FLOAT'DIGITS and FLOAT'DIGITS < LONG-
_FLOAT'DIGITS if these types are defined for an implementation.

T3. Check that the values of FIRST and LAST can be assigned without raising CONSTRAINT-
_ERROR.

51

T4. Check that the upper and lower bounds in a floating point type definition's range constraint
can have different real types (including fixed point types).

TS. For each of digits 5..29, check that values corresponding to LARGE, -LARGE, SMALL,
-SMALL, EPSILON, and 1.0+EPSILON can be assigned and used in equality relations.
Implementaton Guideline: Check also that correct values are returned for generic formal types.

T6. Check that negative powers of 2.0 down to 2.0°°(-30) are represented exactly for digits
5..29.

'4.

T7. For digits 5..29, check that a literal value that is not a model number lies in the correct
model interval.
Implementation Guideline: Include a check for a generic formal type.

Ta. For digits 5..29, check that unnormalized literals representing model numbers are
*. represented correctly.

T9. Check that %

a. two types with the same textual declaration are distinct,

b. two types derived from a single type are distinct, and

c. subtypes of distinct types are distinct.

Ti 0. Check that the base type is determined partly by the range given in the type declaration.
"' Implementation Guideline: Use a type with digits 1 and whose lower and upper bounds are the safe numbers

bounding the range for the most precise floating point type. Check that the declaration is accepted, and report
whether the base type is different from a simple digits 1 base type.

T1 1. Check that CONSTRAINT ERROR is raised for a subtype indication having either of the
forms, T digits D or T digits D range L..R, when T'DIGITS < D.
Check that CONSTRAINTERROR is raised for a subtype indication having the form T
digits D range L..R if L..R is a non-null range and either L or R do not belong to T's range.

Check that no exception is raised otherwise.
Implementation Guideline: Perform the tests for generic formal types as well.

T1 2. Check thac explicit conversions, membership tests, and qualification for a subtype are
evaluated with the accuracy of the base type.
Implementation Guideline: Include a check for generic formal types.

Check whether assignment for a subtype is performed with less precision than for the base
type, and if so, whether range constraint checks are performed after the value to be
assigned is given a suitable approximation for storage.

T13. Check that the predefined floating point base types are equivalent to the predefined type,
e.g., FLOAT'FIRST - FLOAT(FLOAT'BASE'FIRST), and FLOAT' DIGITS =
FLOAT'BASE'DIGITS.

%,. t

a'

3.5.8 Operations of Floating Point Types Version 1 (Dec 86)

3.5.8 Operations of Floating Point Types
Semantic Ramifications

Si. Since T'SAFELARGE gives, the trgest safe number for T'BASE, and since
T'BASE'MANTISSA can be larger than T'MANTISSA, there is no attribute that reliably gives the
largest safe number for T; the largest safe number for T can be less than T'SAFELARGE,
since T's safe numbers can have fewer mantissa bits than the safe numbers for T'BASE.
Similar reasoning applies to T'SAFESMALL, which can be smaller than the smallest positive
safe number for T.
Changes from July 1982

S2. The attributes, SAFEEMAX, SAFESMALL, and SAFELARGE, yield values for the base
type of the prefix.

Changes from July 1980

S3. Attributes for safe numbers have been introduced.

S4. abs is an operator, not a function.

Legality Rules

LI. The prefix of the attributes DIGITS, EPSILON, EMAX, and SAFEEMAX must denote a
floating point subtype (RM 3.5.8/3-13).

L2. The prefix of the attributes MANTISSA, SMALL, LARGE, SAFE SMALL, and SAFE-
-LARGE must denote either a fixed or floating point type (RM 3.5.8/3-13 and RM -
3.5.10/5-12).

Test Objectives and Design Guidelines

Ti. Check that DIGITS, MANTISSA, EMAX, and SAFEEMAX have type universalinteger
and SMALL, LARGE, EPSILON, SAFESMALL and SAFELARGE have type
universalreal.
Implementation Guideline: Include generic formal subtypes as a prefix.

Check that FIRST and LAST return values having the base type of their prefix.
Implementation GLideiine: Include a null subtype as a p 3fix and a generic formal type.

For a static subtype prefix, check that the attributes can be used in static expressions.

T2. Check the values of the attributes for all digits N, N=5..29 and check that the following
relations hold:

* T'DIGITS <= T'BASE'DIGITS
o T'MANTISSA <= T'BASE'MANTISSA

* T'EPSILON >= T'BASE'EPSILON

e T'EMAX = 4 T'MANTISSA <= T'SAFEEMAX

* T'SAFEEMAX = T'BASE'SAFEEMAX

. T'SAFESMALL = 2.0*°(-T'SAFEEMAX - 1)

* T'SAFELARGE = 2.0**T'SAFEEMAX 2.0**(T-SAFEEMAX-
T'BASE'MANTISSA)
Implementation Guideline: Compute the above formula as 2"(T'SAFEEMAX - 1)

W 2"'TSAFEEMAX - TBASE'MANTISSA) + 2"*(T'SAFEEMAX - 1), to avoid the possibility of
overflow.

3-62

%.F 4

I I VWWT9b ..I ~ w w I -1rr..'j S V

Version I (Doc 86) 3.5.9 Fixed Point Types

Implementation Guideline: Include a check for generic formal types.

T3. Check that the prefix of DIGITS, EPSILON, EMAX, and SAFEEMAX cannot be a fixed .-

point type. &

-U

3.5.9 Fixed Point Types %

Semantic Ramifications

St. The operations declared by a fixed point type definition are: -.

basic operations (RM 3.5.10/1)
assignment
membership tests
qualification "
explicit conversion (from any numeric type)
implicit conversion (from universalreal)

operators (RM 3.5.10/14)
relational operators
unary + and -

binary + and -

* for one operand having an integer type (RM 4.5.5/7)
/ for divisor having an integer type (RM 4.5.5/7)
abs 4P

attributes
ADDRESS (RM 13.7.2/3)
BASE (RM 3.3.3/9)
FIRST (RM 3.5/8)
LAST (EM 3.5/9)
SIZE (EM 13.7.2/4)
DELTA (RM 3.5.10/4) 8_

MANTISSA (EM 3.5.10/5)
SMALL (RM 3.5.10/6)
LARGE (RM 3.5.10/7)
FORE (EM 3.5.10/8)
AFT (Eh 3.5.10/9)
SAFE_SMALL (EM 3.5.10/11)
SAFE LARGE (EM 3.5.10/12)
MACHINE ROUNDS (R 13.7.3/3)
MACHINE OVERFLOWS (RM 13.7.3/4)

The operators for multiplying or dividing two fixed point values are declared in STANDARD (RM
4.5.5/9); these operators are not Implicitly declared after a fixed point type declaration (see IG
3.5.10/S for further discussion).

S2. A fixed point type is Implemented as a scaled binary number, where the binary point
separating the integer and fractional part can be considered to lie either between the
represented bits or outside the represented bits (either to the left or right). The position of the
binary point Is determined by the scale factor.

S3. An implementation Is only required to support scale factors that are integral powers of two,
since an implementation can choose to restrict its support for representation clauses to those
that are easily Implemented (RM 13.1/10). By allowing only integral powers of 2 as scale
factors (in the representation clause for 'SMALL), the implementation of fixed point multiplication
and division is considerably simplified. On the other hand, applications that actually make use

3-63
I

,, 4,

3.5.9 Fixed Point Types Version 1 (Dec 86)

of fixed point values will find such a restriction unhelpful, since hardware devices often produce ,, ,'
or require fixed point values with scale factors that are ott'r than powers of two. .t.. .

S4. The fixed point type, DURATION (sk IM 9.6/4), requires a mantissa of at least 24 bits,
since it must cover the range -86_400 .. 86400 with DURATION'SMALL being no larger than
0.020. ThiL means fixed point operations such as multiplication and division must be supported
for fixed point values having at least 24 bits of accuracy. A double precision integer
representation must often be used in this case.

S5. The requirement that an implementation have at least one anonymous fixed point type (RM
3.5.9/7) means that there are at least two fixed point types whose scope includes any arithmetic
expression (the type DURATION and at least one other, anonymous, type). Consequently, if V
is a variable of type DURATION, V *60.0 is illegal because there is no unique fixed point type to
which the literal 60.0 can be converted (see further discussion in IG 4.5.5.b/S); such an
expression must be written either as DURATION (V * DURATION(60.0)) or as V * 60
(multiplication of a fixed point value by an integer is allowed and yields the same fixed point
type).

S6. SYSTEM.FINEDELTA is defined as the smallest delta allowed in a fixed point constraint
that has the range constraint -1.0 .. 1.0 (RM 13.7.1/6). This value, in essence, determines the
largest fixed point mantissa value an implementation is prepared to support, e.g., if fixed point
values can be represented with at most 31 bits of precision, SYSTEM, FINEDELTA should be
2"(-31).

S7. SYSTEM.FINEDELTA is not the smallest delta that an implementation supports. For
example, consider:

type T is delta SYSTEM.FINE DELTA range -1.0 .. 1.0;
type U is delta SYSTEZ.FINE.DELTA/2 range -0.5 .. 0.5;

This declaration should be considered legal because it can be represented using the same
mantissa length as T. (In this case, the implicit binary point lies to the left of the most significant
digit in the representation.) Similarly, the following declaration should be accepted:

type NT is delta 2*SYSTEM.FINE DELTA range -2*T'LARGE .. 2*T'LARGE;

S8. Suppose fixed point types are represented as signed, twos-complement, 3- bit numbers,
i.e., SYSTEM.MAXMANTISSA is 31. Then the following type declaration cannot be rejected:

type T is delta 2.0**(-31) range -1.0 .. 1.0;

Although the upper bound, 1.0, cannot be represented physically (since all 31 bits are used to
represent values lying between -1.0 and 1.0 - T'SMALL) the requirement is that T's largest
model number lie "at most" T'SMALL from the upper bound specified in T's declaration. If the
value of the largest model number is 1.0 - T'SMALL (i.e., 1.0 - 2.0'*(-31)), this condition is
satisfied even though 1.0 is not representable. T'LAST will equal 1.0 - T'SMALL, and the
comparison 1.0 = T'LAST can raise an exception when 1.0 is converted to T's base type.

S9. Now consider the declaration:

type 0 is delta 2.0**(-30) range -1.0 .. 1.0;

The model numbers for U only have 30-bit mantissas. If the hardware fixed point type uses 31
bits, the implementation has the option of putting the extra bit on the left (increasing the range of
representable values, and in particular, making 1.0 a representable number), or on the right
(increasing the precision with which values are actually represented). Although the RM imposes
no requirement on where extra bits are to be placed, it Is preferable if the implementation -
provides extra precision rather than extra range; this is what most fixed point application
programmers would expect. (Providing extra precision is allowed: see AI-00341.)

3-64

% = '% '"% "% "% - - .",-.•, .".•. , - -.-.- ," , - . - . " •, .% - '.'J-", ,%L. :"'' .,.: .- ,., ' ' ... " - . ." : " ',"-",'',.. ', ,, ' ', '

Version 1 (Dec 86) 3.5.9 Fixed Point Types

s10. The RM defines the default value of SMALL to be the largest power of two consistent with
the specification given after delta:

type T is delta 0.01 range -100.00 .. 100.00;
X : T :- T' SNALL;

Unless a representation clause is given for T'SMALL, the value of T'SMALL must be 2*(-7) =
0.0078125. With such a value of SMALL, 0.01 is not a model number, so 50 * X will not equal -V
the model number 0.5. To make 0.01 a model number, a length clause must be given:

for T'SMA.LL use 0.01; .

If this clause is accepted by an implementation (see RM 13.1/1 0), 0.01 will be a model number,
and so will 50" X.
si1. Specifying a decimal value for 'SMALL allows an implementation to use a decimal
representation for fixed point values and operations. However, care must be taken to ensure
that the required range of model numbers is supported. For example:

type FIX is delta 0.1 range -99.5 .. 99.5;
for FIX'SMALL use 0.1;

Since the model numbers use a binary representation, the set of model numbers will be -(1023
0.1) .. 102.3. Computations using the predefined arithmetic operations cannot overflow when
computing 99.5 + 0.5, for example, since the result lies in the range of model numbers for the
type. To ensure that an exception is not raised incorrectly, an implementation will generally -
have to perform computations using at least four decimal digits. On the other hand, three
decimal digits will suffice to hold stored values of type FIX since these values can never lie
outside the range -99.5 .. 99.5.
S12. If type FIX is represented with binary numbers instead of fixed decimal, the set of model
numbers is, of course, unchanged. The value 1023 * 0.1 requires ten bits (plus sign), and the
value 995 *0.1 also requires ten bits, so there is no difference in size between stored values of
type FIX and values of the base type.

Changes from July 1982

S1 3. There are no significant changes. 0

Changes from July 1980

S14. Safe numbers are defin6J for fixed point types.
S15. The default value of SMALL is no longer determined partly by the implementation. In -

particular, it must be a power of 2 if there is no representation clause for SMALL.
Legality Rules

L1. The arithmetic operators mod, rem, and "" are not predefined for fixed point types (RM
3.5.10114).

L.2. The expression following delta must be a static expression having either a fixed point type,
a floating point type, or the type universal real (RM 3.5.9/3). The value of the expression .
must be greater than zero (RM 3.5.9/3).

L3. If a fixed point constraint is used as a real type definition, a range constraint must be -.
provided and the bounds of the range constraint must be given by static expressions
having either a fixed point type, a floating point type, or the type universal rea, the
expressions need not have the same real type (RM 3.5.9/3).

36,..
3-65.-, "

0"%

3.5.9 Fixed Point Types Version 1 (Dec 86)

L4. The number of bits required to represent the model numbers of the type must not exceed
SYSTEM.MAXMANTISSA (RM 13.7.1/5).

L5. If a fixed point constraint follows a t, mark In a subtype indication, the type mark must m
denote a fixed point subtype (RM 3.5. . 13), and the subtype indication must not appear in K.
an allocator (RM 4.8/4).

Exception Conditions

El. It a fixed accuracy definition appears in a subtype indication whose type mark is T,
CONSTRAINTERROR is raised if the value of the expression following delta is less than
T'SMALL (RM 3.5.9/13 and RM 3.3.2/9).

E2. If a fixed accuracy definition with a range constraint appears in a subtype indication whose
type mark is T, CONSTRAINTERROR is raised if the specified range is not null an, one
(or both) of the bounds does not lie in the range T'FIRST .. T'LAST (RM 3.5.9/13, RM
3.5/3, and RM 3.3.2/9).

Test Objectives and Design Guidelines

T1 Check that

" none of the expressions in a fixed accuracy constraint can have the type
integer.

" the expression following delta must be static and have a value greater than
zero.

. a range constraint must be present in a fixed point type definition.

* a fixed point type definition must be rejected if it requires more than S

SYSTEM.MAXMANTISSA bits.
Implementation Guideline: For example, type T Is delta SYSTEMFINE DELTA range -2.0
2.0. A similar declaration can be constructed using SYSTEM.MAXMANTISSA.

T2. Check that:

* the correct default value of small is used.
Implementation Guideline: Include cases where the specified delta is not a power of two.

* the expression following delta and the bounds in a fixed point type declaration
can all have different real types, including floating point.

* a type with only 1 model number is handled correctly.
Implementation Guideline: For example, type T is delta 1.0 range -1.0 .. 1.0, only has the
model number 0.0.

9 the binary point in the mantissa can lie outside the mantissa (either to the left
or to the right).

T3. Check whether the base type of a fixed point type provides extra precision or extra range.

T4. Check that CONSTRAINTERROR is raised for a subtype indication having the form T
delta S or T delta S range L.. R if T'SMALL is greater than S.

Check that CONSTRAINTERROR is raised for a fixed point subtype indication containing
a non-null range constraint if either bound does not belong to the subtype being
constrained.
Implementation Guideline: Repeat these tests for generic formal types.

3-66

: * *. . .!

Version 1 (Dec 86) 3.5.10 Operations of Fixed Point Types

3.5.10 Operations of Fixed Point Types

Semantic Ramifications

S1. For a fixed point subtype, the value of MANTISSA depends both on the value of theexpression given for SMALL and the bounds of the range. Since, for a subtype declaration, the
range need not be static, the result returned by T'MANTISSA must, in general, be computed at
run-time. For example, consider:

type T is delta 0.25 range -4.0 .. 4.0;
subtype ST1 is T delta 0.25 ange 1.0 .. 2.0;
subtype ST2 is T range 1.0 .. 2.0;
subtype SU is T delta 1.5 range -4.0 .. 4.0;

The model numbers for T, and hence T'MANT'SSA, are determined by the value specified for
defta and the range. In this case, T'SMALL is 0.25: T'MANTISSA is 4, with model numbersranging from -3.75 .. 3.75. The model numbers for Sri are determined by the reduced range
since STI'SMALL = T'SMALL = 0.25. For the reduced range, the model numbers need only
range from -1.75 .. 1.75, so STI'MANTISSA is 3. If either bound for ST1 were nonstatic,
STI'MANTISSA would have to be computed at run time. The model numbers for ST2 are the
same as the model numbers for T, since there is no fixed accuracy constraint in ST2's
declaration (RM 3.5.9/14). For SU, SU'SMALL is 1.0 (the smallest power of two less than 1.5).The model numbers for SU cover the range -3.0 .. 3.0, so SU'MANTISSA is 2.

S2. The model numbers for a subtype can only be redefined if a fixed accuracy definition is
present. For example:

=' type F1 is delta 1.0 range -100.0 . . 100.0;
subtype F2 is Fl range -50.0 .. 50.0;
subtype F3 is F2 delta 2.0; -- new model numbers
subtype F4 is F1 delta 2.0; -- new model numbers

subtype F5 is F4 range -50.0 .. 50.0;

FI'MANTISSA is 7 and the model numbers cover the range -(2"'7-1) .. 2"7 - 1. The range ofF2 is halved, but the model numbers for F2 are not affected; F2 only contains a range
constraint, not a fixed point constraint. Therefore, F2'MANTISSA is still 7. F3'MANTISSA,
however, is 5 because the value of small has been doubled and the range for F3 is half the, range of Fl. F4'MANTISSA is 6 because just the value of small has doubled. F5'MANTISSA ,s

.., also 6 since F5 has the same model numbers as F4. Note, however, that although F3'DELTA -
F5'DELTA and F3 and F5 have the same range, F3'MANTISSA = 5 and F5'MANTISSA 6 .they have different model numbers even though the value of delta and the range are the sa" f

S3. The value of the attribute 'FORE is calculated in terms of the decimal reprtserwat.•
model numbers belonging to the subtype. Consider the following fixed point type dc&ar.,'.

type F is delta 0.1 range 0.0 .. 9.96'
for F'SMALL use 0.01;

The model numbers belonging to F cover the range 0 0
of F'FORE is 2. In this case, the value of F'FORE ,.ntao,. .
are output with an AFT of 1, since the decima! Do, nts w*
allowed for the integer part.
S4. The value returned by FORE can De ,,t-,' -- , .-

type G is delta 0 01 ra'n.

7-. for G'SA.LL use 0 C!

. - .2

I -A16 647 THE ANM (TRD NMEI) COMPILER VALIDAITION CAPAILITY vt9~INPLENEATERS' GUIDE VERSION ICU) SOFTECH INC NALTIMI A
7UWCML SllFEOJ I GOOOENOUUI DEC. F/6L/5

WLoSIIP/ W N

illil -H 1_, o

• IIII1 iiII mi

MICROCOPY RESOLUTION TEST CHART
NATIONAL OUREAU OF STANO S- t96A-

m.,

.J.

'4.

1% , ,"' J ,' ''"" " ","" '"€"""
' r

a .
' " " " ",

3.5.10 Operations of Fixed Point Types Version 1 (Dec 86) 0

subtype SG is G delta 0.1 range 1.0 .. 9.995:

For subtype SG, 9.99 and 10.00 are consecutive model numbers (RM 3.5.9/16). It is P.

implementation-dependent whether the up bound of SG is represented as the model number "-

9.99 or as the model number 10.00. Dep inding on the implementation's choice, the value
returned by SG'FORE will be either 2 or 3. Of course, the bounds of SG need not be given by
static expressions. If the upper bound is nonstatic and has a value lying in the model interval
9.99 to 10.00, SG'FORE's value will be implementation dependent (and must be computed at
run time).

s5. The operations for multiplying or dividing two fixed point values are declared in
STANDARD, not after a particular fixed point type declaration (RM 4.5.5/9). The other
multiplication operators (integer * fixed and fixed * integer) and the other division operator
(fixed/integer) are declared immediately after the fixed point type declaration. The place where
these operators are declared affects their visibility and how expanded names can be used. For
example:

package P is
type T is delta 0.1 range -100.0 100.0;

end P;

X1 P.T 1.0;
X2 P.T 2.0; •
X3 P.T P.T(X1 * X2); -- legal
X4 P.T P.T(P."* (Xl, X2)); -- illegal
X5 P.T 2 * Xl: -- illegal

The use of "*" in the initialization of X5 is illegal because this operator is declared inside
package P and is not directly visible, since no use clause for P has been written. On the other
hand, the use of " in the initialization of X3 is legal since this operator is declared in
STANDARD, and so is directly visible; correspondingly, the use of P."" in X4's initialization is.4
illegal since no "*" operator is declared in P that has operands of type P.T.

Changes from July 1982

S6. The value of FORE is defined to be at least 2. -

S7. An explicit definition of AFT is given.
s. The SAFE attributes are defined to return values of the base type.

Changes from July 1980

s9. The attribute ACTUAL DELTA is now called SMALL. 0

si0. The attribute BITS is now called MANTISSA.

si 1. The attributes FORE and AFT have been introduced.

S12. Attributes for the safe numbers have been introduced.

Legality Rules 0

L1. The prefix of the attributes DELTA, FORE, and AFT must denote a fixed point subtype (RM
3.5.10/3-12).

L2. The prefix of the attributes MANTISSA, SMALL, LARGE, SAFESMALL, and SAFE-
_LARGE must denote either fixed or floating point types or subtypes (RM 3.5.8/3-13 and
RM 3.5.10/5-12).

3-68
,:S.

Version 1 (Dec 86) 3.6 Array Types

Test Objectives and Design Guidelines

T1. Check that the prefix of DELTA, FORE, and AFT cannot be a floating point type.

T2. Check that T'DELTA yields correct values for subtype T.
Implementation Guideline: Include a case where T has been declared by a subtype declaration.
Implementabon Guideline: Check for generic formal types also.

T3. Check that T'MANTISSA has the correct value.
Implementation Guideline: Include cases where TMANTISSA must be computed at run-time.
Implementetion Guideline: Check for generic formal types also.

T4. Check that correct values are yielded for T'SMALL and T'LARGE.
Implementaoion Guideline: Check for generic formal types also.

T5. Check that T'FORE and T'AFT yield correct values.
Implementation Guideline: Include cases where the value of FORE must be computed at run-time.
Implementation Guideline: Include cases where T'DELTA is greater than 0.1 and less than 0.1.
Implementation Guideline: Include cases where FORE is likely to yield an inconvenient value.

T6. Check that SAFESMALL and SAFELARGE return appropriate values.
Implementation Guideline: Check for generic formal types also. ,

17. Check that FIRST and LAST return correct values.
Implementation Guideline: Include cases where the prefix denotes a null subtype and a generic formal type.

T8. Check that the multiplication and division operators for two fixed point operands are
declared in STANDARD and can be directly visible even when other fixed point operators
are not directly visible.

3.6 Array Types
Semantic Ramifications

S1. The syntax requires that the indices of an array type be either all constrained or all "
unconstrained. For example, the following is illegal:

type MATRIX is array (INTEGER range <>, BOOLEAN) of FLOAT: -- illegal

S2. The index subtype of all the following array types is INTEGER range 1. .3: '-

subtype R1_3 is INTEGER range 1. .3;

type Al is array (1..3) of INTEGER;
type A2 is array (INTEGER range 1..3) of INTEGER;
type A3 is array (R1_3 range <>) of INTEGER;

Xl : Al;
X2 : A2;
X3 : A3 (l..3);

Because the index subtype is 1..3, only choice values in this range are allowed in non-null

aggregates, i.e., the aggregates in each of the following assignment statements will raise
CONSTRAINTERROR (RM 4.3.2/11):

Xl := (2..4 => 0); -- CONSTRAINT ERROR
X2 :- (2..4 -> 0); -- CONSTRAINT ERROR
X3 := (2..4 -> 0); -- CONSTRAINT ERROR

3-69 ,

1

~~ ~u '/'P .'.'~i' -: .* -, ' * ,. *.". 4]

3.6 Array Types Version 1 (Dec 86)

S3. The prefix, component, in the syntactic category name component-subtypelindication, is .. , "-
only present so that the rules concerning the array component's subtype can be phrased in a
more readable manner. No particular '-mantic restriction is associated with the prefix.
(Compare the use of this prefix with the u, of discrete in discretesubtypeindication (in the
syntax rule for discrete range). The prefix in this case does reflect the restriction that the
subtype indication specify a discrete type (RM 3.6.1/2).)

S4. If the number of components In a dimension exceeds SYSTEM.MAXINT, the elaboration
of a type or object declaration array can raise NUMERICERROR (or CONSTRAINTERROR;
see AI-00387):

type MAX is range -1 .. SYSTEM.MAX INT;
type ARR is (MAX range <>) of BOOLEAN; -- no exception here

subtype AMAX is ARR(MAX); -- can raise NUMERICERROR
X : ARR (MAX); -- can raise NUMERIC-ERROR

NUMERIC ERROR can be raised because some implementations will store the length of a
• dimension as part of an array's representation. This length might be computed when the array

subtype declaration is elaborated or when each object declaration is elaborated. If this length
exceeds SYSTEM.MAX INT, then its value cannot be represented accurately, and NUMERIC-
_ERROR can be raised (RM 11.1/6). (Of course, the object declaration might raise STORAGE-
_ERROR if NUMERICERROR is not raised.)

s5. A multidimensional array type is not semantically equivalent or similar to an array of array
type. In particular, the rules concerning multidimensional array aggregates are different from
those for array of array aggregates (see IG 4.3.2/S).

Approved Interpretations

Array index types must be discrete (AI-00249).

Changes from July 1982

Ss. There are no significant changes.

Changes from July 1980

S7. The concept of "index subtype" is definec, and used to clarify the rules concerning
allowable values of choices in aggregates.

Legality Rules

L1. Arrays must be declared with discrete index types (AI-00249).

Exception Conditions

NUMERIC_ERROR (or CONSTRAINTERROR; see AI-00387) can be raised if the
number of components for a dimension exceeds SYSTEM.MAX_INT (RM 11.1/6).

Test Objectives and Design Guidelines

Ti. Check that an array type cannot be declared with a nondiscrete index type.
Implementation Guidfline: Declare both constrained and unconstrained array types.

T2. Check that the indices of multidimensional array types must be either all constrained or all
unconstrained.

T3. Check whether an arrzy type or subtype declaration raises NUMERICERROR (or
CONSTRAINTERROR) when one dimension of the type has more than SYSTEM.MAX-
_INT components..,

a. 3-70

............•.........

Version I (Dec 86) 3.6.1 .a Discrete Ranges

Implementation Guide//n.: Check for one- and two-dimensional arrays. For two-dimensional arrays. the
oversize dimension should appear once as the first dimension and once as the second.

T4. Check that the index subtype of an array is correctly determined for constrained and
unconstrained array types.
Implementatorn Guideline: Use all forms of discrete range in the constrained array cases.

3.6.1 Index Constraints and Discrete Ranges
This section discusses discrete ranges and index constraints separately. Since index

constraints use discrete ranges, discrete ranges are discussed first.

3.6.1.a Discrete Ranges
Semantic Ramifications

St. A discrete range can have any of the following forms:

* ST, where ST is a discrete type mark. a..

" ST range L.. R

" L .. R, where L and R are expressions having discrete types.

e A'RANGE(N), where A is an array object, array value, constrained array type,
or access type designating a constrained array type.

S2. A discrete range can be used to specify: ,:'P

. a choice in a case statement, variant part, or aggregate; ":

* a slice;

o a loop parameter;
* an index constraint in a subtype indication or constrained array type definition; ''P

• a family of entries.

In loop parameter specifications, constrained array definitions, and declarations of entry
families, a discrete range defines the type of the loop parameter, array, or entry family index,
respectively, as well as constraining the set of acceptable values. In the other contexts, a
compiler must determine whether the discrete range has, or can be given, a type consistent with -

the type required by the context. The form A'RANGE(N) cannot be used in a context where a
static choice is required, namely, In the choice of a case statement or variant part or in an array
aggregate with more than one component association.

S3. We will first discuss discrete ranges (other than the form A'RANGE) in which a type mark
appears explicitly, and then the form in which just the range is given.

Discrete Ranges with Type Marks

S4. The type associated with a discrete range determines what values can be specified for a
range. If the type mark in a discrete range is a subtype name, ST, ST's base type is the type
associated with the discrete range. For example, given %

type DAY is (MON, TUE, WED, TOU, FRI, SAT, SUN);
subtype WEEKDAY is DAY zange MON .. FRI:
subtype KIDWEIEK is WIKDAY range TUE . TOU;

the discrete range

3-71

%..%.V_

3.6.1.a Discrete Ranges Version 1 (Dec 86)

MIDWEEK range WED .. THU .

has the type DAY. RM 3.5/4 states that on'v values of MIDWEEK's base type, DAY, can appear
in this discrete range. In addition, for a dis.,- .ze range of the form:

ST range L .. R

if R is greater than or equal to L (i.e., the range is not null), CONSTRAINTERROR is raised if
the values of L and R do not satisfy the range constraints of ST (RM 3.5/4 and RM 3.3.2/9). For
example:

MIDWEEK range WED .. FRI

Evaluation of this discrete range raises the exception CONSTRAINTERROR, since FRI is not
in MIDWEEK's set of values.

Discrete Ranges Without Type Marks

ss. When a discrete range has the form L.. R and each bound has type universal integer and
is either a numeric literal, named number, or attribute, and the discrete range is used:

9 in a loop parameter specification, or

e as an index in a constrained array definition, or

e in the declaration of a family of entries,

L and R are implicitly converted to the predefined type INTEGER. For example, in a loop
statement:

for I in I .. 10 loop

I cannot have the type SHORT INTEGER, even if an implementation supports this type and
SHORTINTEGER'LAST > 10. Moreover, if 1_000000 is greater than INTEGER'LAST, then 1

1_000_000 raises NUMERICERROR (or CONSTRAINTERROR; see AI-00387) in these
contexts, since the discrete range is equivalent to

for I in INTEGER range 1 .. 1_000_000 loop

and the implicit conversion of 1_000_000 to INTEGER raises NUMERICERROR (RM 4.6/15)
(or CONSTRAINTERROR; AI-00387).
S6. In the constructs mentioned above, if L and R are not each either numeric literals, named
numbers, or attributes, they must both have the same discrete type other than
universalinteger. This rule makes the discrete range -1 .. 1 illegal because -1 is an expression
containing a unary operator; it is not a numeric literal, and so the rule specifying implicit
conversion to INTEGER does not apply. The second rule (in AM 3.6.1/2) says the type must be
determined using the requirement that the bounds of a discrete range must have the same
discrete type; no other information derived from the context in which the discrete range appears
can be used (see RM 8.7/7-13 and IG 8.7.a.7/S).

s7. In other constructs, additional rules can (and must) be used to resolve any uncertainty in
the type of L and R:

• in case statements, the type of each choice must match the type of the case
expression (which cannot be overloaded; RM 5.4/3); 'I

* in vanant parts, the type of a choice is determined by the type of the .-7--. -
discriminant (the discriminant cannot be ambiguous in its type); • "

3-72

-V.

• ".'

p I* %

Version 1 (Dec 86) 3.6.1.a Discrete Ranges

" in an array aggregate, all the choices must have the type of the index and the
type of the aggregate is determined by the context in which it appears, not by
the form or type of Its choices (RM 4.3/7);

" in a slice, the type of the discrete range is determined by the type of the array
being sliced and the type of the bounds of the slice; (When the result of a p
function is sliced, the type of the array returned by the function is contextually
determined and may depend on the type of the discrete range used in the slice;
see IG 8.7.b/S23.)

" in an index constraint, the type of the discrete range is determined by the type
of the array being constrained and the type of the bounds for each dimension.

The above rules must be sufficient to -uniquely determine the type of L and R; otherwise the
program is illegal. >J

Overloading Resolution

se. Both the lower and upper bound of a range must have the same type. This rule must be
taken into account when resolving the type of overloaded literals or expressions used for
bounds. For example, if the enumeration type

type SOL is (SUN, ERCURY, VENUS, EARTH, MARS, JUPITER,
SATURN, URANUS, NEPTUNE, PLUTO);

is in the same scope as DAY, then SUN .. TUE is a discrete range of type DAY and SUN
VENUS is a discrete range of type SOL.

sq. The rule that the discrete range must be a discrete type can be used to resolve an

overloading ambiguity. For example, it F and 0 are parameteress functions that return either
INTEGER or FLOAT values, then

for I in T .. G loop ... end loop;

is unambiguous because only functions returning discrete values are legal here. If we introduce
a new type and function definition:

type T is now INTEGER;
function F return T;

then

for I in 2 .. F loop

is ambiguous, since 2 and F can both either be of type T or type INTEGER.

s10. Overloading resolution is discussed further in IG 8.7/S.

Changes from July 1982

SI 1. If a discrete range has the form L .. R and both L and R have the type universal integer,
then L and R must be either a numeric literal, a named number, or an attribute when the
discrete range is used in a constrained array type definition, a loop parameter specification, or
the declaration of a family of entries. ,-"

Changes from July 1980 j,

S12. The order of evaluation for the bounds of a discrete range is explicitly not defined by the
language.

3-73
I ;

~. .. ",%*m

3.6.1.a Discrete Ranges Version 1 (Dec 86),
Legality Rules .

L1. For a discrete range having the form c-f a type mark, the type mark must denote a discrete
type (RM 3.6.1/2).

L2. For a discrete range having the form ST range L.. R, ST must denote a discrete type (RM
3.6.1/2) and L and R must have ST's base type (RM 3.5/4).

3. For a discrete range having the form L.. R, L and R must have the same discrete type (RM
3.6.1/2).

L4. The type of the bounds of a discrete range having the form L .. R must be determined
independently of the context when the discrete range is used in a constrained array
definition, a loop parameter specification, or the declaration of a family of entries (RM
3.6.1/2).

L5. If a discrete range has the form L .. R and both L and R have the type universalinteger,
then L and R must be either a numeric literal, a named number, or an attribute when the
discrete range is used in a constrained array type definition, a loop parameter specification,
or the declaration of a family of entries (RM 3.6.1/2).

L6. For a discrete range having the form A'RANGE(N), A must be an array object, an array
value, a constrained array type, or an access type that designates a constrained array
type. N must be a static expression having the type universalinteger and must have a
value greater than zero and not exceeding the number of dimensions of the array (RM
3.6.2/2, RM 3.6.2/8, and RM 3.8.2/2).

Exception Conditions

El. For a discrete non-null range of the form ST range L.. R, CONSTRAINTERROR is raised ,
if L or R is outside the range of ST but within the range of ST's base type (RM 3.5/4 and -

RM 3.3.2/9).

E2. For a discrete range of the form L.. R where L and R are integer literals, named numbers
having type universalinteger, or attributes returning a value of type universalinteger
NUMERICERROR (or CONSTRAINTERROR; see A1-00387) is raised if either L or R
lies outside the range of INTEGER and the discrete range is used in a constrained array
type definition, a loop parameter specification, or the declaration of a family of entnes (RM
4.6/15 and RM 3.6.1/2). "

Test Objectives and Design Guidelines

The contextually determined validity of discrete ranges is checked in each context in
which discrete ranges can be used. We only check here for context-independent discrete range
validity.

Ti. Check that the type mark (if present) of a discrete range and both bounds must be discrete
types.
Implementation Guideline: Check all illegal combinations of the following:

9 type mark non-discroteldlscrete/abeent

* lower bound non-discrete/discrete - -

* upper bound non-discrete/discrete

e bounds are liftrals/non-literal$

Implementation Guideline: All combinations should be tried for discrete ranges in both loops and array type
definitions. At least two illegal combinations should be tried for discrete ranges in case statement choices.
variant part choices, array aggregates, slices, and as index constraints in an object declaration and a type
declaration. Different forms of illegal discrete ranges should be used in each of these checks.

3-74

S..

Version 1 (Dec 86) 3.6.1 .b Index Constraints

T2. Check that the upper and lower bounds of a discrete range cannot have different discrete p

types. Use forms with and without a type mark.
Implementation Guideline: Try at least one example of a discrete range in each of the contexts permitting
discrete ranges, namely, subtype indications, membership tests, aggregates, case statement choices, variant (.
part choics, array or entry family declarations, slices, and loop parameter specifications.

T3. Check that when a type mark is present in a discrete range and both bounds have the
same type, the type of the bounds must be the type of the type mark.
Implementdion Guideline: Use both a subtype and type name for the type mark, and use non-null ranges; limit
this test to loops and array type definitions.

T4. Check that for the form ST range L.. R, CONSTRAINTERROR is raised if the range is
non-null and L or R are outside STFIRST.. ST'LAST but within the range of ST'BASE.

Check that no exception is raised if L > R and L and R both belong to STBASE.
Implementation Guideline: Use both static and nonstatic out-of-range expressions for L and R, but write
separate tests for the static and nonstatic cases. For null ranges, use both enumeration and INTEGER
subtypes in loops, slices, and membership operations. For non-null ranges, cneck all contexts in which a
nonstatic discrete range can appear, i.e.. loops, array type definitions, aggregates with a single choice, slices.
index constraints, and membership tests.

T5. Check that when either L or R are not numeric literals, named numbers, or attributes, a %
discrete range of the form L.. R is llegal when used in a constrained array type definition,
a loop parameter specification, or the declaration of a family of entries.

Using non-null discrete ranges of the form L.. R in loop, entry families, and array type
definitions, check that NUMERICERROR or CONSTRAINTERROR is raised if L and R %
are numeric Uterals, named numbers, or attributes and at least one of them is not in the
range of INTEGER values.

In a separate test, check that neither a loop parameter nor an array index is assumed to
have the type SHORTINTEGER If L and R are both in the range of SHORTINTEGER
values.
Implementaton Guideline: Use the loop parameter as a subscript for an array having a SHORTINTEGER

index type.

T50. Check that functions overloaded tc return a discrete and nondiscrete result are considered
unambiguous if used as discrete range bounds in a loop, entry family, or array type
definition where the type of the discrete range is not given explicitly (see IG 8.7.b/T1 3).

T51. Check that functions overloaded to return an INTEGER type and some other discrete type
(including a derived integer type) are considered ambiguous if used as discrete range
bounds in a !oop, entry family, or array type definition where the type of the discrete range
is not given explicitly (see IG 8.7.b/T1 3). P%

3.6.1.b Index Constraints
Semantic Ramifications

Si. An index constraint raises CONSTRAINTERROR if one of its discrete ranges is
incompatible with the corresponding index subtype (RM 3.6.1/4 and RM 3.3.2/9). Compatibility
of a range with a subtype is implicitly defined by RM 3.5/4, namely, if the discrete range is not
null, both bounds must belong to the index subtype. If the range is null, neither bound need
belong to the index subtype, e.g.:

X STRZNG (-1..-10); -- legal; no exception
Y STRING (INTKGIR'ILAST..INTZGIR'FIRST): -- legal; no exception

3.75 %6

3.6.1.b Index Constraints Version 1 (Dec 86)

Changes from July 1982..

S2. There are no significant changes.

Changes from July 1980

s3. Arrays with nonstatic bounds are now allowed as record components even if the bounds do
not depend on a discriminant. p-

sA. The lower bound of a null range in an index constraint no longer must satisfy the range
constraint imposed by the subtype of the index.
ss. The upper bound of a null range used in an index constraint need not be the predecessor
of the lower bound.
Legality Rules

Li. An index constraint can only be applied to a type mark denoting an unconstrained array
type or an access type designating an unconstrained array type (RM 3.6.1/3).

12. One discrete range must be provided in an index constraint for every index of the array
type being constrained (RM 3.6.1/3).

U. The base type of each discrete range in an index constraint must be the same as the base
type of the array index for which the discrete range applies (RM 3.6.1/3).

L4. An index constraint must be given in a subtype indication if the type mark denotes an
unconstrained array type and the subtype indication is used in an object declaration (non-
constant; RM 3.6.1/7) or in a component declaration of a record or array type definition
(RM 3.6.1/6). -,, ,

L5. An index constraint must be given in an allocator containing an unconstrained array type

mark if no initial value is specified in the allocator (RM 3.6.1/8).

Exception Conditions

S El. CONSTRAINTERROR is raised if a non-null discrete range in an index constraint
specifies a range of values L through R, and L or R is not in the index subtype's range (RM
3.6.1/4, RM 3.5/4, and RM 3.3.2/9) but does belong to the range of the index base type.

Test Objectives and Design Guidelines

T71. Check that ."

e an index constraint cannot be applied to a scalar type, record type, private
type implemented as an array type, or an access type designating any of
these types.

% the number of discrete ranges in an index constraint cannot be less than or
greater than the number of Indices in the array type being constrained. Check
for both array and access types.

o the base types of the discrete ranges cannot be different from the base typesof the corresponding indices.
Implementation Guideline: Include a check using A'RANGE, including when A is a formal
generic type. and when the corresponding index type is a formal generic type.

9 an index constraint cannot be given in a subtype indication whose type mark
denotes a constrained array type or access type designating a constrained
array type.
Implementation Guideline: There are two ways to declare access types designating constrained
array types:

3-76

? '%

Version 1 (Dec 86) 3.6.1 .b Index Constraints

type STC is access STRING (1..3); -- I

type ACC STR is access STRING;DP ,', subtnn~p ES is ACC STR (1. .3); - 2 .,

" an index constraint cannot be given in an allocator for an access type
designating a constrained array type (see IG 4.8/T2).

* an Index constraint cannot be given in an actual generic parameter (see IG
12.3/T5).

" an index constraint cannot be omitted in a subtype indication whose type mark
denotes an unconstrained array type if the subtype indication is used in a
nonconstant object declaration, in declaring the component type in an array
type definition (used in a nonconstant object declaration, type declaration, or ,.

generic formal parameter declaration), or in the declaration of a record
component.

" an index constraint cannot be omitted in an allocator naming an unconstrained ,,
array type if no initial value is specified for the array being allocated (see IG
4.8/Ti1).

" an index constraint must contain at least one discrete range.

* an index constraint cannot contain a box symbol. '-

T72. Check that CONSTRAINTERROR is raised if one of the bounds of a non-null discrete
range does not lie in the range of the index subtype.
Implementation Guideline: Include a case where an index defines a null multidimensional array and one range "--.
is non-null. -..

Check that no exception is raised for a null index constraint if the lower bound of a null
discrete range does not lie in the range of the index subtype, but does lie in the range of
the index base type.

Check that no exception is raised if the upper bound of a null range is not the predecessor
of the lower bound, but belongs to the index base type.
Implementation Guideline: Check the above for discrete ranges having the permitted forms: ST range L .. R. L
.. R, and A'RANGE(N).
Implementaion Guideline: Check that no exception is raised for a null array so that ARR'LAST - ARR'FIRST < PL,
INTEGER FIRST, e.g.. STRING (INTEGER'LAST.. -1).
Implementation Guideline: Include a check for access types and generic formal types. ".

173. Check that If an index constraint is not imposed when declaring a formal parameter of a
subprogram or a generic unit, the bounds of the formal parameter are defined when the
subprogram is invoked or the generic unit is instantiated (see IG 6.4.11T6 and IG
12.3.21T24).

174. Check that an index constraint can be omitted when declaring a constant object with a
subtype indication, and that the bounds of the object are determined by the bounds of the y.
initial value.
Implementation Guideline: Use catenation of strings as initial values.

175. Check that an index constraint can be specified in an allocator naming an unconstrained
array type (see IG 4.8/T5).

176. Check that an index constraint in a record component declaration can use the name of a
discriminant of the record (see IG 3.7.2/T1 3 and IG 3.7.2/1T1 7).

177. Check that the bounds of an array object designated by an access type are defined by the S
allocator that creates the object (see IG 4.8/T5, /T6).

,'... %
3-77

1 0 P
.' .

3.6.2 Operations of Array Types Version 1 (Dec 86)

T78. Check that the bounds of a generic formal array parameter of mode in are defined by the
generic actual parameter if the subtype is unconstrained (see IG 12.3.1/T21). .'>.-

Check that the bounds of a generic rmal array parameter are defined by the subtype
when the subtype is constrained (see IU 12.3.11T26).

T79. Check that In a renaming declaration, the bounds of the new name are those of the
renamed object (see IG 8.5/T6).

T80. Check that an index constraint can have the form A'RANGE.

3.6.2 Operations of Array Types
Semantic Ramifications

Si. Array attributes are defined for objects and values (i.e., function calls) as well as for types
(unlike the scalar attributes 'FIRST and 'LAST, which are only defined for types). In addition,
RM 3.8.2/2 defines these attributes for access values that designate arrays. In essence, the
prefix for one of these array attributes can be either an object or a value having an array type, or
an object or a value having an access type whose designated type is an array type.

S2. Since a function call can be used as a prefix of an array attribute,

"" ("Ac'C", "DE") 'FIRST

is legal but

("ABC" & "DE") 'FIRST

is not; ("ABC" & "DE") is not, syntactically, a functioncall. It is an expression.

S3. Similarly,

"DE"'FIRST

is illegal, since "DE* is not the name of an operator symbol (RM 6.1/3). Moreover, no operator
symbol can be used as a prefix of an array attribute since no operator symbol can be declared
with zero parameters or with default parameters (RM 6.7/2).

S4. Since INTEGER'IMAGE(N) is parsed as a function call (see IG 4.1.4/S), it can be given as
the prefix of an attribute:

INTEGER' IMAGE (N) 'LENGTH

However, since STRING'("ABC") is a qualified expression, not a function call or a name, it is not
allowed as the prefix of an attribute.

S5. 'FIRST and 'LAST produce results whose type is that of the index, whereas 'LENGTH
produces a result of type universaLlnteger. A'LAST - A'FIRST + 1 is a legal Ada expression
only if A's index type is an Integer type. However, the values of A'FIRST and A'LAST can
always be converted to Integer values by using the 'POS attribute. INDEXTYPE'POS
(A'LAST) - INDEX TYPE'POS (A'FIRST) + 1 gives the length of a dimension, except that if A is
a null array, A'LAST need not be the predecessor of A'FIRST, so a negative value could be
produced by this expression. If A'LENGTH is zero, A'LENGTH should not raise NUMERIC-
_ERROR (or CONSTRAINTERROR; see AI-00387) even if A'LAST - A'FIRST would do so.

S6. If the number of components for a particular dimension is greater than SYSTEM.MAXINT, .
then an implementation is allowed to raise NUMERICERROR (or CONSTRAINTERROR;
AI-00387) when A'LENGTH is evaluated (RM 4.10/5). Note that A'LENGTH is, in general, a

3-78
- A .*

Version 1 (Dec 86) 3.6.2 Operations of Array Types _

nonstatic universal_integer expression, and must potentially be computed using the longest
available integer type (RM 4.10/5).

S7. In determining the bounds associated with A'RANGE, A is only evaluated once (RM
4.1/10), i.e., A'RANGE Is not completely equivalent to A'FIRST.. A'LAST when A is a function
call with side effects.

se. A'RANGE is a range, not a subtype, and so A'RANGE'FIRST is not allowed. However,
A'RANGE can be used in object declarations, e.g.:

type A is array (1 .. 10) of T:
XI : A'RANGE; -- illegal; A'RANGE not a type mark
X2 INTEGER range A'RANGE; -- legal; A'RANGE is a range

Since A'RANGE is syntactically a range (RM 3.5/2), the declaration of X2 is legal.

sq. Since 'LENGTH returns type universalinteger, an expression of the form A'LENGTH = 6 is
not ambiguous. Equality is defined for universalinteger types (RM 4.10/2) and so an implicit
conversion to some other integer type is not allowed (see IG 4.6/S and RM 4.6/15).

sio. Array attributes can be applied to formal parameters, and in particular, to unconstrained
formal array parameters, since parameters are objects (AM 3.2/3):

type T is array (INTEGER range <>) of INTEGER;
A : T (1 .. 50);
procedure P (X: T);

Within P, one can write X'FIRST, X'LAST, and X'RANGE, etc. For the call P(A), these would
yield the INTEGER values 1, 50, and the range INTEGER range 1 ..50. For a slice, P (A(5.. 10)),
the results would be 5, 10, and INTEGER range 5..1 0, and similarly for a null slice.

si 1. Since catenation and the relational operators are predefined for all one-dimensional arrays,
the declaration of a one-dimensional array type creates implicit declarations of these operators
in the declarative region containing the array type declaration. Hence, if a one-dimensional
array type was declared in package P, the implicitly declared operators can be referenced as
P."&" and P.=, etc. Furthermore, since declaration of a constrained array type in an object ..

declaration creates an anonymous array type definition (RM 3.6/6-8), the following use of "&" is
legal:

X array (1 .. 2) of CHARACTER := 'A' & 'B';

The declaration is equivalent to:

subtype %1 2 is INTEGER range 1..2;
type %Base is array (%1-2 range <>) of CHARACTER;
-- "A" and other operations declared here
X : %Base (1.2) := 'Af' 'IB';

The symbols %1_2 and %Base represent the implicit declarations defined by RM 3.6/6-8.

S12. 'SIZE is defined even for unconstrained array types and should return the size needed to
store the largest array of the type (RM 13.7.2/5).

S13. Syntactically, A'RANGE(N) parses as a function call whose function name is A'RANGE
and whose argument is (N) (see AM 4.1.4/2 to see why A'RANGE(N) is not syntactically an
attribute, and AM 6.4.2/2 and 4.1/2 to see how it is parsed as a function call).

Changes from July 1982

s14. An array value (i.e., a function call) can be a prefix of an array attribute.

3-79 V.

%-

3.6.2 Operations of Array Types Version 1 (Dec 86)

Changes from July 1980

s5. The array attributes can now be -9d with prefixes having an access type whose
designated type is an array type.

sie. The type of the argument to 'FIRST, 'LAST, 'LENGTH, and 'RANGE is universalinteger.
The value of the argument must be greater than zero, but not greater than the dimensionality of
the array.

S1 7. 'LENGTH yields a value of type universalinteger.

sis. Catenation is no longer defined for arrays of a limited type.
s i. The 'RANGE attribute no longer defines a scalar subtype.

Legality Rules

L1. The assignment, aggregate formation, equality, and inequality operations are not defined
for limited array types (RM 3.6.2/1, 12).

12. The slice operation is not defined for multidimensional array types (RM 3.6.2/1).

L3. The string literal formation operation is only defined for one-dimensional arrays whose
component type is a character type (i.e., an enumeration type containing at least one
character literal; RM 3.5.2/1) (RM 3.6.2/1).

L4. The catenation operation is only defined for one-dimensional nonlimited array types (RM
3.6.2/12).

L5. For arrays, ordering operations are only defined for one-dimensional arrays whose
component type is an enumeration type or an integer type (RM 3.6.2/12). '-"-

L6. For arrays, the unary operator, not, and the logical operations are only defined for one-
dimensional arrays whose component type is the predefined type BOOLEAN or a type
derived (directly or indirectly) from this predefined type (RM 3.6.2/12 and RM 3.5.3/1).

L7. An attribute of the form 'FIRST(N), 'LAST(N), 'LENGTH(N), 'RANGE(N), 'LENGTH, or
'RANGE can only be applied to a constrained array type, an array value, or an object of an
array type (RM 3.6.2/2), or to an access value designating an object of an array type (RM
3.8.2/2).

L8. An attnbute of the form 'FIRST or 'LAST can only be applied to an array type, an array
value, or an object of an array type (RM 3.6.2/2) or to an access value designating an
object of an array type (RM 3.8.2/2), or to a scalar type (RM 3.5/7-9).

L9. The attributes 'FIRST, 'LAST, 'LENGTH, and 'RANGE can have at most one argument,
and that argument must be a static expression of type universalinteger having a value
greater than zero and less than or equal to the number of dimensions defined for the array
type (RM 3.6.2/2).

Exception Conditions

El. CONSTRAINTERROR is raised if the prefix of any array attribute has the access value,
null (RM 4.1/10).

Test Objectives and Design Guidelines

TI. Check that

.array attributes cannot be applied to an unconstrained array type; . .
Implementation Guideline: Include use with the attribute 'BASE to produce an unconstrained
array type.

3-80

" ..U , , '... , 'j *..** **~~~

-q ~ -ft- ...- ~ . ~ ? l
4 4

4 ., .4%' '. %%%'4%~.' '0 t'~..--v . 1p'%.'r. %

Version 1 (Dec 86) 3.6.2 Operations of Array Types

. the parameterized attribute forms cannot be applied to a scalar type or a
scalar object;

o the attributes cannot be applied to a record or private type;

* more than one argument is not permitted;

a the attributes' argument cannot be a nonstatic expression;

a the value of the attributes' argument cannot be zero, negative, or greater than
the number of dimensions of the relevant array type;

o the type of the attributes' argument must be universal-integer.

T2. Check that NUMERICERROR (or CONSTRAINTERROR; see AI-00387) may be raised
if A'LENGTH is used in a context that requires an INTEGER value, and the number of
components for a dimension exceeds INTEGER'LAST.
Implementation Guideline: Declare an array type A, for example, with bounds -1 ..INTEGER'LAST and check
A'LENGTH in a context such as:

X :- A'LNGTK - 2;

where X is of type INTEGER. Use an array of null records. Note that NUMERICERROR
need not be raised if the correct result can be computed and stored in X (RM 3.5.4/10).

Check that 'LENGTH does not raise NUMERICERROR (or any other exception) when
applied to a null array A, even if A'LAST - A'FIRST would raise NUMERICERROR.
Implementation Guideline: Declare a null array type using the longest integer type. Remember that the type
declaration may raise NUMERIC-ERROR or CONSTRAINT-ERROR (AI-00387).

T3. Check that 'LENGTH yields a result of type universal integer.

T4. Check that each of the parameterized and unparameterized array attributes yield the
correct values or range when applied to an array type, an array value, an array object, or
an access value designating an array object.
Implementation Guideline: Include checks of generic formal array parameters and array types whose indexes
are given by formal scalar types.

Check that for A'RANGE, the prefix A is only evaluated once.

Check that the result of "&" can be used as the prefix to an array attribute when W& is
written explicitly as a function call.

Check that the 'RANGE attribute can be used as the range in a subtype indication to
declare objects or in a component subtype definition.
Implementation Guideline: Include checks of generic formal array parameters and array types whose indexes
are given by formal scalar types.

T5. Check that the attributes give the appropriate values when applied to an unconstrained
formal parameter. In particular, check that when the actual parameter is a slice (including
a null slice), the appropriate results are produced.

T1"6. Check that

a aggregates (for non-limited types) (see IG 4.3.2/Tl -T23),
e membership tests (see IG 4.5.2.f/T65),

I e qualification (see IG 4.7/T2),
~~* explicit conversion (see IG 4.6/T4), and

3-81

._

3.6.3 The Type String Version 1 (Dec 86)

indexing (implicit in various tests)

are defined for array objects.

17. Check that aggregates (see IG 4.3/Ti), assignment, equality, and inequality (see IG
7.4.4/T4), and catenation (see IG 4.5.3.dT41) are not defined for limited array types.

Check that slices are not defined for multidimensional array types (see IG 4.1.2/Ti).

Check that ordering operations are not defined for one-dimensional arrays whose
components have a fixed or floating point type (see IG 4.5.2.f/T61).

T8. Check that slices are defined for one-dimensional arrays, even arrays of a limited type (see
4.1.2/T3).

T9. Check that string literals are defined for one-dimensional arrays with character component
types (see IG 3.6.3/T6).

T10. Check that catenation is allowed for nonlimited, one-dimensional array types (see IG
4.5.3.d/T42-T47).

Ti 1. Check that not and logical operators are defined for one-dimensional arrays whose
components have a boolean type (see IG 4.5.1 .b/TI 1-T1 4). r.

T1 2. Check that the attributes 'BASE and 'SIZE are defined for array types and subtypes (see
IG 13.7.2/T3).

T1 3. Check that the attributes 'SIZE and 'ADDRESS are defined for array objects (see IG
13.7.2/T3 and /T6).

T1 4. Check that the catenation, string literal formation, and aggregate formation operations are
declared for anonymous array types, so that these operations can be used to initialize an
object.

Check that string literal formation operators are not declared for multidimensional array
types (see IG 3.6.31T7).

T15. Check that CONSTRAINTERROR is raised if the prefix of any array attribute has the
value null (see IG 4.1.4/T1).

T1 6. Check that T'RANGE is not allowed when T denotes an enumeration or integer type.
- ..

3.6.3 The Type String
Semantic Ramifications

si. Because string literals are basic operations whose bounds are determined according to the
rules for a positional aggregate (RM 4.2/3), they are Implicitly indexed starting with <
POSITIVE'FIRST, e.g., given

procedure P (X : STRING);

if we call P with the argument "ABC", then X'FIRST = 1 and X'LAST = 3. Similarly, if we
initialize a constant with a string literal:

C: constant STRING : "AEC";

C'FIRST - I and CLAST = 3.

S2. Any one-dimensional array with a discrete component type has string-like properties, since
* catenation and lexicographic ordering relations are predefined for such types. In addition, for

3-82

N%

x~pt.

Version 1 (Dec 86) 3.6.3 The Type String

one-dimensional arrays of an enumeration type containing at least one character literal, string
literals are defined using the characters in the set (see also IG 4.2/S).
s3. The rule for determining the upper bound of null string literals ensures that the upper bound
is the predecessor of the lower bound, e.g.:

subtype NULLSTRING is STRING (5 .. 2);
procedure P (S NULLSTRING);

P (".); -- CONSTRAINTERROR raised

The lower bound of the null string literal is 5 and the upper bound is 4. The call P("") raises
CONSTRAINT-ERROR because the bounds of the actual parameter do not equal those of the
formal parameter.

s4. String literals are allowed In multidimensional array aggregates (RM 4.3.2/2) even though
no string literal formation operation is declared for a multidimensional array type. For example,

type ARR is array (1 .. 3, 4 .. 5) of CHARACTER;
A : ARR :- ("AB", "CD", "E"); -- legal use of string literals

The declaration of ARR is not equivalent to:

type one dim is array (4..5) of CHARACTER;
type two-dim is array (1..3) of onedim;

No one-dimensional array is implicitly declared, since even after ARR is declared, the following
expression is unambiguous: .

S'.* "AS" = "A" unambiguous

0 This is unambiguous because only one equality operation is visible for a one-dimensional array
of character type, namely, the operation declared in STANDARD for the type STRING. (Note:
('A', 'B') = ('A', 'B') would be ambiguous, however, because two equality operators are visible for
composite types, and so the type of the aggregate ('A', 'B') cannot be determined from the
context of its use.)
Changes from July 1982

S5. There are no significant changes.
Changes from July 1980

S. The index subtype for predefined type STRING is now called POSITIVE.
Legality Rules
L1. The type of a string literal must be determinable solely from the context in which the literal

appears, but using the fact that the literal is a value of a one-dimensional array type whose
component type is a character type (RM 4.2/4).

L2. The character literals corresponding to the graphic characters contained within a string
literal must be visible at the place where the string literal appears (RM 4.2/5).

Exception Conditions
El. CONSTRAINT ERROR is raised for a null string literal if the lower bound is 'FIRST of the r

index base type (RM 4.2/3).

E2. CONSTRAINT ERROR is raised for a string literal if any character in the literal does not
"'' belong to the component subtype (RM 4.3.2/11).

% %
,'a.* ' ,,q 91 ;'..,",,,,,',,VV ~ V * a~% J', V, ' ."%"~ ' v ,-' - ",.'.' .' .V.',. . . "?.P'.-...- .. ,

3.7 Record Types Version 1 (Dec 86)

Test Objectives and Design Guidelines . --

Ti. Check that the predefined STRING ,-ie conforms to the specified definition; i.e., that '. r
POSITIVE'FIRST = 1 (except when i, context dictates otherwise), POSITIVE'LAST =
INTEGER'LAST, a null STRING literal has a lower bound of 1, and STRING subtypes can ala

be declared with the upper bound INTEGER'LAST.
,..

T2. Check that a STRING variable can be declared with a lower bound value greater than one,
e.g., 5.. 10 or INTEGER'LAST - 5.. INTEGER'LAST.

T3. Check that the lower and upper bounds of null and non-null string literals are determined
correctly (see IG 4.21T5 and IG 4.3.2/T14).

Check that a string literal can be written whose upper bound is SYSTEM.MAXINT or
INTEGER'LAST.

T4. Check that constant STRING objects can be declared whose bounds are determined by
the initial value.
Implementation Guideline: Include strings formed by catenation.

TS. Check that a STRING variable is considered an array, i.e., the array attributes can be
applied to such a variable. ,,

T6. Check that string literals can be formed for character and string types other than the
predefined CHARACTER and STRING type, and that the capabilities tested in the previous
tests are available for such user-defined types (see IG 4.2/T4 and /T6).

T7. Check that the declaration of a multidimensional array of character type does not implicitly
declare a string literal formation operation. ...

3.7 Record Types %
Semantic Ramifications ,

%If

Si. An array declared as a record component need not have static bounds or bounds specified
with the name of a discriminant:

X : INTEGER := 5;
subtype S is INTEGER range 1..X;
type AR is array (S) of INTEGER;
type T is

record
A STRING (l..X); -- legal ;Z
B :AR, -- legal

end record;

S2. The name denoting a record component (other than a discriminant) cannot appear in the
record definition in which the component was declared:

X : INTEGER :- 20; A

type T is
record

A: STRING (1 .. X).
B STRING (A'FIRST .. X); -- illegal use of A
C : INTEGER : A'FIRST; -- illegal use of A ,..

end record;

3-84

.-

"% %

Version 1 (Dec 86) 3.7 Record Types

The component declaration of B is illegal because its lower bound depends on a
nondiscriminant component of the record. Similarly, the initial value of C contains an illegal use

s3. RM 3.7/3 says that "identifiers of all components of a record type must be distinct." Since a 0
discriminant is a record component (RM 3.7.1/1), this means that names of discriminants must
be distinct from each other and from the names of other components of a record. In addition,
even though only one variant part can actually be present in any variant record value, the
requirement for unique Identifiers applies to the identifiers for every variant of a record, i.e., 0,
components belonging to different variants of a record type must have distinct identifiers, and
the identifiers must also be distinct from those used for discriminants and nonvariant
components (see IG 3.7.3/S for examples).
s4. The Initialization expression for a component declaration is evaluated when an object that
requires the default value Is declared:

subtype S_3_4 is INTEGER range 3.-.4;
type R (M : S 3 4) is

record
case M is

when 3 =>
S : INTEGER range 1 10;

when 4 =>
T : INTEGER range 11 20; -.

end case;
end record;

R3_10 : constant R := (M => 3, S => 10);

type T (L : INTEGER :: 3) is
record

DATA STRING (1 .. L) := "ABC";
DATUM R(L) := R3 10;

end record;

A T(3); -- default initial values are ok
: T(4) :- (L -> 4, DATA => "ABCD",

DATUM => (M => 4, T => 11)); .
C T(4); -CONSTRAINTERROR raised
D : T; -- default initial values are ok

Only the declaration of C raises CONSTRAINT ERROR, since only in this case is an
incompatible default value computed for DATA and DATUM: in DATA's case, the initial value is
too short, and in DATUM's case, the discrminant value of the initial value is not 4. (The rule
that says CONSTRAINTERROR is raised for C's declaration is given in RM 3.2.1/16 -- "The %A ',
initialization of an object checks that the initial value belongs to the subtype of the object; ... the
exception CONSTRAINTERROR is raised if this check fails.*) CONSTRAINT ERROR is not
raised for B's declaration since RM 3.2.1/6 says default expressions are not used if an explicit
initialization is given.
s. For default values of array components, CONSTRAINT ERROR is raised when the default
value does not belong to the subtype of the component. Since the component is necessarily
constrained (RM 3.6.1/6), CONSTRAINTERROR must be raised when the bounds of the S
component and the value are not the same; no "sliding" of bounds occurs. RM 3.2.1/16 states,
"for an array object declared by an object declaration, an implicit subtype conversion is first

3-85

r, "..% + +,,. ,.. ,. ,. .. u. ., :,,

3.7 Record Types Version 1 (Dec 86)

applied, as for assignment." A component declaration is not an objectdeclaration, and so the
first part of the first sentence of RM 3.2.1/16 applies: "The initialization of an object (the
declared object or one of its subcompc nts) checks that the actual value belongs to the
subtype of the object." For array components, this means the index values must be identical:

.

type T is array (1 .. 5) of INTEGER;
type R is

record
A : T :- (2 .. 6 -> 0);

end record;
W : R; -- CONSTRAINTERROR raised
X : T (2 .. 6 -> 0); -- no CONSTRAINTERROR raised
Y : R (A => (2 .. 6 => 0)); -- CONSTRAINT ERROR raised

CONSTRAINTERROR is raised for W because the default initialization value does not have
the bounds 1 .5. No exception is raised for X's declaration because X is an array declared by
an object declaration, so a subtype conversion is performed before checking that the value
belongs to X's subtype. The aggregate in Y's initialization value raises CONSTRAINT ERROR
because the bounds of A's value must equal the bounds specified in R's declaration (RM
4.3.2/11; "a check is made ... that the value of each subcomponent of the aggregate belongs to
the subtype of this subcomponent").
ss. The definition of nul records implies that any record with a discriminant is a non-null
record, even if such a record has a null component list, e.g.:

type R (L : INTEGER) is
record ,

null;
end record;

Objects of type R are not null records.

Changes from July 1982

S7. There are no significant changes.

Changes from July 1980

ss. A record must have at least one component (other than a discriminant) unless the
component list contains the word "null."

sq. A component declaration can no longer contain an array type definition.

s10. It is explicitly stated that identifiers denoting the components of a record type must be
distinct within the record declaration.

si. The use of a name that denotes a component other than a discriminant is not allowed
within the record type definition that declares the component.
s2. A component declaration with several Identifiers is equivalent to a sequence of single
component declarations.
S13. The default expressions for record components are no longer evaluated when the record
type definition is elaborated.

S14. If the component list is null but the record has discriminants, then the record is not a null
record.

3-86

-' ----. ".'..'.'b.'J="l",'" '" ".' .' "' '.'" "" ,°..°"," " ." ."." " J .' ."m' " . "*-% ".% " J --% =%=%-- ,"n,'' = =%='%=% ,,%-, ,% % % ,, ,'"S,.

.% ', =' " =* • . .- - ." -
•

• . - -. - " • .." .a * r q • -. l.' 4 . e • w ,

Version 1 (Dec 86) 3.7 Record Types

I,

Legality Rules
U. ,. LI No duplicates are permitted among the identifiers declared in a set of component- .41

declarations (RM 3.7/3). The set includes identifiers declared as disciminants (RM
3.7.1/1 and RM 3.7/3). I

L2. An array subtype indication in a component declaration must specify a constrained array
(RM 3.6.1/6).

L3. No dependencies between record components are permitted except for the use of a
discriminant (RM 3.7/3) to specify: a bound in an index constraint, a discriminant value in a
discriminant constraint, the discriminant governing a variant part, or an initialization
expression (RM 3.7.1/6).

L4. The base type of a record component and its initial value must be the same (RM 3.7/5).

L5. A default initial value must not be specified for a component if assignment is not declared
for the component's type, namely, if the component has a task type, a limited private type,
or a composite type for which assignment is not declared (RM 3.7/5).

Exception Conditions

El. CONSTRAINTERROR is raised by the declaration of a variable in an object declaration if
no explicit initial value is given in the object declaration, a default initial value is specified
for a component having:

e a scalar type, and the default value does not lie in the range specified for the
component.

* an array type, and the default value has bounds that do not equal those
specified for the component.

* a constrained type with discriminants, and the discriminants of the default
value do not equal the discriminants specified for the component.

" a constrained access type, and if the default value is not null, the
.,

discriminants or bounds of the object designated by the default value do not
equal those specified for the component's subtype.

E2. CONSTRAINTERROR Is raised by the declaration of a variable in an object declaration if
no explicit value is given in the object declaration and a default discriminant value is
incompatible with its use within the recora object (see IG 3.7.2/E for further details).

Test Objectives and Design Guidelines

Ti. Check that within a record type definition, duplicate record component identifiers are not
permitted, either within a component declaration, between the component declarations
preceding a variant part, within a variant part, between variant parts. between a variant part
and any preceding component declaration, or between the names of discriminants and any
record component name (see IG 8.3.c/Tl).

T2. Check that index constrants with nonstatic expressions can be used to constrain
components of an array type.

T3. Check that multiple component declarations are treated as a series of single component .*

declarations, i.e., the components all have the same type and any expression used in
constraints or for initialization is evaluated once for each component.
Implementaton Guideline: Check for scalar, array, record, and access types. Consult IG 3.2/S for examples. " -

T4. Check that

3-67 4

• If " " • 4" l' . " .P..I*." .'-',.,#'.''J' ''' 'o"•• ' " ",'J°..'.'. '.',.' ,# ,, =f'. .-. -.* ." ." ..'..j •' .'.

3.7 Record Types Version 1 (Dec 86)

" an unconstrained array type cannot be used as a component type (even if it is " ,

initialized with a static value); *..9.5

" the name of a nondiscriminant - -nponent of the record being defined cannot
be used in specifying an index tconstraint, discriminant constraint, accuracy
constraint, range constraint, or initial value of another component of the
record;

*the name of the component being declared cannot be used to specify any
constraint in its own subtype Indication nor in its initial value (unless the
identifier is used to denote another entity, e.g., a component of a record
object);

" the name of the record type being declared cannot be used within the record
to form an attribute of the record or a component of the record;

" the base types of a component and its initial value cannot be different;

" a default initial value cannot be specified for a component of a task type, a 4,

limited private type, or a composite type having a component for which
assignment is not declared;

" a vacuous componentlist is forbidden;
Implementation Guideline: Include checks for variant parts.

" array type definitions are not allowed in record component declarations.

T5. Check that a nonstatic scalar expression can be used to specify a component's range
constraint or default initial value. - .-

T6. For a component of a record, access, or private type, check that a nonstatic expression
can be used in a discriminant constraint or in specifying a default initial value.

Check that for a component of a limited private type, a nonstatic expression can be used in
a discriminant constraint.
Implementation Guideline: The types with discriminants sh-,Jid have different sizes for different values of the
discriminants.

17. For a component of an array type, check that a nonstatic expressicn can be used to
specify its index constraint or In an aggregatE, iijecifying an initial value for the component.

T8. Check that CONSTRAINTERROR Is raised when a record object without an explicit

initialization is declared, if an incompatible value is specified as the default initial value for a
subcomponent having a scalar, record, array, access, or private type.
Implementabon Guideline: Check that the exception is not raised when the declaration is elaborated.
Implementabon Guideline: Check also for components with constraints that depend on a discriminant.

T9. Check that an unconstrained record type can be used to declare a record component that
can be initialized with an appropriate explicit or default value.
Implementabon Guideline: Check also for values having components that depend on a discriminent.

Ti0. Check that expressions in constraints of component declarations are evaluated in the order
the component declarations appear.

I.

Check that expressions in an index constraint or discriminant constraint are evaluated .-
when the component declaration is elaborated even if some bounds or discriminants are ,89
given by a discriminant of an enclosing record type.

T12 Check that a record can be declared without a variant part, with only a variant part, and Ile'
with null. .,

.

3-88

"'" , ''..5 ' ?*~.'" " " ., ",","- '."-'".'-," -'.-.'," ." "- e ." - . . .

-- .. -. = II.'U . t '~ - I. -,u I Ii l I I i l l. .. ~ *. .. .

Version 1 (Dec 86) 3.7.1 Discriminants .
0

3.7.1 Discriminants
Semantic Ramifications

sI. The values of the discrminants of a record object cannot be changed, even by a complete

record assignment, if the object's declaration imposes a constraint (see IG 3.7.2/S).

S2. Both limited and nonlimited private types can be declared with discriminants. '-1-

S3. The role of default discriminants is discussed in IG 3.7.2/S.

s4. Discriminant declarations occur before those for any other components of a record type -
(see RM 3.3.1/2). This occurrence defines the order in which discriminant values must appear
in positional record aggregates, namely, the discriminant values must be given first. (There is
no requirement, however, that discriminants in a record representation occupy the initial
locations of the record.) A discriminant can be given even if it is not used in any component of
the record, e.g., even If there is no variant part.

S5. Although a name denoting a discriminant cannot be used in the default expression for 0
another discriminant, such a discriminant name can be used in the default expressions for
nondiscriminant components:

D2 : INTEGER : 5;

type R (D1. INTEGER D2; -- ok (1)
D2 : INTEGER Dl; -- illegal (2) 0
D3 : INTEGER := D2) is -- illegal (3)

record
Cl INTEGER := D2: -- ok (4)

end record;

The use of D2 at (1) is legal because it refers to the variable D2 declared outside the record
declaration. The use of DI at (2) is an illegal use of the (previously declared) discnminant D1.
The D2 at (3) denotes the preceding discriminant according to the visibility rules and so cannot
be used in D3's default initialization expression. The use of discriminant D2 at (4) is legal since
C1 is not a discriminant component.

s6. A discriminant declaration may use the identifier of a discriminant declared earlier in the
discriminant part as long as the identifier does not refer to the discriminant, i.e., the identifier S

may be used as a selector in a component selection, as a component simple name in an
aggregate, or as a parameter name in a named parameter association:

package P is
type V is

record
F INTEGER;

end record;

subtype Fir is F-
G : r;
function YMC (F : INTEGER) return INTEGER;

type Q (V INTEGER; . .

A: P.F; -- legal use of F
8 : VY :- (F -> 3); -- legal use of F
I INTEGER : FUNC(F -> 3); legal use of F
J : INTEGER : G.F) is -- legal use of F

3.39
A.

3.7.1 Discriminants Version 1 (Dec 86)

record
null; p-,.- ,..

end record;
end P:

'S"

S7. The rule limiting the complexity of expressions containing names of discriminants (RM
3.7.1/6) applies only to component subtype definitions. In particular, the rule does not apply to
default initialization expressions of components:

type R (D : INTEGER) is
record

C : INTEGER := 2*D + D'SIZE;
end record;

C's initialization expression contains legal uses of discriminant D.

sa. The rule in RM 3.7.1/6 does forbid the use of discriminant names in scalar constraints for
components:

type R (D : INTEGER) is
record

Ci INTEGER range D .. 3; -- illegal
C2 FLOAT digits 3 range FLOAT(D) .. 3.0; -- illegal

C3 INTEGER range 1 .. F(new STRING(I..D)); -- illegal
end record;

C3 is illegal even though the discrminant appears by itself in an index constraint.

sg. Since discriminants are components of a record (RM 3.7.1/1), and since all components
must have distinct identifiers (RM 3.7/3), all discrminants must have distinct names and these
names must also be different from names of other components of the record.

s o. Constraint expressions are evaluated when the record type definition is elaborated, except.-
for those expressions consisting solely of discriminants of the enclosing record type: %

type R (D : INTEGER) is
record

Ci STRING (Fi . .D);
C2 : REC (I, D);
C3 INTEGER range F1..F2;

end record;

The functions F1 and F2 are evaluated when R is elaborated (once for each occurrence of the
function name).

si1. The meaning of RM 3.7.1/10, "The elaboration of a discriminant part has no other effect."
is given in RM 3.1/9.

Changes from July 1982

S12. Identifiers of discriminants may be used within a record type definition if they do not denote
discriminants of the record type.

Changes from July 1980

S1 3. The type of the discriminant must be specified by a type mark.

S14. A discriminant name may appear as the default expression for record components (other ._.1

than discriminant components). %.
SIl.

3-90

C.

Version 1 (Dec 86) 3.7.1 Discriminants

Legality Rules

1L1. The type of each discriminant must be an enumeration or integer type (RM 3.7.1/1).

1-2. The default initial value of the discriminant must have the same type as the discnminant
(RM 3.7.1/4).

L3. Default initial values must be provided for all or for none of the discriminants in a
discriminant_.part (RM 3.7.1/4).

L4. The default expression of a discriminant must not contain a name denoting a discriminant
declared earlier in the same discrminant part (RM 3.7.1/5).

L5. The name denoting a discriminant of the record type being declared cannot be used in a %

range constraint, a floating point constraint, or a fixed point constraint of a component
declaration (RM 3.7.1/6).

L6. If a name denoting a discriminant of the record type being declared is used as a bound in
an index constraint for a component, or as a discriminant value, the name must appear by
itself as the only constituent of the expression (RM 3.7.1/6). -

L7. The names specified for discriminants must all be different, and none of the record
component names specified in a record type definition can be the same as a discriminant
name (RM 3.7/3).

Exception Conditions

El. CONSTRAINT ERROR is raised when an object of a record type is declared without an
explicit discriminant constraint and a default initial value for a discriminant lies outside the
range of the discriminant's subtype.

Test Objectives and Design Guidelines 0

T1 Check that

" disciminants cannot have a fixed or floating point type, nor a composite,
private, limited private, access, or task type;
Implementation Guideline: For the private and limited private cases, be sure that the private
typo is implemented as a discrete type.

" default initial values cannot be provided for only some discriminants;

* a discriminant of the type being declared is not allowed in an expression for a
range constraint, a fixed point constraint, or a floating point constraint;
Implementation Guideline: Include a case like range I .. F(new T(1 ..DISC)).
Implementation Guideline: Check that the use of discriminants belonging to another record type
is okay.

" the names of dlsciminants in a dlscriminantpart must all be different and
cannot be the same as the names of any of the record components in the
following record type definition (see IG 8.3.c/T1);

" direct assignments to discriminant components are forbidden (see IG 5.21T2);

" a discriminant component cannot be named as an actual In out or out
subprogram parameter (see IG 6.4.1/T1); "

" a discriminant component cannot be named as an actual generic In out .1",
parameter (see IG 12.3.1/T2).

T2. Check that an expression containing more than just the name of a discriminant cannot be
used to specify the bound of an index or the value of a discriminant.

%% r r

3-91 ."

'p

3.7.1 Discrlmlnants Version 1 (Dec 86)

Implementation Guideline: Check attributes, e.g., D'SIZE and the use of a name by itself in a contained
expression. e.g., A(DISC) or 1 ..F(new T(1 ..DISC)). s.l ,

Check that a discriminant can be use. i a complex default initial expression for a record
component.

Check that a disciminant name may not be used as the default initial value for another
discriminant declared later in the same discrminant part.

Check that the identifier for a discriminant can be used as a selected component (R.D) in
an index or a discriminant constraint, as the name of a discriminant in a discrminant
specification (D => 1), and as the choice in a function call (F(D => 1)) in a discriminant or
index constraint.

4"..

-,. T3. Check that the following types are permitted as the type of a discriminant:

* BOOLEAN,

* CHARACTER,

" user-defined enumeration type,

* all predefined integer types, and

" user-defined types derived from these types.
Implementation Guideline: Use an integer type, an enumeration type, and a derived discrete
type in forming the derived types for this test.

T4. Check that a discriminant's default initial value must have the same type as the
discriminant.

T5. Check that a record consisting only of discriminant components can be declared.

T6. Check that the type of a discriminant must be specified by a typemark, not a subtype
indication with a range constraint.

T7. Check that a default discriminant expression need not be static and is evaluated only when
needed.

T8. Check that CONSTRAINTERROR is raised in an object declaration if a defaul, initial
value has been specified which violates the constraints of a component of a record or an
array type whose constraint depends on a discriminant, and no explicit initialization is
provided for the object.
Implementation Guideline: Check that CONSTRAINT ERROR is not raised at the point of the declaration if a
default initial value does not belong to the discriminant's subtype.

Check that CONSTRAINT ERROR is not raised in the above case if the default initial
value satisfies the constraint associated with the value of the discriminant given, either
explicitly or by default in the object declaration.

Check that CONSTRAINTERROR is not raised when the record type definition is
elaborated if the default value does not satisfy a component's constraint.

T9. Check that the only way to change the value of a discriminant is by whole record
assignment, and this whole record assignment alters the constraint of components which
depend on the discriminants (see IG 5.2/T1).

" TI 0. Check that expressions in index constraints and discriminant constraints are evaluated
when the record type definition is elaborated (except for expressions consisting solely of a
reference to a discnminant of the type) (see IG 3.7/T1 0). ".-"§- "

3-92

"4' -a'
a'%.,.,. -. .- % -- ... %- %- ,da.* .q .* %- . . ° . ' "% ' o.. ,"% -" " .. "-' ,'•' ., .. "~*" - * ' . p . ' ."- ,'-. . .,"% "

Version 1 (Dec 86) 3.7.2 Discriminant Constraints

3.7.2 Discriminant Constraints
Semantic Ramifications

Si. For a type T denoting an unconstrained record, private, or limited private type declared with
discriminants having no default initial values, the following contexts are the only ones in which T
is permitted as a type mark without a discriminant constraint:

" a subtype declaration;

" a derived type definition (except for the full declaration of a private or
incomplete type with discriminants; see RM 3.7.1/3 and RM 7.4.1/3);

" a conversion or qualified expression;

* a formal parameter declaration of a subprogram or generic unit;

" as the second operand of a membership operation (e.g., X in T; this is always
TRUE);

* an access type definition;

* as an actual generic parameter corresponding to a generic formal type
declaration that has no discriminant part or that has a corresponding
discriminant part.

The contexts in which T requires a discriminant constraint in a subtype indication are:

* an object declaration that declares a variable (a discriminant constraint can be
omitted in a constant declaration);

* a derived type definition for a private or incomplete type declared without
P discriminants.

* an array type definition (to specify the component type);

* a record component declaration;

" an allocator when the object being allocated is to be uninitialized except for its
discriminants. p

S2. If a discriminant part has no default initial values, all objects of that type are created with
fixed discriminant values that cannot be changed by assignment. The presence of default
discriminant values means that objects can be created whose discriminant values are not fixed;
they can be changed by assignment to the entire object.

S3. The language rules ensure that the discriminants of every record object always have
defined values. These values are provided either:

* explicitly by a discriminant constraint in a subtype declaration, object."
declaration, component declaration, or allocator,

" by an actual parameter (for subprogram and generic formal parameters), or

" in the absence of a discriminant constraint, by an initialization expression for
the object or component, or, in the absence of an initialization expression, by
the default expression for a discriminant.

S4. The default expression for a discriminant is not evaluated when a component subtype
definition is elaborated if a value is provided by an initialization expression, e.g.: I

,..

3-93 m.

7'

3.7.2 Discriminant Constraints Version 1 (Dec 86)

type R1 (D : INTEGER :- FUNC) is -- default expression is a function
record

Cl :INTEGER;
end record;

Xl : R1 := (3, 3); -- FUNC is not called here '

type R2 is
record

C2 RI; -- FUNC is not called here
D R1 := (4, 4); -- FUNC is not called here

end record;
.5

X2 R2 := ((5, 5), (6, 6)); -- FUNC is not called here
X3 R2; -- FUNC is called once, for X3.C2

The default discriminant expression is only evaluated when its value is needed, i.e., when its
value is not provided explicitly. FUNC is not called in the declaration of X1 since an explicit
initialization expression is provided. Similarly, FUNC is not called in the declaration of
component C2 since elaboration of a subtype Indication that does not have a constraint means
no default discriminant expression be evaluated (RM 3.3.2/6-8). FUNC is not called for the
declaration of X2 since an explicit initialization expression is given (AI-00014). Finally, in the
declaration of X3, FUNC is called to determine the default discriminant value for component
X3.C2, but is not called for component X3.D since a default expression is given for this
component (AI-00014).

s5. A default discriminant expression is also not evaluated for a component that does not
belong to a particular record subtype, e.g.:

type R3 (D : INTEGER) is
record

case D is
when 0 .. INTEGER'LAST =>

C3 : Ri;
when others =>

C4 INTEGER;
end case;

* end record;

X4 R3(1); -- FUNC is called here
X5 R3(-I); -- FUNC is not called

When elaborating X4's declaration, R3's discriminant value implies component X4.C3 exists,
and so a discriminant value must be determined (and checked for compatibility); hence, FUNC
is called. Since component X5.C3 does not exist, FUNC is not called when X5's declaration is '5

elaborated.

s6. If R3 had a default disciminant and X4 was declared without a discriminant constraint, then
the default discriminant value would determine the subtype of X4's value, and consequently,
whether FUNC needs to be called.
S7. The value of the 'CONSTRAINED attribute for an object (see RM 3.7.4/3) tells whether
objects have discriminant values that can be changed. This attribute is particularly relevant
when assigning to unconstrained formal parameters, e.g.,

3-94

?5, • 5 , .., ' ."

Version 1 (Dec 86) 3.7.2 Discriminant Constraints

type T (L : INTEGER := 0) is
record

end record;

CONS_1, CONS 2 : TM;
UNCONS_1, UNCONS_2 : T;

procedure P (X : in out T) is
begin

X :- UNCONS 1;
end P;

If we call P(CONS_1), the assignment to X raises CONSTRAINTERROR if the value of
UNCONS_ .L is not 5; since CONS_1 is constrained, CONS_1 cannot be assigned a value that
would change its discrIminant. If we call P (UNCONS_2), then CONSTRAINTERROR will not
be raised by the assignment to X, since the corresponding actual parameter does not have a
fixed discriminant value.
sa. In the call P(CONS_1), X'CONSTRAINED is TRUE, implying that no assignment can be
made to the actual parameter that would change its discriminant value. In the call P(UNCONS-
_1), X'CONSTRAINED is FALSE, and hence no check need be made to see whether the
discriminant of the actual parameter is being changed.

.4',

sq. RM 3.7.2/5 defines how to check a discriminant value for compatibility. Two checks are
required: 1) a check that the value belongs to the disciminant subtype, and 2) an "additional"
check that the disciminant value is compatible with the discriminant's use in the subtype
indications of each component that depends on the discriminant. For example:

type REC (D : INTEGER) in
record

C : STRING (D..3);
end record;

subtype REC is REC(-1); -- CONSTRAINT ERROR
OBJ : RZC(-I); -- CONSTRAINTERROR
type Al REC is access REC(-1); -- CONSTRAINT-ERROR

In each of these cases, when -1 is substituted for the discriminant in component C of the REC
type, CONSTRAINTERROR is raised because -1 does not belong to STRING's index subtype.
Similar examples can be constructed for components with discnminant constraints.
sia. When the type being constrained has a variant part, the "additional" check is performed
only for those subcomponents that both exist for the subtype and that have a subtype definition
that depends on a discriminant (AI-00358). For example, consider:

type ZNUM is (A, B, C);
subtype ENUM A is ENUM range A..A;
subtype ENUMAD is ENUM range A..B;

type REC (DA : ENUM A; POS POSITIVE) is
record

Cl : INTEGER;
* end record;

4-3 9

4 .. 4..*~.. .. - '."

3.7.2 Dlscriminant Constraints Version 1 (Dec 86) 0

type REC2 (DAB EN AB) s
record

case D AB is
when A ->

C2 REM (DAB, 1);
C3 RECI (D AS, 0); -- no CONSTRAINT ERROR
C4 RC1 (A, 0); -- CONSTRAINTERROR

when B =>
C5 INTEGER;

end case;
end record;

OBJ B : REC2 (B); -- no CONSTRAINT ERROR

CONSTRAINTERROR is not raised when the declaration of component C3 is elaborated
because RM 3.7/8 says the component subtype definition is only elaborated if it does not
depend on a discrminant. Since C3's subtype indication does depend on the discrminant, D-
_AB, no compatibility check is performed for any of C3's disciminant values. CONSTRAINT-

ERROR will be raised for component C4, however, since this component's constraint does not
depend on a discriminant and the value 0 does not belong to the subtype POSITIVE.

si 1. If we assume that component C4 is eliminated from the type declaration, then the
declaration of OBJ B does not raise CONSTRAINT ERROR; component C3 does not exist for
OBJB, so its disciminant constraint is not checked for compatibility. On the other hand, if .1
OBJ B were declared as REC2(A), CONSTRAINT ERROR would be raised since the value 0
does not belong to the subtype POSITIVE and component C3 exists for subtype REC2(A).

S12. A discriminant constraint can be given for private types and incomplete types with ?-'-
discriminants before the full declaration of the type. Since the full declaration has not yet been

elaborated, the additional check required by RM 3.7.2/5 cannot always be performed when the
discriminant constraint is elaborated:

package P is
type INC (Dl : INTEGER);
type ACC INC is access INC(-l); (i)(1
type INC-(D: INTEGER) is

record
S1 STRING (Dl .. D1);

end record;
'.

type PRIV (D2 : INTEGER) is private;
subtype S2 is PRIV(-l); (2)

private
type PRIV (D2 : INTEGER) is

record
S2 : STRING (D2 .. D2);

end record;

type DEER (D3 : INTEGER);
type CONS DEFER is access DEFER(-l); -- (3); illegal
type ACC IVER is access DINER;
subtype SUBACCDEFER is ACCDEIR(-l); -- (4) 0

end P;

3-96

SIFL ,ILM w 0 I WT, W. TL W 1W _ r W r W. ,

Version 1 (Dec 86) 3.7.2 Discriminant Constraints

package body P in
type DVER (03 : INTEGER) is

record
S3 :'STRING (D3 .. D3);

end record;
end P;

The wording in RM 3.7.2/5 appears to require that CONSTRAINTERROR be raised at points
(1), (2), (3), and (4) even though the full record type declaration has not yet been elaborated at
those points. In cases (3) and (4), the full type definition need not even be in the same
compilation unit. The examples can be made more complicated to show that, in general, it is
not possible to "look ahead" to the full type declaration, e.g.,

GLOBAL : INTEGER := -2;

function COMP return INTEGER is
begin

return -GLOBAL;
end COP;

package P is
type T (D : INTEGER);
subtype ST is T(-1);
X : INTEGER range COMP .. 3; -- 2 3

* -'.,type T (D : INTEGER) is
. record

S : STRING (D .. COMP) -1 .. -2
end record;

end P;

If compatibility of -1 as a discriminant value is checked against the full type declaration at the
point where ST is declared, COMP will return the value 2, S's index constraint will be -1 .. 2, and
CONSTRAINTERROR will be raised. But if the expressions in the declarations are elaborated
in the proper order, COMP will have the value -2 when T's declaration is elaborated, and the
range -1 .. -2 should not raise CONSTRAINTERROR.

" S13. To resolve this difficulty, AI-00007 says:

a' a discriminant constraint is not allowed in a subtype indication given in the
private part of a package if the type mark denotes an incomplete type and the
incomplete type's full declaration is given in the package body. (For example,
the declaration at (3) is Illegal according to this rule.)

* if a discdminant constraint is given for a type prior to the type's complete
declaration (this can only happen for an incomplete type, a private type, or a
type or subtype that has a subcomponent of an incompletely declared private
type; see examples below), the additional check required by RM 3.7.2/5 is
deferred and Is performed no later than the end of the declaration that
completely declares the type. (For example, CONSTRAINTERROR is not
raised at points (1) or (2). Instead, the additional check required at (1) is
performed no later than the end of INC's full declaration, and similarly, the
check required at (2) Is performed no later than PRIV's full declaration.)

e if a disciminant constraint is given for an access type, the additional check ,5'

3.97

.,:?...-% ,

*r? . - - -

3.7.2 Discriminant Constraints Version 1 (Dec 86)

required by RM 3.7.2/5 may, but need not, be performed. (For example, given
that -1 belongs to INTEGER, no additional check need be performed because .--.-. :
of the subtype indication given '4). No additional check is required even if "-
DEFER's full declaration had bee. jiven prior to (4), and so no exception need
be raised for (4).) .

The rules established by AI-00007 resolve the difficulties posed by RM 3.7.2/5's requirement for

an additional check, but do impose the additional implementation burden of saving the
information needed to perform the additional check. For example, consider the following
sequence of declarations:

package P is
subtype INT7 is INTEGER range 1.-7;
subtype INT6 is INTEGER range 1.. 6;
subtype INT5 is INTEGER range 1..5;

type T INT7 (D7 INT7) is private;
type T INT6 (D6 INT6) is private;
type TINT5 (D5 INTS) is private;

subtype TCONS is TINT7(6); (i)

private

type T INT7 (D7 : INT7) is
record

C76 : TINT6(D7); (2)
end record;

type TINT6 (D6 : INT6) is
record

C65 T_INT5(D6); (3)
CF TINT5(FUNC).;

end record; -- (4)

type T INT5 (D5 INT5) is
record

CF STRING (FUNC .. D5); -- (5)
end record; -- (6)

end P;

In this example, the full declaration of TINT7 is not its complete declaration because the
declaration of TINT6 is not yet complete. Similarly, T INT6's full declaration is not its complete
declaration because of the use of TINT5. TINT5's full declaration is the complete declaration
for TINT5 and also completes the declaration of TINT6 and TINT7.

S14. CONSTRAINTERROR would be raised at point (1) if the discriminant's value were not in
the range 1.7. Since it is In the required range, no exception is raised. However, additional
checks are required to ensure that TCONS's discriminant value is compatible with its use
within TINT7's declaration. These additional checks must be deferred until more information is
available about TINT7, but the checks cannot be deferred beyond the declaration that
completes TINT7, namely, the declaration of TINT5.

S15. The declaration at (2) requires yet another deferred check since TINT6 has not yet been
fully (or completely) declared, and similarly, the declarations at (3) require deferred checks. At

3-98

.41

., ',W .. WWVrV1WVWVVV WW , ,W.
' ' - " 'p

Version 1 (Doc 86) 3.7.2 Discriminant Constraints

the end of TINT5's declaration, TINT5, T_INT6, and TINT7 have been completely declared
and no additional deferred checks are required. AI-00007 requires that all deferred checks for
types whose declaration is completed by T_INT5's declaration be performed no later than point
(6). Since the value 6 is not compatible with D6's use at point 3, the checks deferred from point
(2) and point (1) will require that CONSTRAINTERROR be raised. The exception can be
raised at any point between point (3) (the first point at which a deferred check can fail) and point
(6) (the point by which all deferred checks in this example must have been completed). (If the
declaration at (3) had been

C65 : T INTS(6)

CONSTRAINT-ERROR would have been raised immediately, since the first check required by
RM 3.7.2/5 would fail.)

s16. From an implementation viewpoint, it is reasonable to require that the deferred checks be
performed no later than point (6) since implementations must keep IracK of when types are
completely declared (in order to enforce RM 7.4.1/4); keeping track of the deferred checks as
well is likely to be only a slight additional burden. On the other hand, some implementations
might find it easier to apply deferred checks on a step by step basis, e.g., checking at point (2)
that the value 6 is compatible with D6's constraint and then checking at point (3) that 6 is
compatible with DS's constraint. This approach is allowed by AI-00007. Requiring the deferred
checks to be performed at any specific point earlier than point (6) might be inconvenient for
some implementations, but being more specific about where the checks are performed is of only 0
marginal value to a programmer, whose program is, in any case, in error. 5
S17. AI-00007 does not require a subcomponent compatibility check when a discriminant
constraint is applied to an access type. Such checks can be difficult or impossible to perform
correctly and they are not necessary (i.e., failure to perform the check does not allow an invalid
object to be created).

sis. To see why it is safe to eliminate the subcomponent check, consider:

type ACC STR is access STRING;
type VSTR (FIRST, LAST : INTEGER) is

record
DATA : ACC STR (FIRST .. LAST);

end record; -
X VSTR (-1, -1); -- optional exception

CONSTRAINT ERROR will be raised if a subcomponent check is performed for X.DATA's
designated type, since -1 is not an allowed lower bound value for STRINGs. If no such check is .
performed, then an exception will be raised later:

X : (-1, -1, new STRING (-1 -1)): -- CONSTRAINT ERROR raised (1)
X := (1, 3, new STRING (1..3)): -- CONSTRAINTERROR raised (2)
X := (-1, -1, new STRING'("abc)); -- CONSTRAINTERROR raised (3)

In case (1), an exception is raised by the allocator, since -1 is not an allowed lower bound. In
case (2), the aggregate produces an allowed value of type VSTR, but an exception is raised by
the assignment since X's discriminant constraint is not satisfied. In case (3), CONSTRAINT-
_ERROR is raised because the bounds of the designated object are not the same as the
discriminant values.

Sig. Now consider a somewhat more complex example: .'"

type ACC VSTR is access VSTR: -
Y : ACC VSTR (-1, -1): -- no exception need be raised

An allocator creating a value to be assigned to Y need not raise an exception either: ,,
,.-,..,

' 'J %.'Z. :..'..._''.'J..-J' ,,..,. ,. - ".'; ." . . •..... "... ".... " .. ",. ,'.;"-

3.7.2 Discriminant Constraints Version 1 (Dec 86)

Y :- new VSTR (-1, -1); -- no exception need be raised .

This is acceptable since Y.DATA - null; nr invalid object has been created. On the other hand,
an implementation could raise CONSTi-.. NT_ERROR for the allocator if it performs the
subcomponent check for the DATA component.

S20. Allowing the subcomponent check to be omitted simplifies an implementation considerably.
For example, consider:

type il (DI INTEGER);
type R2 (D2 INTEGER);
type R3 (D3 POSITIVE);

type ACCR1 is access RI;
type ACCR2 is access R2;
type ACCR3 is access R3;

type R1 (Dl : INTEGER) is
record

Ci : ACC_R2 (Dl);
end record; 'P

X1 Ri (-l); -- can't do complete subcomponent check

type R2 (D2 : INTEGER) is
record

C2 ACCR3 (D2):
end record;

type R3 (3 : POSITIVE) is
record

C3 : ACC_Ri (03);
end record;

The declaration of X1 would be illegal if Cl's type were an incomplete type (e.g., R2) or if it
were a private type prior to its complete declaratin. But since C1 has an access type, Xl's
declaration is legal. A complete subcomponent check can't be performed when Xl is declared
since R2 has not yet been completely declared. Nonetheless, the object denoted by X1 can be
created. One could even create a function (by generic instantiation) that could be called with X1
as an actual parameter.

S21. Performing a subcomponent check for an access type can be complex. Suppose the ..-

following declaration appears after R3's full declaration and an implementation attempts to
perform the subcomponent check:

Al : ACC Ri (10);

When performing the check for Al, an implementation must be careful not to get into a loop,
since both Al and Al .Cl .C2.C3 have the same access type. The complexity of avoiding a loop
is increased when one considers that any of the designated types could be variant records, i.e.,
the choice of which subcomponents to check could depend on which subcomponents are
present for particular discriminant values (see AI-00358). Since performing the subcomponent
check for an access type is sometimes impossible and sometimes complex, it seems
reasonable for an implementation to take advantage of AI-00007 and not perform the check at *
all. ,/.

3-100

Version 1 (Dec 86) 3.7.2 Discrlminant Constraints

S22. Of course, only the subcomponent check can be omitted:

Al ACC R3 (-1); -- raises CONSTRAINT ERROR

CONSTRAINTERROR must be raised since -1 does not belong to R3's discrminant subtype.
No subcomponent compatibility check is needed.

Approved Interpretations

S23. AI-00007 imposes the following rules:

a A discriminant constraint is not allowed in a subtype indication given in the private
part of a package if the type mark denotes an incomplete type and the incomplete
type's full declaration is given in the package body.

a If the type mark in a subtype indication denotes an incomplete type, a private type.
or a type or subtype that has a subcomponent of an incompletely declared private
type and if the subtype indication has a discriminant constraint and occurs prior to
the end of the complete declaration of the type denoted by the type mark, then the
compatibility of each discriminant value with its use in a component subtype
definition is checked no later than the end of the declaration that completely
declares the type. If this check fails, CONSTRAINTERROR is raised.

* If a subtype indication contains a discriminant constraint and the type mark denotes
an access type, the discriminant constraint is compatible with the type denoted by
the type mark if each discriminant value belongs to the subtype of the
corresponding discriminant of the designated type. In addition, the compatibility of
each discriminant value with its use in a component subtype definition of the
designated type, may, but need not be checked. (If the additional check is
performed and fails, CONSTRAINTERROR is raised.)

* (The complete declaration of an incomplete or private type is its full declaration if
the full declaration declares a scalar type or an access type. If the full declaration
declares a type with components, the full declaration is the complete declaration
only if the type of each component has been completely declared; otherwise, the
type is completely declared by the last complete declaration of a component's
type.)

S24. AI-00014 requires that a default discriminant expression be evaluated (and checked for
compatibility) only if this is the only source of a discriminant value.
S25. AI-00358 requires that the compatibility of each discriminant value with its use within a
record only be checked for those subcomponents that exist for the record's subtype and whose
subtype definition depends on a discriminant.
Changes from July 1982

S26. A discriminant association with more than one discriminant name is only allowed if
discriminants are all of the same type.
S27. A declaration of a constant object with discriminants does not require a discriminant
constraint in the object declaration even if there are no default values for the discriminants.
Changes from July 1980

S28. To check discriminant constraint compatibility for each subcomponent whose subtype
* depends on the discriminant, the discriminant value is substituted for the discriminant in the

specification and the compatibility of the resulting subtype is checked.

e -3-101

4,

3.7.2 Dlscriminant Constraints Version 1 (Dec 86)

S29. In the elaboration of discriminant constraints the expressions are elaborated in some order ,"*" -.

that is not defined by the language. '"

s3o. The expression of a named associati. s evaluated once for each named discriminant.

Legality Rules

L1. A discnminant constraint in a subtype indication can only be given for an unconstrained
type with dlscrminants, or for an unconstrained access type designating an unconstrained
type with discnminants (RM 3.7.2/1).

L2. If a discriminant constraint contains both positional and named associations, the positional
associations must be given first (RM 3.7.2/3).

L3. A discnminant name in a discriminant constraint must only be the name of the discriminant
of the type for which the constraint is being specified (RM 3.7.2/4).

L4. A discriminant association with more than one discriminant name is only allowed for
discriminants of the same type (RM 3.7.2/4).

L5. The base type of a discriminant specified in the discriminant constraint and the
corresponding discrminant in a record type must be the same (RM 3.7.2/4).

L6. A discriminant constraint must specify exactly one value for each discriminant (RM
3.7.2/4).

L7. For a record or private type declared without default discriminant values, a discnminant
constraint must be specified in a subtype indication used in an object declaration to declare
a variable, the declaration of an array's component type, the declaration of a record
component, and an allocator of the form new T (RM 3.7.2/8, /10). "*" "

1L8. A discriminant constraint is not allowed in a subtype indication given in the private part of a
package if the type mark in the subtype indication denotes an incomplete type and the
incomplete type's full declaration is given in the package body (AI-00007).

Exception Conditions

El. CONSTRAINT ERROR is raised when an object declaration or a discriminant constra!r'.
that does not depend on a discriminant is elaborated and the value specified for any
discriminant (either by default or explicitly) dc. 3 not lie in the permitted ,ange " ajes for
the discriminant (RM 3.3.2/9 and RM 3.7.2/5).

E2. If the full declaration for a type with discriminants, T, contains a component subtype

definition that is dependent on a discriminant (i.e., if the component subtype definition
contains an index or a disciminant constraint that uses a discriminant of the enclosing
type) and a subtype indication giving a discriminant constraint for T is elaborated before T's
complete declaration, CONSTRAINTERROR Is raised no later than the end of T's
complete declaration if a specified discriminant value Is not compatible with its use in
specifying the component's subtype (RM 3.7.2/5 and AI-00007), i.e., CONSTRAINT-
_ERROR is raised if:

* the discriminant is used in a discrete range of an index constraint, the range is
not null, and at least one bound does not belong to the index subtype; or

* the discriminant is used in a discriminant constraint and the value of any
discriminant in the constraint does not he in the range of values permitted for
the discriminant. .-

In addition, CONSTRAINTERROR is raised no later than the end of T's complete

3-102

"- .- . • • . .

Version 1 (DOc 86) 3.7.2 Discriminant Constraints
9

declaration if some other discriminant value in such a component subtype definition is not -F

compatible with the component type (RM 3.7.2/5 and AI-00007).
'-V

E3. If the full declaration for a type with discrIminants, T, contains a component subtype
definition that is dependent on a discriminant (i.e., if the component subtype definition S
contains an Index or a discriminant constraint that uses a discriminant of the enclosing
type) and a subtype Indication giving a discriminant constraint for T is elaborated after T's
complete declaration, CONSTRAINTERROR is raised if a specified disciminant value is
not compatible with Its use in specifying the component's subtype (RM 3.7.2/5), i.e.,
CONSTRAINTERROR is raised if:

" the discrIminant is used in a discrete range of an index constraint, the range is
not null, and at least one bound does not belong to the index subtype: or

" the discriminant is used in a discriminant constraint and the value of any
discriminant in the constraint does not lie in the range of values permitted for
the discriminant.

In addition, CONSTRAINTERROR is raised if some other discriminant value in such a
component subtype definition is not compatible with the component type (RM 3.7.2/5 and
AI-00007).

E4. If the type mark in a subtype indication denotes an access type and the subtype indication
contains a discriminant constraint, CONSTRAINTERROR may, but need not be raised S
when the subtype indication is elaborated, if a specified discrminant value is incompatible
with its use in a component subtype definition of the designated type (AI-00007 and RM
3.7.2/5). In addition, CONSTRAINT ERROR may, but need not be raised if some other
discriminant value in such a component subtype definition is not compatible with the
component type (RM 3.7.2/5 and AI-00007).

Test Objectives and Design Guidelines

T1. Check that the form of a discriminant constraint is correct; namely, check that:

* the discriminant names given in the constraint cannot be different from the
names of the discrtminants of the type being constrained;

" the same name cannot appear twice as a discriminant name in a particular
discriminant association or in different discriminant associations of the same
discriminant constraint;

" if a mixture of positional and named association is used, a named discnminant
association cannot give a value for a dlscriminant whose value has already
been specified positionally;
Implementation Guideline: Be sure that ,he total number of discriminant values does not
exceed the number of discriminants being constrained.

" too many or too few discriminant values cannot be given;

" positional discriminant values cannot be given after a discriminant association
that uses dlscriminant names;
'mplementation Guideline: The total number of discriminant values should be correct; the
positional values should be in the correct position and of the correct type.

" the base type of a discdminant value cannot be different from the base type of
the corresponding discriminant;

ur~/F Implementation Guideline: Use different discrete types.

o a discriminant association with more than one discriminant name is only
allowed if the named discriminants are all of the same type.

-,A~ 06&L

=

.-S .

3.7.2 Discriminant Constraints Version 1 (Dec 86)

Implementabon Guideline: Include checks for access types that designate types with discriminants .. ,

T2. Check that discnminant constraints are not permitted where they are forbidden; i.e., check
that a discriminant constraint:

e cannot be given in a subtype inoication for a type mark that has already been

constrained (see IG 3.3.2/T5);

e cannot be specified for a record or private type declared without any
discnminants. or for an array, scalar, or task type (see IG 3.3.21T5).

a cannot be supplied with an actual generic parameter (see IG 12.3/T5).

T3. Check that a discriminant constraint cannot be omitted where it is required, i.e., check that
a discriminant constraint cannot be omitted from a subtype indication for a type mark
having discriminants with no default values when the subtype indication is used in:

" an object declaration for a variable;
,I.

" an array type definition;

" a record component declaration;

" a derived type declaration used as the full declaration of a private or a limited
private type that has no discriminants (see IG 7.4.1/T5);

" an allocator when an initial value or discriminant constraint is not specified for
the allocated object (see IG 4.8/Ti).

T5. Check that if a discriminant of type T is named A, then in a discriminant association for the
type, T.A cannot be used as a name for the discriminant. ;. .

T6. For a type without default discriminant values (but with discriminants), check that an
unconstrained type mark can be used in:

* a subtype declaration, and the subtype name acts simply as a new name for
the unconstrained type;

* a derived type declaration, except when the declaration is the full declaration
of a private or limited private type without discriminants (see IG 7.4.1/'T5) or
the full declaration of an incomplete type (see IG 3.8.1/T2);

e an access type definition (see IG 3.8/T2) (hence a discriminant constraint
must be supplied in an allocator that does not provide an initial value (see IG
4.8/TI));

9 a membership operation (see IG 4.5.2.a/T2);

9 a formal parameter declaration for a subprogram; hence, the constraints of the
actual parameter are available within the subprogram, 'CONSTRAINED is
TRUE, and assignments to the formal parameter cannot attempt to change the
discriminants of the actual parameter without raising CONSTRAINTERROR
(see IG 6.4.1/T6);
Implementation Guidelne: For the actual parameter, use an object designated by an access
value as well as other objects.

9 as an actual generic parameter corresponding to a generic (private) type
declaration having a discriminant part (see IG 12.3.2/T2);

* the declaration of a constant. .

3-104

4%-F

-'Srw-

"'p

Version 1 (Dec 86) 3.7.2 Discriminant Constraints S

T7. For a type with or without default discrminant values, check that a discrminant constraint
can be supplied in the following contexts and has the proper effect:

in an object declaration, component declaration, or subtype indication of an
array type definition; hence, assignments cannot attempt to change the %
specified discrlminant values without raising CONSTRAINT ERROR;
Implementation Guideline: Check that the size of the object can depend on the value of a .
discriminant.

o in an access type definition; hence, access values of this access type cannot
be assigned non-null values designating objects with different discriminant
values (see IG 5.2/T9);

e in an allocator, and the ,located object has the specified discriminant values
(see IG 4.8/T5).

T8. For a type with default discriminant values, check that a discnminant constraint can be
omitted in:

o an object declaration; hence, assignments to the object can change its -
discrimin2 nts; <

" a component declaration in a record type definition; hence, assignments to the
component can change the value of its discriminants;

" a subtype indication in an array type definition; hence, assignments to one of
the components can change their discriminant values;

. an allocator, but an assignment to the allocated object cannot change the
default discriminant values (see IG 4.8/T4 and IG 4.8/T7); 5-..

o a formal parameter specification of a a generic unit or subprogram; for in out
or out parameters, 'CONSTRAINED of the actual parameter equals
'CONSTRAINED of the formal parameter. If 'CONSTRAINED is TRUE,
CONSTRAINT ERROR is raised when an attempt is made to change the
value of a discriminant.

In each of the above cases, check that the default discrminant expression is checked for
compatibility:

* in an object declaration, when no initialization expression or discrminant *5,

constraint is present in the declaration itself;

* for a subcomponent of an object, when no initialization expression is present
in the object declaration nor is a default expression provided in the
corresponding component subtype definition or in the component subtype
definition of an enclosing component;
Implementation Guideline: Check that the expression is evaluated and checked if and only if
the component Is present in the record subtype. Include a case where the subtype is itself
determined by a default discriminant value.

" never in a record component declaration, subtype declaration, array type
definition, derived type definition, or access type definition.

Implementation Guideline: Include a check using formal generic parameters.
Implementation Guideline: Note: IG 3.2.1/T8 checks that default discriminants are evaluated at the appropriate
time.

T9. Check that CONSTRAINT ERROR is not raised for a constant object declaration whose

3-105

N"
ZV

3.7.2 Oiscriminant Constraints Version 1 (Dac 86.

subtype indication specifies an unconstrained type with default discriminant values, .: ..
whose initialization expression specifies a value whose discriminants are not all equa. to
the default values. p

Check that CONSTRAINT ERROR . raised when the subtype indication in a constant
object declaration specifies a constrained subtype with discriminants, and the initialization
value does not belong to the subtype (i.e., the dlscriminant values do not match those
specified by the constraint). i,

T10. Check that the expression in a discrlminant association with more than one name is
evaluated once for each name.

Ti 1. Check that CONSTRAINTERROR is raised by a discriminant constraint if a value
specified for a discdminant does not lie in the range of the discriminant and the
discriminant constraint does not itself depend on a discriminant.
Implementation Guideline: Check for subtype indications where the type mark denotes a record, private,
incomplete, and accesp type.
Implementaion Guideline: Check for types whose full declaration occurs both before and after the use of the
discrim inant constraint.
Implementation Guideline: Check for subtype indications used in subtype declarations, array component ,
declarations, record component declarations (including component declarations appearing in a variant part. Do
not use constraints dependent on a discriminant; see T13), access type definitions, derived type definitions,
object declarations, and allocators (for allocators, see IG 4.8/Ta).
Implementation Guideline: Check that CONSTRAINTERROR is raised when the subtype indication is
elaborated (as opposed to when the full type declaration is elaborated or when an object of the subtype is
created).

T12. For an incomplete type declared in the private part of a package, check that a discriminant
constraint is not allowed for the type (in an access type definition) if the full type declaration :
does not also occur in the private part. S

T13. Check that if a discrminant constraint or index constraint depends on a discriminant, the
non-discriminant expressions in the constraint are evaluated and checked at the
appropriate time. Specifically, if a component subtype definition contains a constraint that
depends on a discriminant, check that the expressions in the constraint are evaluated
when the subtype definition is elaborated but the compatibility of disciminant values is not
checked until later when the record type is either constrained explicitly (in a subtype
declaration, array component declaration record component declaration that does not
depend on a discnminant, access type detir'::.on, derived type definition, object deciaration,
and allocator) or is used without a constraint in an allocator or object declaration that has
no initialization expression; furthermore, ensure that compatibility is only checked if the
component is present in the record subtype. p
Implementation Guideline: Include a check for generic formal types.

Implementaton Guideline: The constrained component should have a record, array, and access type.
Implementation Guideline: In some cases, the subcomponent should be in a variant part. The test should
ensure that the compatibility of the dlecriminant values is checked if and only if the component is present in the
subtype that is specified either by the explicit discriminant constraint or by the default discriminant values.
Implementation Guideline: This test Is concerned with checking the compatibility of discriminant expressions p
that are not themselves discrminants. Checks of enclosing discriminant values are covered in T1 5 and T1 6.

Implementation Guideline. The discriminant constrai;..t in this test should not involve incompletely declared
types. Incompletely declared types are checked in Ti.

Ti 4. Ensure that the compatibility checks tested in T13 are performed correctly when the type
being constrained has not been completely declared, i.e., ensure that all compatibility
checks are performed no later than the end of the declaration that completely declares a ,
type.
Implemantation Guideline: When a component's discriminiant constraint is given for an incompletely declared ,

type and depends on a discriminant, the compatibility check of all discriminant values can be deferred. This J,
test should ensure the compatibility check is not deferred too long; see examples in IG 3.72.S.

3-106 •

S. o'

Version 1 (Dec 86) 3.7.3 Variant Parts

T15. Repeat the checks of T13, but this time, ensure compatibility checks are performed for
discriminant values that depend on discriminants.

p -.

Ti 6. Repeat the checks of T1 4, using discrminant values that depend on discrminants.

T17. Check whether the additional compatibility check is performed when a discnminant
constraint is given for an access type.
Implementadon Guideline: Chock when the designated type has been completely declared, is completely
declared later (in the same or in a different compilation unit), and when there is a "oop' in the designated types
to be checked (see IG 3.7.2/S).
Implementaton Guideline: Include a check for access types used in a component subtype definition and in an
allocator.

3.7.3 Variant Parts
Semantic Ramifications

S1. A choice can have the form of a component -simple name only in a record aggregate. The
syntactic afternative, component simple name, exists so record and array aggregates can be
specified with the same syntactic rule (see RM 4.3/2).

s2. The subtype of the discriminant simple name in a variant part is given in the corresponding
discrminant part. The subtype indication must be a type mark, T, which could have been V.
declared in one of the following ways:

type T is range L .. R; -- 1
type Tis (.); -- 2
type T is new ST; -- 3
type T is new ST range L .. R; -- 4
subtype T is ST; -- 5
subtype T is ST range L... R; -- 6

In form 1, L and R must be static (see RM 3.5.4/3), and so T is a static subtype. In form 2. T is
a static subtype since it is an enumeration type. In forms 3 and 5, T is static if ST is static. In
forms 4 and 6, T is static if L and R are both static and ST is static.
S3. For a type declaration like:

subtype INT is INTEGER range 1 10; N.,
type T (L : INT) is

record ,',
case L is

end case;
end record;

the set of choices must only cover the range 1 through 10. Values outside this range cannot be
specified. For example,

case L is
when 1 .. 10->

A INTEGER:
when 11.. 20 => -- illegal

null;
end case;

is illegal even though this choice defines no components and the choice can never be chosen.

3-107

% ,1%"

,WWWWRY) "u A vu -u v w i Nu Ark!)%k LWV~uW 21, 1 *VU . 71, W1 %r W -*

3.7.3 Variant Parts Version 1 (Dec 86)

S4. Note that the following is legal:

case L is
whenI .. 10 =>

A INTEGER;
when 20 .. 11 => -- legal

B BOOLEAN;
end case;

because the RM states "... no other value is allowed" (RM 3.7.3/3); 20.. 11 is a null range which
contains no values, so the null range is legal.

S5. If the subtype of the discriminant name is not static, then the base type of the discriminant
specifies the range of values that must be covered.

S6. Since components of a record must have unique identifiers (RM 3.7/3), components of all
variant parts must have distinct identifiers:

case L is
when 1..5

A : INTEGER;
B : FLOAT;

when 6..7 =>
A : INTEGER; -- illegal

S7. A variant part can appear within a variant part, e.g.,

case L is
when 1 .. 5 =>

case M is
when 1 .. 10 =>

etc.

Even if the value of discriminant M is used only in a variant part when L is in the range 1 .. 5,
space must be allocated for M within the record object no matter what the value of L is for a
particular object. Discriminants are components of every object of a type with a discriminant
(see RM 3.7.1/1).
ss. The same discriminant name can be used in more than one variant part:

case L is
when 1 .. 5 =>

case L is
when 1 .. 2 =>

The set of choices to be covered in the inner variant part is the same as the set in the outer part.
Covering just the choice values 1 .. 5 in the inner part would be illegal if the subtype of L was
INTEGER range 1 .. 10.

Changes from July 1982

sq. The type of the discriminant of a variant part must not be a generic formal type.

Changes from July 1980

S0. If the subtype of a discriminant is statc, the choices in a variant part must contain no
values other than those of the subtype.

3-108
* - ~ .\

Version 1 (Dec 86) 3.7.3 Variant Parts

Legality Rules p.-

1L1. The base type of the discriminant and each choice must be the same (AM 3.7.3/1).

L2. The type of the discriminant of a variant part must not be a generic formal type (AM
3.7.3/3).

L3. When the subtype of a discriminant is static, the choices in a variant part must contain all
and only values of the subtype (RaM 3.7.3/4).

L4. If the subtype of a discriminant is not static, the choices in a variant part must contain all
and only values of the discriminant's base type (RM 3.7.3/4).

L5. Two choices must not have a value in common (AM 3.7.3/4).
L6. Every choice must contain only static expressions, i.e., for choices of the form V, L .. A•

and ST range L.. R, L, A, and V must be static expressions and ST must be a static
subtype; for choices of the form ST, ST must be a static subtype 'RM 3.7.3/4).

L7. An others choice, if present, must be the only choice given in the last alternative specified
for a variant part (AM 3.7.3/4).

L8. An others choice must be present if the set of values included in the set of choices does
not cover 11 the set of values associated with the subtype of the discriminant name when
the subtype is static; otherwise, 2) the set of values associated with the base type of the
discriminant (AM 3.7.3/4).

L9. A component simple name is not allowed as a choice of a variant (RM 3.7.3/4).
110. Identifiers belonging to different variants of the same record type must have unique

identifiers (AM 3.7/3).

Test Objectives and Design Guidelines

Ti. Check that (cf. IG 5.4.a/T1):

" the reserved word is is required;

" when cannot be replaced by if,
I cannot be replaced by or, I
=> cannot be replaced by then,
end case cannot be replaced by end, endcase, or esac,
is cannot be replaced by of;

" the others choice must be the only choice given in the last alternative;
Implementation Guideline: Try an others choice as the first and middle alternative, and try it as 9
the first, middle, and last choice in a set of choices for the last alternative.

" a component list cannot be vacuous.

T2. Check that (cf. IG 5.4.a/T20):

* the type of the discriminant and each choice must be the same;
" every pair of choices must cover a disjoint set of values.

Implementation Guideline: Use both single values and ranges of values, and check for overlapping values with
a single alternative and between alternatives. Use overlapping ranges whose end points are different, e.g..
3 .. 5 and 4.. 6, as well as ranges in which overlap occurs only at the end points. Use some examples in which
a large range of values has to b[checked for potential overlap. These choices should not all occur in
monotonically increasing or decreasing order. 6

T3. Check that nonstatic choice values are forbidden (cf. IG 5.4.a/T21).

3-109

t_ . :.: '."",'- ;:.." :';-"..-J :..'..;" '.... .-'.' ; .;,.;,' - <,i'_;- ; -, . ; .:--. ' .'-:-. .;" >'-- .:->----;-. --;!-',:"-';-

3.7.4 Operations of Record Types Version 1 (Dec 86)

Implementation Guideline: Try a variable whose range is restricted to a single value. Try a discrete range of
the form ST. where ST is a subtype name having at least one nonstatic bound, as well as choices of the form
ST range L.. R and L.. R. where either L. R. or ST is nonstatic. Include all nonstatic forms of expressions.
specifically a case where an exception would t. aled, e.g., POSITIVE range 0 .. 3. Also try A'RANGE.

T4. Check that all forms of choice are permitted in variants, and in particular, forms like ST
range L .. R, and ST are permitted (cf. IG 5.4.a/r22).
Implementation Guideline: Use the same subtype name in more than one choice.

Check that choices using named numbers and static constant names are permitted (cf. IG

5.4.a/T23).

T5. Check that choices denoting a null range of values are permitted, and that for choices of
the form ST range L.. R where L > R, neither L nor R need be in the range of ST values
(cf. IG 5.4.a/T24).
Implementation Guideline: The alternative specified by a null choice should have null as its component list in
one test and a non-null list in a separate test.

Check also that an others alternative can be provided even if all values of the case
expression have been covered by preceding alternatives (cf. IG 5.4.a/T24).

T6. Check that choices within and between alternatives can appear in nonmonotonic order
(cf. IG 5.4.a/T26).

17. Check that relational, membership, and logical operators are allowed as choices only if the
expressions containing these operators are enclosed in parentheses (cf. IG 5.4.a/T27).

T9. Check that if a discriminant has a static subtype, an others choice can be omitted if all
values in the subtype's range are covered, and must not be omitted if one or more of these
values are missing (cf. IG 5.4.b/T1).

Check that values outside the range of the subtype are forbidden, even if the component
list for such an alternative is null.

Ti 0. Check that if the subtype of a discriminant is not static, others can be omitted if all values
in the base type's range are covered, and must not be omitted if one or more of these
values are missing (cf. IG 5.4.b/T2).

TI 1. Check that even when the context indicates that a discriminant covers a smaller range of
values than permitted by its subtype, an others alternative is required if the subtype value
range is not fully covered (cf. IG 5.4.b/T4).
Implementaton Guideline: Use the nested variant part example at least.

T1 2. Check that the type of the discriminant of a variant part must not be a generic formal type if
the discriminant is used to govern a variant part. Check that a discriminant otherwise may
have a generic formal discrete type.
Implementation Guideline: Use a generic formal type to constrain a component that appears within a variant.

3.7.4 Operations of Record Types
Semantic Ramifications

Si. 'CONSTRAINED has the value TRUE for:

" an object or component declared with a discriminant constraint;

* an object designated by an access value, since no assignment to such an
object is permitted to change its discriminants (see RM 4.8/5), whether or not
the type of the object was declared with default dlscriminant values;

3-110

%f

4•.I~.FWW~"V'~ r , Yws J v' .r.r ,r . '% ', - -,' r ,YXrWY WVr - V II. " 'J' % 1 .wt" '
g

'
t l

O '

Version 1 (Dec 86) 3.7.4 Operations of Record Types

" a constrained formal subprogram, entry, or generic parameter (of any mode);

e an unconstrained formal subprogram, entry, or generic parameter of mode in
out or out whose actual parameter's 'CONSTRAINED attribute is TRUE;

" a formal subprogram, entry, or generic parameter of mode in (regardless of the
value of the actual parameter's 'CONSTRAINED attribute).

'CONSTRAINED has the value FALSE for:

* objects declared without a discriminant constraint in an object declaration or in
a component of a record or array; such declarations are only legal for record,
private, or limited private types with default discriminant values;

an unconstrained formal subprogram, entry, or generic parameter of mode in
out or out whose actual parameter's 'CONSTRAINED attribute is FALSE.

S2. 'CONSTRAINED is explicitly defined for parameters of mode out, even though reading of
out parameters is sharply restricted (see IG 6.4.2/S and RM 6.4.2/5).

S3. 'CONSTRAINED is also defined for private types (see RM 7.4.2/9, 10), but not for objects
of such types unless the private type has discriminants:

generic
type T is private;

procedure PR (X T);

procedure PR (X T) is

B1 BOOLEAN := T'CONSTRAINED; -- legal
B2 : BOOLEAN X'CONSTRAINED; -- illegal

T'CONSTRAINED is legal because T is a private type. X'CONSTRAINED is illegal because T is
not declared to have discriminants. Note that 'CONSTRAINED is not defined for record types
that have discriminants.
S4. The prefix of 'CONSTRAINED must be an object (or a private type). Since functions
deliver values, not objects, a function cannot be a prefix of this attribute even when the function 'C-
returns an access value:

type R (D : INTEGER) is

record
C : INTEGER;

IV

end record;
type ACCR is access R;

function F return R;
function G return ACCR;

... F'CONSTRAINED -- illegal
.G' CONSTRAINED -- illegal

S5. There are several possible implementation approaches for obtaining the value of
'CONSTRAINED for a given object. If the object is not an unconstrained formal in out or out
parameter, the attribute's value can be determined at compile time. If the object is an
unconstrained In out or out formal parameter, the actual parameter's 'CONSTRAINED value ,.
could be passed as "dope" to the formal parameter; this is necessary only if the discriminants of

.,.F rthe formal parameter's type have default discriminant values. The value of 'CONSTRAINED

3-111-,
A~)

. • • . .. = _. =.-. ., . ,. - ,- , ,.'.._% .= jj, . % % %, =% .'%3.1,1= %.
• - = = " " " ,4 " r" " •.. .• - . ." r • . . . " ° . = . . • . ° e , ,- • • t= . .r • • qkI

" -.f? _1r _V - Wn% - - - S- rW.W.W K

AI

3.7.4 Operations of Record Types Version 1 (Dec 86) ',-

could also be stored within the object itself, but since 'CONSTRAINED is a prcPe, -.. , "-
object, not its value, an implementation must then be careful not to copy the ,.3.iue! -. -4.' .
'CONSTRAINED when making assignr.3lts between two objects whose 'CONSTF;. -.

attributes are potentially different, or when comparing the objects for equality. For example

type T (L : INTEGR : 0) is
record

end record;

CONS_ I T(5;
ONCONS_1: T;

CONS_2 T(5) CONS_1;
UNCONS_2 T UNCONS_1;

These initializations can copy the value of 'CONSTRAINED, since the value of 'CONSTRAINED "-.
is the same for the variable being declared and the initial value. However, copying must rot he
done for:

CONS_2 := UNCONS_1; '1

UNCONS 2 CONS_1;

The value of 'CONSTRAINED must not be changed by assignment.

s6. The aggregate formation and component selection operations are not defined for null
records. Null records have no components to select, and there is no form of aggregate for a null .
record. All other basic operations are, however, defined for null records. Specifically:

type NULL REC is
record

null;
end record;

"S

R, R2 : NULL .EC,

R1 : -- o2:"

if Rl = R2 then -- always TRUE

en if;

The assigi nerk state:,ert and comparison expression are legal. Note that evaluation of R1
and R2 is no, eroneous even though R1 and R2 have no value; only the evaluation of
undefined scalar objects is erroneous (AM 3.2.1/18).

Changes from July 1982

S7. There are no significant changes.

, Changes from July 1980

ss. The value of 'CONSTRAINED for a formal parameter now depends on the mode of the
formal paratMeter and on whether the formal parameter is constrained.

Legality Rules "..":-.

L. The assignment, aggregate formation, equality, and inequality operations are not defined
for limited record types (RM 3.7.4/1, 5).

3-'3-112 I

• . •= . -% -. %'* %-%. -= .-.- % %- % " *. -. - .. -. . % -. .. ' "° '= '. '. '- '-. o~o'. . =* =, .='=% '-

Version 1 (Dec 86) 3.7.4 Operations of Record Types

L2. The operation of type conversion must only be applied between a parent and derived type
or between two types derived from the same parent (RM 4.6/9).

L3. The prefix for the 'CONSTRAINED attribute must denote an object (including a formal
parameter or component of a composite object) that has discriminants (RM 3.7.4/3), or the
prefix must denote a private type (with or without discriminants) (RM 7.4.2/9).

Test Objectives and Design Guidelines

T1. Check that the 'CONSTRAINED attribute cannot be applied to a record, private, or limited
private object whose type has no discriminants, or to an array object, or to the value of a
function returning a record object that has discriminants.
Implementation Guideline: Check both for objects designated by an access value and and for objects declared
directly or as formal parameters of subprograms and generic units.

Check that 'CONSTRAINED cannot be applied to a record type with discrrninants.

Check that 'CONSTRAINED cannot be applied to a function returning an access value
designating a record with discriminants nor to an access variable designating such an
object.

T2. Check that when a formal parameter of a subprogram, entry, or a generic unit has an
unconstrainad type with discriminants that have defaults, 'CONSTRAINED is TRUE when
applied to formal parameters of mode In and has the value of the actual parameter for the
other modes.

T3. Check that when a formal parameter of a subprogram, entry, or a generic unit has an
unconstrained type with discriminants that do not have defaults, 'CONSTRAINED is TRUE
when applied to formal parameters of any mode.

T4. Check that 'CONSTRAINED is TRUE for variables declared with a constrained type, for
constant objects (even if not declared with a constrained type), and designated objects.
Implementation Guideline: Use types with discriminants that do and do not have defaults.

Check that 'CONSTRAINED is FALSE for unconstrained variables that have discriminants
with default values. 5.

T5. Check that when assigning to a constrained or an unconstrained object of a type declared p
with default discriminants, the assignment does not change the 'CONSTRAINED value of
the object assigned to.
Implementation Guideline: The assignments should use values whose CONSTRAINED attribute's value differs
from that of the object being assigned to.

T6. Check that the operations of assignment and aggregates are defined for nonlimited record
types (implicitly checked by other tests) and not defined for limited record types (see IG I.
7.4.4/T4 for assignment and IG 4.3/T1 for aggregates).

T7. Check that membership tests (see IG 4.5.2.g/T74 and IG 4.5.2.i/T91), component selection
(see IG 4.1.3/Ti), and qualification (see IG 4.7/T2) are defined for limited and nonlimited
record types.

TB. Check that the operation of type conversion for record types is defined only between
derived types having a common ancestor (see IG 4.6/T51).

T9. Check that the attribute 'BASE is defined for record types and subtypes, but not for record %.5
objects.

Check that the attribute 'ADDRESS is defined for objects of record types but not for the
record type itself (see IG 13.7.2/Ti). ,-

I ''.)

0 V

*% * %.%%

3.8 Access Types Version 1 (Dec 86)

Check that 'SIZE is defined for record objects and record types (see IG 13.7.2/T3).

Check that 'POSITION, 'FIRST BIT, ,nd 'LASTBIT are defined for components of record
objects (see IG 13.7.2/T4).

T10. Check that the operations of predefined equality and inequality are defined for objects of
record types (implicitly checked by other tests) unless the record type is limited (see IG
7.4.4/T4).

TI I. Check that the operations of assignment, comparison, membership tests, qualification,
type conversion, 'BASE, 'SIZE, and 'ADDRESS are defined for null records.

3.8 Access Types

Semantic Ramifications

si. Values having an access type are, in essence, pointers. Unlike in some languages, access
values can only designate (point to) objects having a specified type. Moreover, the objects
designated by access values are disjoint from objects declared by object declarations. Hence, if
A.all has type INTEGER and X is a local variable (not a formal parameter) having type
INTEGER, it can never be the case that an assignment to A.all changes the value of X, and vice
versa. In addition, the object pointed to can never be a component of another object, i.e., if A
and B have the same access type and A /- B, or if A and B have different access types and do
not share the same collection, an assignment to A.all can never change the value of B.all.
S2. Of course, UNCHECKEDCONVERSION and the ADDRESS attribute can be used to
obtain a pointer to a local variable or a component of a designated object, but an
implementation is not required to take such uses of UNCHECKEDCONVERSION into account.
It is up to the user of UNCHECKEDCONVERSION to conform to the normal rules of Ada, not
vice versa (RM 13.10.2/3). Hence, optimizations can depend on the above statements about
how assignments leave the value of certain other objects unchanged.
S3. From an implementation viewpoint, if an access type is declared with a constrained
subtype indication, e.g.:

subtype SM INT is INTEGER range 1..100;
type ACC SM INT is access SM INT;

all variables, constants, and components of type ACCSMINT either have the value null or
point to an integer object whose value is either undefined or in the range 1 through 100.
S4. Different access types may have different representations in two senses (RM 13.2/4. /7).
First, the size of the collection associated with the type may be specified explicitly, giving a
lower bound on the number of access objects that can be allocated. Second, the number of bits
occupied by an access value may be made sufficiently small that. in effect, an offset pointer
representation must be used. In such a case, the base address for the offset pointer could be

. the address of the beginning of the collection, or it might be some address in the middle of the
collection, depending on the indexing capabilities of the target machine.

s5. Unless a programmer instantiates the UNCHECKED DEALLOCATION procedure for an
access type (see RM 13.10,1), there is no operation available for explicitly freeing allocated
access objects. If unneeded storage is to be freed, a garbage collector must do it. However,
there is no requirement to provide a garbage collector, and under some circumstances an
implementation may choose to provide garbage collection only for certain access types, e.g.,
access types that are not shared among tasks.

S6. The null access value satisfies any subtype constraint for an access variable, e.g.:

3-114

.................. .e..............

Version 1 (Dec 86) 3.8 Access Types

JOHN ACC PERSON (M) := null;
MARY ACC PERSON (F) null;

The assignment JOHN := MARY is legal and does not raise CONSTRAINTERROR as long as

MARY has the value null.

S7. For access type declarations in which index or discrminant constraints are imposed as part ,
of the declaration, e.g.:

type ACC MALE is access PERSON (M);
type ACCBOARD is access MATRIX (8, 8);

no constraints can be applied subsequently when the type name is used, e.g.:

JOHN ACCMALE(M); -- illegal
CHESS : ACCBOARD(8, 8); -- illegal

ACCMALE already imposes a discriminant constraint so it is illegal to provide another •
constraint (RM 3.3.2/5). Similarly, no index constraint can be imposed on ACCBOARD. % %

s8. Although range and accuracy constraints can be used in the declaration of an access type,
only index and dischminant constraints are allowed after the name of an access type in a
subtype indication (RM 3.8/6):

type ACC I is access INTEGER range 0 100; -- ok S
X : ACC_I range 10..20; -- illegal

S9. No constraint can be given for a type whose designated type is an access type, e.g.:

type ACC STR is access STRING; ".
type ACCACC STR is access ACCSTR;
X ACC STR (1..3); -- legal
Y ACC ACC STR (1..3); -- illegal

The subtype indication in Y's declaration is illegal because the designated type must be an
unconstrained array type (RM 3.6.1/3); the designated type cannot be an access type. A similar
rule holds for discriminant constraints (RM 3.7.2/1).
So. An unconstrained array type must be used with an index constraint in an object or
component declaration (RM 3.6.2/6), but a constraint need not be given in an access type
declaration:

X : STRING; -- illegal
type ACC STR is access STRING; -- ok S
Y : ACC_STR; -- ok; no constraint required

When a designated object is created for Y, the allocator will provide the necessary index -
constraint (RM 3.6.1/8). Similar observations apply for types with discriminants.

Si 1. When an index constraint is given for an access type, the compatibility of the index values
must be checked using the normal definition of compatibility for an index constraint (RM 5
3.6.1/4). When a discriminant constraint is given for an access type, only the compatibility of
the discriminant values with the discriminant subtypes must be checked (AI-00007; see also IG
3.7.2/S), e.g.:

subtype SM is INTEGER range -10.-.10;
type R (D : SM) is

.*.~ ~.record

3-115
S'%°

3.8 Access Types Version 1 (Dec 86)

C STRING (D..3);
end record; •.

type ACCR is access R;
Xl ACC R (11); -- CONSTRAINTERROR
X2 : ACC-R (-1); -- optional CONSTRAINTERROR

CONSTRAINT ERROR is raised for Xl because 11 does not belong to the range -10..l0.
CONSTRAINTERROR is only raised for X2 if the discriminant value, -1, is checked for
compatibility with its use in the designated subtype. Since -1 ..3 is not a compatible index
constraint for STRING, CONSTRAINTERROR can be raised. However, AI-00007 says that
this subcomponent check need not be performed. (See IG 3.7.2/S for further discussion.)

S12. When an access subtype indication is used in an access type definition, some care is
required in interpreting uses of the resulting type. Consider the following examples, in which
ACCPERSON and ACCPERSON(M) are access subtype indications:

type PERSON (SEX : GENDER) is record ... end record;
type ACC PERSON is access PERSON;
subtype ACC MALE is ACC PERSON(M);
type ACC ACC PERSON is access ACC PERSON;
type ACCACCMALE is access ACCPERSON(M);

PNP ACC ACC PERSON;
MNP :ACCACCMALE;

Now suppose we execute:

PNP := new ACCPERSON (new PERSON(M)); ,'.

This allocates a pointer, PNP.all, that points to an object whose SEX component is M, i.e..
PNP.all.all.SEX = M. However, the assignments:

PNP := new ACC PERSON;
MNP :new ACC PERSON;

allocate pointers whose value is null, i.e., PNP.all null = MNP.all and hence the component
PNP.all.all.SEX does not exist. Since constraints are not associated with allocated access
values, but with allocated objects, the following sequence of assignments is legal:

PNP := new ACCPERSON;
PNP.all := new PERSON(F);
PNP.all new PERSON(M); p

The F and M constraint values are associated with PNP.all.all.SEX.

S13. But now consider:

MNP := new ACCPERSON; -- ok
MNP.all := new PERSON(F): -- CONSTRAINT ERROR
MNP := new ACC PERSON(new PERSON(F)); -- CONSTRAINT ERROR

The first assignment raises no exception since the object designated by new ACCPERSON
has the value null, and this value satisfies any constraint. The allocator in the second
assignment statement raises CONSTRAINTERROR since MNP's designated subtype is ACC-
_PERSON(M), and the access value created by new PERSON(F) does not belong to ACC-
_PERSON(M); it is not null and it does not designate a PERSON object whose discrminant has
the value M. - -

3-116 p
" 'S/

"'"°a.

Version 1 (Dec 86) 3.8 Access Types

In the third assignment, the outermost allocator must return a value of type ACCACCMALE
% %, (since this value is being assigned to MNP), and hence the inner allocator must return a value

J, belonging to ACC PERSON(M). Since the inner allocator does not do so, CONSTRAINT-
-ERROR is raised.

Approved Interpretations

S14. When a discriminant constraint is given for an access type, an implementation need only
check that the discriminant values are compatible with the discriminant subtypes of the
designated type (AI-00007).

sis. A non-null access value of type T belongs to every subtype of T if the designated type is
neither an array type nor a type with discriminants (AI-00324).

Changes from July 1982

s s. There are no significant changes.

Changes from July 1980

S17. There are no significant changes.

Legality Rules

LI. The only forms of constraint allowed after the name of an access type in a subtype
indication are index constraints and discriminant constraints (RM 3.8/6).

L2. If an index constraint is given in a subtype indication and the type mark denotes an access
type,

-,. * the access type must not already be constrained (RM 3.3.2/5),

Ni the designated type must be an unconstrained array type (RM 3.6.1/3),

* one discrete range must be provided for every index of the array type;
and

* the base type of each discrete range must be the same as the base
type of the corresponding array index.

L3. If a discriminant constraint is given in a subtype indication and the type mark denotes an
access type,

e the access type must not already be constrained (RM 3.3.2/5),
e the designated type must be an unconstrained type with discriminants (RM

3.7.211) (including an unconstrained incomplete type if the subtype indication
occurs in an access type definition; AM 3.8.1/4),

1%
" if the constraint contains both positional and named associations, the

positional associations must be given first (RM 3.7.2/3);

" a discriminant name in the constraint must be the name of a
discrminant of the type being constrained (RM 3.7.2/4);

" a discriminant association with more than one discriminant name is only
allowed for discriminants having the same type (RM 3.7.2/4);

" the base type of a discriminant specified in the discriminant constraint
and the corresponding discriminant in the designated type must be the

.-, same (RM 3.7.2/4); and

0

3• 7• 4 I" =. = = 4 4 o.. . "4"o".,a"a"."4"a"-" " " 4 4 ° . o = . ' " " " " * P ',,- '"3.. ; - - "17.

U 3.8 Access Types Version 1 (Dec 86)

• the constraint must specify exactly one value for each discnminant (RM
3.7.2/4).

Exception Conditions

El. If an index constraint is given for an access type in a subtype indication, CONSTRAINT-
_ERROR is raised if either bound of a non-null discrete range of the constraint does not
belong to the corresponding index subtype of the designated type (RM 3.6.1/4, RM 3.5/4,
and RM 3.3.2/9).

E2. If a disciminant constraint is given for an access type in a subtype indication,
CONSTRAINTERROR is raised if the value specified for any discriminant does not lie in
the permitted range of values for the discriminant (RM 3.3.2/9 and RM 3.7.2/5).

E3. If the type mark in a subtype indication denotes an access type and the subtype indication
contains a discriminant constraint, CONSTRAINTERROR may, but need not be raised
when the subtype indication is elaborated, if a specified discriminant value is incompatible
with its use in a component subtype definition of the designated type (AI-00007 and RM
3.7.2/5). In addition, CONSTRAINTERROR may, but need not be raised if some other
discriminant value in such a component subtype definition is not compatible with the
component type (RM 3.7.2/5 and AI-00007).

Test Objectives and Design Guidelines

Ti. Check that record, array, and access type definitions are forbidden in access type
definitions (e.g., forms like access record ... end record are forbidden).

T2. Check that an unconstrained array type or a record type without default discrminants can
be used in an access type definition without an index or discriminant constraint. Check
that (nonstatic) index or discriminant constraints can subsequently be imposed when the
type is used in an object declaration, array component declaration, record component
declaration, access type declaration, parameter declaration, allocator (see IG 4.8/T5), and
derived type definition.
Implementation Guideline: Include a check when the unconstrained type is a generic formal type and when the
access type is a generic formal access type.

T3. Check that if an index or discriminant constraint is provided in an access type definition (or
if the subtype indication is already constrained), the access type name cannot
subsequently be used with an index or discriminant constraint in an object declaration,
derived type declaration, array component declaration, record component declaration,
access type declaration, parameter declaration, allocator (see IG 4.8/T2), and derived type
definition.
Implementation Guideline: Include a check for generic formal access types.

T4. Check that an index or discriminant constraint fn,, an access type can reference a
discriminant value in a record component declaratior, e.g.:

type ACCSTRING is access STRING;
type TEXT(L : INTEGER) is

record
VALUE : ACCSTRING(I. .L);

end record;

and that slicing and indexing can be applied to such a component.
Implementation Guideline: Include a case where the access type is declared as a generic formal type.

T5. Check that all access objects. including array and record components, are initialized by
default with the value null.

3-118

a . ;I j- , *4j-._.'% _ ._..:... .*
..'*-'." "

Version 1 (Dec 86) 3.8.1 Incomplete Type Declarations

Implementation Guideline: Include a case where the object is declared with a formal private type and the actual
type in an instantiation is an access type.

T6. Check that the object accessed by a constant access object can be modified.
T8. Check that an access type used in a subtype indication cannot be constrained with a range

constraint or an accuracy constraint.

Check that a constrained access subtype (i.e., a subtype with an index or discrminant
constraint specified) cannot be further constrained in a subtype indication, even if the same
constraint values are used.
Implementation Guideline: This objective differs from T3 because it refers to access subtype names introduced
by a subtype declaration, whereas T3 refers to constraints specified in an access type definition.
Implementation Guideline: Try the above checks for access types whose object is an access tys at, well as
for access types whose object is a nonaccess type.

T9. Check that an index or discriminant constraint cannot be imposed cn an access type
whose designated type is an access type.
Implementation Guideline: The designated type should itself designate a suitable unconstrained array type or
type with discriminants.
Implementation Guideline: Include checks for generic formal access types.

T10. Check that an index constraint must have the correct number of dimensions and index
types when imposed on an access type (see IG 3.6.1 .b/T71).

1' 1. Check that a discriminant constraint must be correctly formed when imposed on an access
type (see IG 3.7.2/Ti).

'S-

T12. Check that CONSTRAINTERROR is raised when an incompatible index constraint is
imposed on an access type (see IG 3.6.1.b/T72).

"' "9.5- ,,T13. Check that CONSTRAINTERROR is raised when a discriminant constraint is imposed on ,

an access type and a discriminant value does not belong to the discnminant's subtype (see
IG 3.7.2/T1 1).

3.8.1 Incomplete Type Declarations

Semantic Ramifications

S1. The type mark declared in an incomplete type declaration must be completely declared
later in either a full type declaration or a task type declaration. If the incomplete declaration
appears in the visible part of a package specification, the full declaration must appear later in
the same visible part (i.e., not in the private part) and not in a visible part of an enclosed

package, e.g.;

package P is
type T:
type U:
package Q is

*" type T is access INTEGER; -- does not complete P.T
end Q;

private
type U is access INTEGER; -- illagal; not in visible part

end P:

S2. If the incomplete declaration appears in a private part, the complete declaration must
appear later in the same private part or in the package body. If the complete declaration does
not appear in the private part, then a package body is required.

OP Or - P. L& %.p p .55, %, - : .o".","," . . ._._ ' ~ ;',. ' . N%''')% '' ,'.. ''' .';'; ''.-.,, .% .2',

3.8.1 Incomplete Type Declarations Version 1 (Dec 86)

S3. The full declaration of an incomplete type cannot be a private type declaration:

package P is
type T;

* type T is private; -- illegal
end P;

* The private type declaration does not complete T's declaration because RM 3.8.1/3 requires
either a task type declaration or a full type declaration, and a "full type declaration" is a syntactic
form that excludes private type declarations (RM 3.3.1/2). Similarly, an incomplete type
declaration is not allowed as the full declaration of a private type.

S4. The rules applicable to the full declaration of an incomplete type are not the same as those
for the full declaration of a private type. In particular, if the incomplete type does not nave
discriminants, the full type can be an unconstrained array type or a derived type tha. has
discriminants:

package P isp
type T:
type U;
type VSTR (SIZE : POSITIVE) is

record
DATA STRING (1..SIZE);

end record;

type T is new STRING; -- legal
type U is new VSTR: -- legal

end P;

S5. An incomplete type cannot be used in its own full declaration:

type R: -- (1)
type AR is access R;
type R is -- (2)

record
A : AR new R; -- illegal (3)

end record;

The use of R at (3) is illegal because R's full declaration is not yet visible (RM 8.3/5) and the
incomplete type declaration at (1) is hidden by the full type declaration at (2) (AI-00386).
Similarly, the following full declaration is illegal:

type S:
type S is access S: -- illegal

The third occurrence of S is illegal because the second occurrence is not yet visible and the first
occurrence is hidden by the second occurrence.
S6. It is possible to define a sequence of access types that chase themselves:

type T;
type U;
type T is access U:
type U is access T;

This sequence of declarations is legal. The full declaration of T refers to U's incomplete
declaration, and the full declaration of U refers to T's full declaration.

3o1.

III 3-120

Version 1 (Dec 86) 3.8.1 Incomplete Type Declarations

S7. If an incomplete type declaration contains a discriminant specification, the full declaration
must declare a record type, since the full declaration must also contain a discriminant
specification (RM 3.8.1/4), and a full declaration with a discriminant specification must declare a
record type (RM 3.7.1/3).

s. Additional operations for an access type may need to be declared after the full declaration
of an incomplete type (see RM 7.4.2/8). For example: .

package P is
type T;
type ACC T is access T;
A : ACCT;
type T is new STRING; indexing etc. declare- '--or ACC T

end P;

J : INTEGER P.A'FIRST; -- legal

When T's full declaration is given, it is known that ACCT's designated type is an array type. so
the appropriate operations for such an access type must be declared. These are declared at -
the earliest place within the immediate scope of the access type and after the full declaration for
T (RM 7.4.2/8 and RM 7.4.:,7). In this case, the earliest place is immediately after T's full
declaration. The place where these declarations occur affects the legality of operations appled
to ACCT or the variable A. !n particular, A'FIRST is illegal prior to T's full declaration and legal
a.%(rwards. The declaration of the attribute FIRST for ACC T in P's visible part means this
operation is visible outside P for P.A.

s9. More complex cases oi deferred declaration of operations can occur. See IG 7.4.2/S for -

further discussion.

Sio. When a discriminant constraint is given for an incomplete type (or for an incompletely
declared private type, or an access type that designates an incompletely declared type), RM
3.7.2/5 requires that the discriminant values be checked for compatibility with their use within
the complete type declaration. For an incomplete type declared in the private part of a package,
the complete declaration could te given in a separately compiled package body, so it is not
possible to perform the required compatibility check when the discriminant constraint is
elaborated. When the complete declaration occurs later in the same compilation unit, it is
possible to deter the check until the complete declaration is elaborated. The full declaration of
an incomplete or access type may still contain references to an incompletely declared type,
thereby requiring further deferral of the required compatibility check:

package P is
subtype INT7 is INTEGER range l..7; 0
subtype INT6 is INTEGER range 1..6;

type TINT7 (D7 : INT7);
type TINT6 (D6 : INT6);

type ACC T INT7 is access T INT7; •
type ACCTINT6 is access TINT6;

subtype ACC T CONS is ACCTINT7 (6);

se r

'p
3.121 •*

,. ,,.p

lip.. rV NX 'Vrr - r V "'X-rV . I 'V 'V 'V F - "

3.8.1 Incomplete Type Declarations Version 1 (Dec 86)

type T INT7 (D7 INT7) is -- full declaration
record

C76 : ACC . INT6(D7); -- but not complete
end record;

type TINT6 (D6 : INT6) is
record

CP : STRING (FUNC .. DW)
end record;

end P;

The full declaration of TINT6 completes the declaration of TINT7 and allows the compatibiity
check required for ACC T CONS to be completed.

Approved Interpretations

S11. A discriminant constraint cannot be given for an incomplete type declared in the private
part of a package if the full declaration of the type is given in the package body (AI-00007).

Changes from July 1982

S 2. The full declaration of an incomplete type can be a task type.

S13. The full declaration must appear immediately within the same visible part or declarative
part as the incomplete type declaration. IF

S14. If the incomplete declaration is given in a private part, the full declaration can appear in the
body.

Changes from July 1980

Sis. Only a discriminant constraint can be given for an incomplete type.

S16. The full declaration of an incomplete type can declare an unconstrained array type or a
derived type with discriminants.

Legality Rules

1L1. If an incomplete type declaration appears in the visible part of a package, the
corresponding complete declaration must appear later in the same visible part, but not
within any nested package specifications (RM 3.8.1/3).

L2 If an incomplete type declaration appears in the declarative part of a block, subprogram
body, package body, or task body, the corresponding complete declaration must appear
later in the same declarative part, but not within any nested declarative parts or package
specifications (RM 3.8.1/3).

L3. If an incomplete type declaration appears in a private part of a package, the corresponding
complete declaration must appear either later in the same private part (but not within any
nested package specifications) or immediately within the declarative part of the
corresponding package body (RM 3.8.1/3).

L4. If an incomplete type declaration contains a discriminant part, the corresponding full
declaration must have a conforming discriminant part (see IG 6.3.1/L) and must be a
record type definition (RM 3.8.1/4 and RM 3.7.1/3).

L5. If an incomplete type declaration does not contain a discriminant part, the full type
declaration must not contain a discriminant part (RM 3.8.1/4). .

L6. The declaration that completes the declaration of an incomplete type must be either a full

3-122

Version 1 (Dec 86) 3.8.1 Incomplete Type Declarations

type declaration or a task type declaration (RM 3.8.1/3). (It cannot be a private type
declaration.)

L7. Prior to the end of the fill declaration for an incomplete type, the only allowed use of a
name that denotes the incomplete type is as the type mark in the subtype indication of an
access type definition; the only form of constraint allowed in this subtype indication is a
discriminant constraint (RM 3.8.1/4), and a discriminant constraint is only allowed if 1) the
incomplete type was declared with a discriminant part (RM 3.7.2/1), and 2) the incomplete
type declaration and its corresponding full declaration occur in the same declarative part,
visible part, or private part (AI-00007).

L8. If a discriminant constraint is given in a subtype indication and the type mark is an
incomplete type (this can only occur in an access type definition; see L7):

* the incomplete type must have been declared with a discrim;nant specification
(RM 3.7.2/1);

* if the constraint contains both positional and named associations, the
positional associations must be given first (RM 3.7.2/3);

* a discriminant nacne in the constraint must be the name of a discriminant of
the incomplete type (RM 3.7.2/4);

* a discriminant association with more than one discriminant name is only
allowed for discriminants having the same type (RM 3.7.2/4);

* the base type of a discriminant specified in the discriminant constraint and the
corresponding discriminant of the incomplete type must be the same (RM
3.7.2/4); and

* the constraint must specify exactly one value for each discriminant (RM
3.7.2/4).

Exception Conditions

El. If a discriminant constraint is given for an incomplete type, CONSTRAINTERROR israised if the value specified for any discriminant does not lie in the permitted range of
values for the discriminant (RM 3.3.2/9 and RM 3.7.2/5).

E2. If the full declaration for an incomplete type with discriminants, T, contains a component
subtype definition that is dependent on a discriminant (i.e., if the component subtype
definition contains an index or a discriminant constraint that uses a discriminant of the
enclosing type) and a subtype indi'.ation giving a discriminant constraint for T is elaborated
before T's complete declaration, CONSTRAINTERROR is raised no later than the end of
T's complete declaration if a specified discriminant value is not compatible with its use in
specifying the component's subtype (RM 3.7.2/5 and AI-00007), i.e., CONSTRAINT-
_ERROR is raised if:

o the discriminant is used in a discrete range of an index constraint, the range is

not null, and at least one bound does not belong to the index subtype; or

e the discriminant is used in a discriminant constraint and the value of any
discriminant in the constraint does not lie in the range of values permitted for
the discriminant.

In addition, CONSTRAINTERROR is raised no later than the end of T's complete
declaration if some other discriminant value in such a component subtype definition is not

,c .compatible with the component type (RM 3.7.2/5 and AI-00007).

% %J

3.8.1 Incomplete Type Declarations Version 1 (Dec 86)

Test Objectives and Design Guidelines ,

T1. Check that if an incomplete type der-pration appears in the visible part of a package, the
full declaration must appear in the =, ie part and in particular, 1) cannot be omitted; 2)
cannot be given in the private part; z,, cannot appear in the package body's declarative
part; 4) cannot appear in a package specification nested in the visible or private part
containing the incomplete declaration.

Check that if an incomplete type declaration appears in the private part of a package, the
full declaration need not appear immediately within the same part, and if it does not appear
in the private part, a package body containing the complete declaration is required (see IG
7.3/TM).
Implementation Guideline: Include tests for generic package declarations and when the body is separately
compiled or is gwen as a subunit. See also T8.

Check that if an incomplete type declaration appears in the declarative part of a block,
subprogram body, package body, or task body, the corresponding complete declaration
must appear in the same declarative part, excluding any nested declarative parts or
package specifications.

Check that the full declaration of an incomplete type cannot be a private type declaration.
Implementation Guideline: Declare an incomplete type in the visible part of a package.

T2. Check that an incomplete type declaration can be given for any type, i.e., that the
corresponding full declaration can declare an integer type, a real type, an enumeration
type, a constrained or unconstrained array type, a record type without discriminants (types
with discriminants are checked below), an access type, a task, or a derived type (including
a derived type that is an unconstrained array type or an unconstrained type with ..

discriminants).

T3. Check that if an incomplete type is declared with discriminants, the complete declaration
must have a conforming discriminant part and cannot be a derived type with discriminants.
Implementaton Guideline: Include separately compiled package bodies and subunits. 41

T5. Check that prior to its complete declaration, an incompletely declared type:

* cannot be used in an object declaration, subtype declaration, component
declaration, or parameter declaration, or as the component type in an array
declaration;

* cannot be used with a range constraint, accuracy constraint, or index
constraint in an access type definition, even if the full declaration would permit
such constraints;

* cannot be used with a discriminant constraint if none was present in the
incomplete type declaration.

cannot be used as an actual parameter in a generic instantiation.

Check that an access type declared with an incomplete type cannot be used with an index
constraint or discriminant constraint until after the full declaration has been elaborated.

T6. Check that additional operations are declared for an access type when the incomplete type
is fully declared (see IG 7.4.2/T5).

17. For an incomplete type with discriminants declared in the visible part of a package or in a
declarative part, check that CONSTRAINT ERROR is raised if a discrminant constraint is
specified for the type and one of the discriminant values does not belong to the
corresponding discnminant's subtype.

3-124

Version 1 (Dec 86) 3.8.2 Operations of Access Types

Implementation Guideline: Repeat the above check for an incomplete type declared in a private part when the
full declaration is also given in the private part.

Similarly, if a discriminant constraint is applied to an access type that designates an
incomplete type declared in the visible or private part of a package or in a declarative part,
check that CONSTRAINTERROR is raised if one of the discriminant values does not
belong to the corresponding discriminant's subtype.
Implementation Guideline: Include a case where the full declaration is in the package body.

When an incomplete type with discriminants is declared in a private part and its full
declaration is not also given in the private part, check that a discriminant constraint cannot
be applied to the incomplete type.

Check whether a deferred check is performed when a discriminant constraint is given for
an access type that designates an incomplete type (see IG 3.7.2/T1 7). ~,. p,,"

Check that a deferred check is performed no later than the end of an incomplete type's
complete declaration if a discrminant constraint is applied to an incomplete type before its
complete declaration (see IG 3.7.2/T1 4, /T16).

T8. Check that when an incomplete type declaration is given in the private part of a package,
the full type declaration can appear in the package body.
Implementation Guideline: Check that the body can be separately compiled or a subunit. %

I

;..8.2 Operations of Access Types
Semantic Ramifications

Si. The operations declared for an access type are:

basic operations (RM 3.8.2/1)
assignment
allocator
membership tests
qualification
conversion
the literal null
selectors for discriminants of the designated type, if any
selectors for components of the designated type if it is a

record type
formation of indexed components, if the designated type is an

array type t
formation of slices, if the designated type is a one-dimensional

array type ".
selection of entries and entry families if the designated type

is a task type
selected component with selector all

operators (RH 3.8.2/5)
equality and inequality

attributes
ADDRESS (RM 13.7.2/3)
BASE (RM 3.3.3/9)
SIZE (RM 13.7.2/4)
STORAGESIZE (RM 13.7.2/12) 0

3-125-

.1..°.'

3-,,2"

., , ., ,-,..-- ... -- -..-.-... -. .. - :: ..:.: '.

3.8.2 Operations of Access Types Version 1 (Dec 86)

if the designated type is an array type:
FIRST (RM 3.8 2/2)
LAST (RN 3.8 r. 2)
RANGE (RK 3.8.2/2)
LENGTH (RM 3.8.2/2)

if the designated type is a task type:
TERMINATED (RN 3.8.2/3)
CALLABLE (RM 3.8.2/3)

S2. If a designated type is an incomplete type, and the full declaration declares either a record
type, a type with discriminants (when the incomplete type had none), or a task type, additional
operations are declared for the access type at the earliest place within the immediate scope of
the access type (RM 7.4.2/8). These additional operations are component selection operations
for the record components or discriminants, selection operations for the task entries or entry
families, indexing and slicing operations, and appropriate attributes. See IG 3.8.1/S and IG
7.4.2/S for further discussion.

S3. Although the array attributes FIRST, LAST, LENGTH, and RANGE are declared when the
designated type is an array type, the prefix of these attributes is not allowed to be a type mark;
the prefix must have an access type (RM 3.8.2/2).

Changes from July 1982

S4. Operations for selecting entry families are mentioned in the list of operations for a
designated task type.

s5. FIRST, LAST, LENGTH, and RANGE are not allowed for an access type that designates
an array type. I'.,.?

S6. The attributes CALLABLE and TERMINATED are defined for values of an access type that
designates a task type.

S7. The SIZE attribute is defined for an access type.

Changes from July 1980

s8. The prefix of FIRST, LAST, LENGTH, and RANGE can be a value of an access type if the
designated type is an array type.

Legality Rules

L1. If the prefix of FIRST, LAST, LENGTH, RANGE, FIRST(N), LAST(N). LENGTH(N), and
RANGE(N) denotes an object or value having an access type, the designated type must be
an array type with N or fewer dimensions and N must be a static universalinteger
expression with a value greater than zero. (RM 3.8.2/2 and RM 3.6.2/2).

L2. If the prefix of TERMINATED or CALLABLE denotes an object or value having an access
type, the designated type must be a task type (RM 3.8.2/3).

L3. If the prefix of an indexed component denotes an object or value having an access type,
the designated type must be an array type with the correct number of dimensions and
index types (RM 4.1.1/3).

L4. If the prefix of a slice denotes an object or value having an access type, the designated
type must be a one-dimensional array type, and the index type of the slice must be the
same as the index type of the array (RM 4.1.2/3).

L5. If the prefix of a selected component denotes an object or value having an arcess type.
then the designated type must be either a record type or a type with discnmirants and the

3-126

.R-,1, * .b .;', ,¢KWU1 W -An, 1,77,1- W W,S P ,, 1% S V . , "Z

Version 1 (Dec 86) 3.9 Declarative Parts

selector must be the name of a component or discriminant (respectively), or the designated
type must be a task type, and the selector must be the name of an entry or entry family

fte
X N (RM 4.1.3/3-10).

L6. If the prefix of an indexed component, selected component, slice, or attribute has an
access type, then the prefix must not be a name that denotes a formal parameter of mode M
out or a subcomponent thereof (RM 4.1/4).

Exception Conditions

El. CONSTRAINTERROR is raised if the prefix of the attribute FIRST, LAST, LENGTH, or
RANGE has the access value, null (RM 4.1/10).

Test Objectives and Design Guidelines

T1. Check that FIRST, LAST, LENGTH, RANGE, FIRST(N), LAST(N), LENGTH(N), and
RANGE(N) are declared, and return the correct values, for c -Icts and the result of
function calls having an access type whose designated type is an array type (see IG
3.6.2/T4).

Implementation Guideline: Include checks of generic formal array parameters and array types whose indexes
are given by formal scalar types. -

T2. Check that TERMINATED and CALLABLE are declared and return the correct values for
objects and the result of function calls having an access type whose designated type is a
task type.

T3. Check that the prefix of FIRST, LAST, LENGTH, RANGE, FIRST(N), LAST(N),
LENGTH(N), and RANGE(N) cannot be an access type that designates a constrained
array type.

T4. Cneck that the prefix of TERMINATED and CALLABLE cannot be an access type that
designates a task type.

3.9 Declarative Parts

Semantic Ramifications

St. Pragmas may precede or follow any declaration in a declarative part (RM 2.8/4-5). In
addition, a declarative part may consist solely of pragmas. Only certain pragmas are defined to
have an effect if they appear in a declarative part (and are otherwise used correctly). These
are: CONTROLLED (RM 4.8/11), INLINE (RM 6.3.212-3), INTERFACE (RM 13.9/2-3), LIST (RM
B/6), OPTIMIZE (RM 8/8), PACK (RM 13.1/11-12), PAGE (RM B/10), PRIORITY (in declarative
parts of library subprograms; RM 9.8/2), SHARED (RM 9.11/10), and SUPPRESS (RM 11.7/3).

S2. The following forms of declaration are not allowed after a body is declared in a declarative
part: an object declaration, a type declaration (but not the declaration of a task type), an
exception declaration, a renaming declaration, a number declaration, or a subtype declaration.
In addition, representation clauses are not allowed after the occurrence of a body. However,
subprogram declarations, single task declarations, task type declarations, use clauses, package
declarations, generic declarations, and generic instantiations are allowed both before and after
the occurrence of a body.

S3. Although certain forms of declaration are not allowed directly after a body declaration, it is
always possible to include such declarations in a package specification, e.g.:

• .0-. .

3-127
V %

. "5%

3.9 Declarative Parts Version 1 (Dec 86)
'a

function F return INTEGER is ... end F; . P

X : INTEGER := F; - illegal; occurs after a body is declared

package DUMMEY is
X : INTEGER :- F; -- legal; a package declaration is allowed

end DUM4Y;
use DUMMY;

The effect is almost the same as allowing an object declaration directly.

S4. The syntax allows an empty declarative part, e.g.:

declare
begin -- no declarations required

end;

An otherwise empty declarative part can, of course, contain pragmas.

sS5. A subprogram body may appear without a corresponding subprogram declaration (RM
6.3/3). If both appear, then RM 3.9/9 requires that the declaration appear first. If an
INTERFACE pragma is specified for the subprogram, a body is not allowed (RM 13.9/3).

S6. An attempt to activate a task before elaboration of its body occurs most straightforwardly
for access types that designate task types:

task type T;
type ACCT is access T; .,..-.

V : ACC T;
W : ACC T := new T; -- activation attempt raises PROGRAM ERROR
task body T is ... end T;

S7. A premature attempt to activate a task can also occur without using access types:

task type T;

package P is
R : T; -- legal object declaration

end P;

package body P is
end; -- activation attempt raises PROGRAMERROR (RM 9.3/5, RM 9.3/2)

task body T is ... end;

s8. The requirement to elaborate a task's body before the task is activated does not preclude
calling an entry before the task is active:

package P is end;

task T is
entry Z;

end T;

package body P is
task PT;

3-128

Version I (Dec 86) 3.9 Declarative Parts

task body PT is ,%
T.E; %

end PT;

begin 0
-- PT is activated when the package body is elaborated (RM 9.3/2) ,-.

-- so T can be called, even though it is not yet activated; no .j
-- exception is raised even though T's body has not been
- - elaborated.
null;

end P;

task body T is ... end;

s9. If a set of tasks is to be activated, the elaboration checks must be performed for all task
bodies before any tasks are activated (AI-00149). For example, suppose activation of three
tasks is required and each task has a different body. Suppose the activation attempt for one S
task would raise PROGRAMERROR because the task's body has not yet been elaborated.
Suppose an attempt to activate another task would raise TASKINGERROR because an -

exception will occur while elaborating the task's declarative part (RM 9.3/3). Finally, assume
that an attempt to activate one of the tasks would succeed:

task type NORMALACTIVATION; •

task type RAISEPROGRAM ERROR;

task type RAISE TASKING ERROR; 1%

type REC is
record

A NORMAL ACTIVATION;
B RAISE PROGRAM ERROR;
C RAISE_-TASKINGERROR;

end record;

task body NORMALACTIVATION is
begin

null;
end NORMALACTIVATION;

task body RAISE TASKING ERROR is 0
X : INTEGER := 1/0;

begin

end RAISETASKING ERROR;

package ACTIVATETASKS is
X : REC;

end ACTIVATETASKS; Ile

package body ACTIVATE TASKS is 3
end ACTIVATETASKS; -- tasks in X are to be activated here

task body RAISEPROGRAM ERROR is ... end;

3-129

*"...-o ~

3.9 Declarative Parts Version 1 (Dec 86)

The RM allows the components of ACTIVATETASKS.X to be activated in parallel (RM 9.3/1), .:.
but before any activation is started, an elaboration check must be performed (Al-00 149). Hence, "-""
if PROGRAMERROR is raised, no tasks , ve been activated.

Sio. Elaboration occurs at run-time (RM 3.1/8). This means that calls to subprograms can
textually appear before the subprogram body without causing PROGRAMERROR to be raised:

function F return INTEGER;

procedure PC is
X : INTEGER F; -- no PROGRAM_ERROR when PC is called

begin

end PC;

function F return INTEGER is ... end;

The call to F does not raise PROGRAM ERROR because PC is not invoked until after F's body
has been elaborated.

si 1. The possibility of calling a subprogram before its body is elaborated cannot always be
detected at compile time. For example, %

package P is ... end;

function F return INTEGER;
°.

procedure PROC is
I : INTEGER;

begin
if ... then

I :=F;
end if;

end PROC;

package body P is
begin

PROC;
and P;

function F return INTEGER is ... end;

Whether or not F is called depends on the value of the condition in PROC's if statement.
Moreover, if PROC is called after F's body has been elaborated, the call to F must not raise
PROGRAMERROR, so the call to F in PROC cannot simply be replaced with raise
PROGRAMERROR. Similar cases can be constructed for calls that depend on the value of a
case expression or on the raising of an exception, etc.

S12. Since the invocation of a subprogram prior to elaboration of its body cannot always be
detected at compile time, an implementation must be prepared to perform a run-time check.
This check is easy to do if calls are made indirectly through a pointer. Initially the pointer should
access code that will raise PROGRAMERROR if the call is executed. When the body is
elaborated, the pointer should be updated to point to the actual code. (Similar arguments imply
that elaboration checks for tasks and generic units must, in general, be performed at run-time.)

Although the possibility of calling an unelaborated subprogram body cannot, in general, be ruled

3-130

N.*-*.

Version 1 (Dec 86) 3.9 Declarative Parts

out by compile-time program analysis, in many if not most actual programs a simple compile-
time analysis will suffice to show that a subprogram body will be elaborated before it can be V
called, and so make a run-time check unnecessary. Similar simple analyses will often suffice to
eliminate run-time elaboration checks for tasks and generic units. p

S13. If an INTERFACE pragma has been specified for a subprogram, no body can be provided Nw

(RM 13.9/3). The lack of a body does not mean that PROGRAMERROR must be raised for all
calls to such a subprogram; instead, an implementation is allowed (but not required) to perform
such a check (see AI-00180). The implementation must specify (in Appendix F) whether or not
such a check is made, and if made, when the body is considered to be elaborated.

S14. The instantiation of a generic unit with a generic subprogram parameter can cause
PROGRAMERROR to be raised:

function F return INTEGER;

generic
with function FF return INTEGER; p

package P is
Y : INTEGER; 'a.

end P;

package body P is
begin

Y FF;
end P;

package N is. package NEWP is new P(F); -- PROGRAMERROR
end N ;

function F return INTEGER is ... end;

PROGRAMERROR is raised because NEWP's body is elaborated when the instantiation is 6

elaborated, and the elaboration of NEWP's body requires that function F be called before F's
body has been elaborated.

S15. A package body is optional under certain circumstances (see IG 7.3/S). If a generic
package is declared and an optional body is provided, PROGRAM ERROR must be raised if
the body has not yet been elaborated and an instantiation is elaborated:

generic
package P is

X INTEGER;
end P;

package NEWP is new P; -- PROGRAM ERROR because of later body

package body P is
begin

X 1;i ".-,

end P;

If no body is provided for P, the instantiation does not raise PROGRAMERROR. Of course, it
is not always possible to detect immediately whether a body will be provided:

3"131
p

3.9 Declarative Parts Version 1 (Dec 86;

package Q is
generic
package P is

X INTEGER;
end P;

package N is new P; -- possible PROGRAMERROR
end P;

-- Q's body is optional and could be compiled separately
package body Q is

package body P is
begin

X := 1;
end P;

end Q;

In this example, the existence of a package body means that the instantiation in O's
specification will raise PROGRAMERROR, since P's body has not yet been elaborated. If no
body is provided for P (or Q1), then the instantiation must not raise PROGRAMERROR. Of
course, if P's specification required a body, it would be easier to see at the point of the
instantiation that P's body cannot yet have been elaborated.

si6. When a task object is declared in a package specification, an implicit body is provided for a
package (RM 9.3/5), even when the package is created as a result of a generic instantiation.
The elaboration of the implicit body requires that the task object be activated; this attempt to
activate the task can raise PROGRAMERROR: X

task type TT:

generic
type LP is limited private;

package GP is
X : LP;

end GP; -- no body is required

package P is new GP (TT); -- PROGRAMERROR raised

task body TT is ... end TT;

The attempt to activate P.X when GP is instantiated causes PROGRAMERROR to be raised.

S17. The order of elaboration of bodies of library units is not fully defined. Such bodies must be
elaborated after their library unit declarations are elaborated and after any units named in their
context clauses. The bodies must be elaborated before execution of the main program begins
(RM 10.5/1-2). These rules do not ensure that library unit bodies are elaborated before they are
needed by the elaboration of some other library unit. For example:

with SEQUENTIAL 10;
package NEW_10 is new SEQUENTIAL_10 (INTEGER); -- PROGRAMERROR?

Even though SEQUENTIAL_10 is a predefined library package, its body need not be considered
elaborated before the NEW_10 instantiation is elaborated. If the body has not been elaborated,
the instantiation will raise PROGRAM ERROR. (The pragma ELABORATE should be used in .
such cases to ensure that bodies have been elaborated before they are needed.)

3-132

a - , ,-,,, l , ' , ." , "-,"": '"" ': "? . ' "" "' " ' ": ""-, -

Version 1 (Dec 86) 3.9 Declarative Parts

S18. Elaboration order checks are not performed just when declarative parts are elaborated; "
they are also performed when elaborating a package specification:

package P is
function F return BOOLEAN; S
X : BOOLEAN := F; -- PROGRAM ERROR must be raised

end P:

S19. Declarations can also appear in task specifications but none of the decarative forms
allowed in task specifications (entry declarations, pragmas, and address clauses) present the "N ,1

possibility of raising PROGRAMERROR when elaborated.

S20. Specific semantic ramifications, restrictions, and exceptions pertaining to -aiticular
constituents of a declarative part are discussed in connection with declarations 'Chapter 3),
representation clauses (Chapter 13), visibility (Chapter 8), subprograms (Chaower 6). packages
(Chapter 7), tasks (Chapter 9), exceptions (Chapter 11), and pragmis ' con 2.8).

Changes from July 1982 0

S21. For generic units, an elaboration :hec' is only performed if the generic unit has a body.

Changes from July 1980

322. Representation clauses may appear immediately after any basic declaration; they need not , 4
7'rc'.ed together. •

S23. A use clause is allowed after a package body, and in particular, after a generic
instantiation.

S24. A generic unit can be declared or instantiated after a body has been declared.

S25. A subprogram declaration can be given after a body.

S26. An exception is raised (PROGRAMERROR) if an attempt is made to access a body
before it has been elaborated.

Legality Rules

LI. If a body is provided for a package declared in a declarative part, the body must occur after
the package specification (RM 3.9/9).

L2. If a declaration is given for a subprogram in a declarative part and no INTERFACE pragma
is given for the subprogram, the corresponding body must appear in the same declarative
part and cannot precede the declaration (RM 3.9/9).

L3. The body of a task or generic unit cannot precede its declaration in a declarative part (RM
3.9/9).

L4. If an INTERFACE pragma is given for a subprogram declared by a subprogram
declaration, then no body is allowed for that subprogram (RM 13.9/3). --.'

L5. Two explicit declarations must not be homographs if the declarations occur immediately
within the same declarative part (RM 8.3/17). 5

L6. An explicit declaration that occurs immediately within the declarative part of a generic or a
nongeneric subprogram body must not be a homograph of a declaration of a formal
parameter of the subprogram or the generic unit (RM 8.3/17 and RM 8.1/1-7).

L7. An explicit declaration that occurs immediately within the declarative part of a generic or a
nongeneric package body must not be a homograph of a declaration that occurs
immediately within the corresponding package specification or the generic formal part (RM
8.3/17 and RM 8.1/1-7).

01 "3-

I'.

3.9 Declarative Parts Version 1 (Dec 86)

L8. An explicit declaration that occurs immediately within the declarative part of a task body
must not be a homograph of an entry declaration that occurs in the corresponding task
specification (RM 8.3/17 and RM 8.1 -7).

Exception Conditions

El. PROGRAMERROR is raised if a subprogram's body has not been elaborated when the
" subprogram is called (RM 3.9/5).

E2. PROGRAMERROR is raised if a task's body has not been elaborated when an attempt is
made to activate the task (RM 3.9/5).

E3. PROGRAM ERROR is raised if a generic unit's body has not been elaborated when the
unit's instantiation is elaborated (RM 3.9/5).

Test Objectives and Design Guidelines

T1. Check that if a package declaration occurs in a declarative part, it must precede any
declaration of a corresponding package body (see IG 7.3/T6).

Check that if a subprogram declaration occurs in a declarative part, it must precede the
corresponding body declaration (see IG 6.3/T10 and IG 6.1/T3).
Check that if a single task declaration or task type declaration occurs in a declarative part,
it must precede the corresponding body declaration (see IG 9.1/T3).

Check that the body of a generic unit must not precede its declaration (see IG 12.2/T4).
4.

T2. Check that two explicit declarations in the same declarative part cannot be homographs
(see IG 8.3/T8).
Check that an explicit declaration that occurs within the declarative part of a generic or a
nongeneric subprogram body cannot be a homograph of the declaration of a formal
parameter of the subprogram or the generic unit (see IG 6.1/T4, IG 8.3/Ti1, IG 8.3/T4, and
!G 12.1/T9).

Check that an explicit declaration that occurs viithin the declarative part of a generic or a
nongeneric package body cannot be a homograph of a declaration that occurs in the
corresponding package specification or the generic formal part (see IG 8.3/T2 and IG
8.3/T4).

Check that an explicit declaration that occurs within the declarative part of a task body
cannot be a homograph of an entry declaration that occurs in the corresponding task
specification (see IG 8.3/T3 and IG 9.5/T94).

T3. Check that if an INTERFACE pragma is provided for a subprogram (and accepted by an
implementation), no subprogram body can be provided (see IG 13.9/Ti).

T4. Check that none of the following kinds of declaration are allowed after the declaration of a
subprogram body, package body, task body, or body stub: an object declaration, a type
declaration (but not a task type declaration), an exception declaration, a renaming
declaration, a number declaration, or a subtype declaration.
Implementation Guideline.: Since these are all syntax errors, only one error should occur in each test. All
combinations of declaration need not be checked.

Implementaion Guideline: Treat body stubs for subprograms, packages, and tasks separately.

Check that a representation clause is not allowed after the declaration of a body (see IG
13. 1/T6 and/T7). -.- .

*" T5, Check that a subprogram declaration, single task declaration, task type declaration, use

3-134

• " "#%" ".""." ". "o" "" "." .," ". "." "" "." ." %" ." ".""." ". ".," ,",'...•.."......"....-.-...-..-.......-.. -. ?:.

%/% -'- .' ,-"-% .. % ,.,'.% ", . ". % % ", 4 ". . % ,%%. % % - " . .' .,'% . -. - ' . , -.-. - - -]

W~~l IVM/1M1~ ~r~~ ~ ~'~ "J P. Mi Mi 1L Mi 'L. F N- XP .Ni~,, ~ .-...

Version I (Dec 86) 3.9 Declarative Parts

clause, package declaraiion, gerianc declaration, and generic instantiation are allowed
after the occurrence of a body.
Check that a representation clause can be given between two type declarations. 1

T6. Check that PROGRAM_-ERROR is raised if an attempt is made to call a subprogram
whose body has not yet been elaborated. Check at least the following cases:

"a function is called in the initialization expression of a scalar variable or a e
record component, and the scaar or record variable's declaration is
elaborated before tne subprogram body is elaboratled.
Implementation Gofdaline: UsG a variable declared in a declarative part and in a package
specification. Include a case orf a generic packag~e specification, and show that PROGRAM-

ERROR is raised when the package is instantiated or the record type is used as an actual
generic parameter, to declare a variable.

" the subprogram (function or procedure is called in a packao : l ,-
Implementation Guideline: Include premature Use Of a utrf-octir id equality operator for a
limited private type (except wnen "is declared by generic instantiation).

" the subprogram Is an acWut ~c .<mrCalled during elaboration of the
generic instantiatic.-

* the -uoprcigram is cal led during elaboration of an. optional package body.
Implementation Guic..&re. Include a case where ths body 'k separately compiled.

" a function is used in, a default expression for a subprogram or a formal generic
parameter; PROGRAMERROR is raised when an attempt is made to
evaluate the default expression.

* .-.. Impementation Guideline !n some tests, ensure that the elaboration check must be performed at run-timne by
constructinig a case such that the same sequen'ce of declarations and statements sometimes raises
PROGRAMERROR when executed and sometimes does not.

For subprogram library units. check whether PROGRAMERROR is raised if the
subprogram is called when another library unit is elaborated and pragma ELABORATE has
not been used (see IG 1 0,5/Tr5\.
Check that PROGRAM -_ERROR is not raised if a subprogram's body (or body stub) has
been elaborated before it is called: inl particular, check that.

" a subprogram can appear in a ncn-elaborated declarative part or package
specification before i' body' : no PROGRAMERROR is raised as long as the
subprogram is cal!eoi afte. :;:_- Lvxiy has been elaborated.

* for a subprogram fiorary uii~ used in anotner unit, no PROGRAMERROR is
raised if pragma ELABORATE names tne subprogram.

T7. Check that PROGRAMERROR is raised if an attempt is made to instantiate a generic unit
whose body has not yet beet) elaboratec. Check at ;east the following cases:
limpeomentaffon Guidelinie: Use all forms of generic urif package. procedure, and function). In the case of
packages, use a package specification that riquires a body unless the test objective specifies otherwise.

" a simple caso where the generic _ni bod'; occors later in the same declarative part.

* the generic unit is declar,'o ar'd rstantiatsd in a packags specification.

* a generic package has an optional body lirovided ster in the same declarative part. -

" a generic package has an .-otionai oody provided,- 3 separately compiled unit.

Implementation Guidebine: inl so~ne teats, eni're triat the 31atoration check must be performed at run-time by
constructing a case so th~at the same sequence :4 docle,-atcns and statements sometimes raises PROGRAM-
.ERROR when executed and somsr.ie does not.

% N

1,

3.9 Declarative Parts Version 1 (Dec 86)

Check whether PROGRAMERROR is raised when a generic library unit instantiation is ., ,
elaborated by another library unit and a pragma ELABORATE has not been used. '-"
Implementation Guideline: Include a check i ' g the predefined I/O library units.

Check that no PROGRAMERROR is raised by the elaboration of an instantiation if the
body of the generic unit has been elaborated.
Implementation Guideline: Use cases similar to those for T6.

T8. Check that PROGRAMERROR is raised when an attempt is made to activate a task
before its body has been elaborated. In particular, check that PROGRAMERROR is
raised:

" when a task "variable" is declared in a package specification and the package
body occurs before the task body.

* when an allocator is evaluated before the task body has been elaborated.

" when several tasks are to be activated, and only some have unelaborated
bodies.
Implementation Guideline: The task with an unelaborated body should be declared between
tasks that will activate normally and tasks that raise an exception when their declarative parts
are elaborated.

" when a generic unit is instantiated with a task that must be activated as part of
the generic unit's elaboration.

Implementation Guideline: In some tests, ensure that the elaboration check must be performed at run-time by
constructing a case so that the same sequence of declarations and statements sometimes raises PROGRAM-

ERROR when executed and sometimes does not.

Check that a task with an unelaborated body can be called before it has been activated
(see IG 9.5/T1 2).

Y

3-13

,J. .4

4..

.4

d -. i J ' ,',, ¢ ' - ' ",' '. """.."'%-W , ," , ,'. '.";," ,"-','"' "-' .":': ..''.,'-: S

Version 1 (Dec 86) 4.1 Names
P

Chapter 4

Names and Expressions
I

4.1 Names N

Semantic Ramifications

si. RM 3.1/1 lists the named entities defined by the language. Certain entities are declared
explicitly by some specific construct; others are declared implicitly at a place (in the text) other
than that where the corresponding identifier first appears (for example, a loop name is declared
in the declarative part of thp innermost enclosing block, subprogram, package, or task body (RM
5.1/3) instead of at the place where it appears).

named entity declaration I

number number declaration
object object declaration
discriminant record type definition
record component component declaration
loop parameter iteration clause
exception exception declaration
type type declaration
subtype subtype declaration A..
subprogram subprogram declaration
package package declaration
task unit task declaration p
generic unit generic declaration
single entry entry declaration
entry family entry declaration%
formal parameter subprogram or entry declaration
generic formal param. generic declaration
named block implicit
named loop implicit
labeled statement implicit
enumeration literal enumeration type definition
attribute cannot be declared

Also, subprograms and enumeration literals can be declared implicitly by derivation (RM 3.4/11, I
/6). -'

S2. The following kinds of entitles can be named by a simple name if and only if a suitable
renaming declaration is provided:

" objects (including discriminants) that are components of other objects;

" entries of a family, or entries when named outside the body of the
corresponding task; and

" functions denoted by attributes. .

S3. Because a character literal is a name (RM 4.1/2) considered to denote a function (RM
3.5.1/3), it can be renamed in a renaming declaration as a function. Also, it can be used as the

% -%default name in a generic formal function declaration:".. '; ..-U

4.'"4

Io ,=

4.1 Names Version 1 (Dec 86) iip
function TILDE return CHARACTER renames "~';

generic
with function TILDE return CHARACTER is '-';

s4. When the prefix of a selected component is the name of an enclosing function (whether or
not the function has parameters), the prefix is considered a name and not a function call (RM
4.1.3/19). That is, evaluation of the prefix does not invoke the function, because the prefix is not
considered a function call (see also IG 4.1.3/S for a fuller discussion):,.

type REC is
record

X : INTEGER := 5;
end record;

function F (P : INTEGER 4) return REC is
X INTEGER 3;
Y INTEGER F.X; -- unambiguous; prefix used as name
Z INTEGER F(2).X; -- legal; function call is allowed

F(2).X is legal since F(2) is clearly a function call, not a name of the enclosing unit.

S5. ADDRESS, SIZE, POSITION, FIRST_BIT, LASTBIT, and STORAGESIZE are
representation attributes (RM 13.7.2). The prefix for any representation attribute except
STORAGE SIZE (RM 13.7.2/2, /4,/6,/7, and /13) can be an object that has an access type. If
the value of such a prefix is null, CONSTRAINT ERROR is not raised (RM 4.1/10).

Changes from July 1982

S6. If a prefix has an access type, the prefix must not denote an out parameter or a
subcomponent of an out parameter.

Changes from July 1980 p.,

ST• The term "appropriate for a type" is introduced to clarify the rules regarding allowable
prefixes in names.

s8. A character literal is considered a name.

Legality Rules

L1. If a prefix has an access type, it must not denote an out parameter or a subcomponent of
an out parameter (RM 4.1/4).

Exception Conditions

El. CONSTRAINTERROR is raised if a prefix has a null access value, except when the
prefix is used for the attribute ADDRESS, SIZE, POSITION, FIRST-BIT, or LASTBIT (RM.
4.1/10).

Test Objectives and Design Guidelines

T1. Check that a prefix cannot denote an out parameter or a subcomponent of an out -"
parameter if the prefix has an access type (see IG 6.2/T6).

T2. Check that CONSTRAINTERROR is raised if the prefix of a name has a null access
value and the prefix is used in a name having the form of an indexed component, slice,
selected component, or attribute (other than a representation attribute) (see IG 4.1.1/T5, IG
4.1.2/T5. IG 41.3T4, and IG 4.1.4/T1).

4-2 P-I

,.":' ".",,",'. ",t,..'"." .,,:',,.', ".,. ,.". . . . " "," " "

- TaY-. .t = * , - - -, . _d ",- ".:',.. -| " . - ,." ,-, .",'*'.4,4 .*,S .-P-, ,..

Version I (Dec 86) 4.1.1 Indexed Components 0

T3. Check that a character literal (or other enumeration literal) can be used as the default
name in a formal generic function declaration (see IG 12.1.3/Ti) and as the name in a I."

a-'~ renaming declaration for a function (see IG 8.5/T19).

4.1.1 Indexed Components
Semantic Ramifications

si. An array aggregate or an allocator is not syntactically a name and, therefore, may not be
indexed. For example, the following are not allowed:

I (3, 5, 7, 8, 16) (K); -- illegal
I new A' (3, 5, 7, 8, 15) (K); -- illegal

However, a function that returns an array or an access value can be an acceptable prefix, e.g.,
"&" ((3, 5, 7), (8, 15)) (K).

S2. If the prefix of an indexed component is a call to an overloaded function, then overloading
resolution is based on the actual parameter types, on the number of indexes given in the name,
and on the types of the indexes (see IG 8.7.b/S). Consider the following example. .-

B : BOOLEAN F(1, 2, 3);

t-,pe of the result returned by F can be used in overloading resolution; an F that returns a
ree-dimensional boolean array (whose indexes have integer types) can be selected.

S3. If the prefix of an indexed component is a variable or a constant, the name itself is a
variable or a constant. (RM 3.2.1/2 says "a subcomponent of a constant is a constant." RM
3.2.1/3 says "an object that is not a constant is called a variable," and RM 3.2/7 says "an object
is ... a component ... of another object," so a component of an array variable is a variable.)
Similarly, a component of an array value is a value. (An array value is obtained by calling a
function (RM 6/2). Although a function call returns a value, an indexed function call can be a
variable (e.g., such an indexed component can be assigned to). This can happen when the call
yields an access value that designates an array. Indexing the call means indexing the object -
designated by the access value. Such an object is a variable. Thus, indexing the result of a
function call that designates an array yields a variable, not a value.)

S4. The evaluation of an indexed component evaluates the index expressions and the prefix in
an order not defined by the language. Since some order is chosen, this means that if any
evaluable construct in a prefix is evaluated, then all such constructs must be evaluated before .. *

evaluating an index expression. For example:

FUNC(F1, F2).A(F3) *P

Assuming that F1, F2, and F3 are functions with side effects and F3 is an index expression, -.-.
then the following evaluation orders are allowed or not, as noted:

F1, F2, F3 -- allowed
F2, F1, F3 -- allowed
F1, F3, P2 -- not allowed
F2, F3, F1 -- not allowed
F3, F1, F2 -- allowed
F3, F2, F1 -- allowed

Changes from July 1982 .

S5. There are no changes. .Z'

4-3 S

II. . . .- - .'- . - - . -.-.- - ' - " " -.

4.1.1 Indexed Components Version 1 (Dec 86)

Changes from July 1980
S6. The evaluation order of the index c 'nressions and of the prefix is explicitly stated to be

some order not defined by the language.

ST. If a prefix is a function call, CONSTRAINTERROR is raised if its value is null.

Legality Rules

LI. The prefix of an indexed component must have either an array type or an access type
whose designated type is an array type (RM 4.1.1/3 and RM 4.1/6-8), or the prefix must
denote an entry family (RM 4.1.1/3).

L2. For an indexed component whose prefix has an array type or an access type whose
designated type is an array type, there must be one expression for each index position of
the array type (RM 4.1.1/3).

L3. For a prefix that denotes an entry family, there must be exactly one index expression (RM
4.1.1/3).

, L4. Each expression in an indexed component must have the base type of the corresponding
index (RM 4.1.1/4).

L5. If a prefix of an indexed component has an access type, the prefix must not denote an out
parameter or a subcomponent of an out parameter (RM 4.1/4).

Exception Conditions

El. CONSTRAINTERROR is raised if the evaluation of an index expression gives an index
value outside the range specified for the corresponding index of the array or entry family --'-.-'
denoted (or designated) by the prefix (RM 4.1.1/4).

E2. CONSTRAINTERROR is raised if the prefix of the indexed component has the value null
(RM 4.1/10).

Test Objectives and Design Guidelines

T1. Check that neither too few nor too many index values are accepted.
Implementation Guideline: Check for access types and array types. Entry families are checked in IG 9.5/T1.

Check that the base type of a subscript must be the same as the base type of the index.
Implementation Guideline: Check for access types and array types. Entry families are checked in IG 9.5/T1.

For indexed components whose prefix is a function call, check that the number of index
values, the type of the index values, and the required type of the indexed componert can
be used to resolve an overloading of the prefix and of the index expressions (see IG
8.7.b'T23).

T2. Check that the prefix cannot be:

* an aggregate;

& an allocator;

* an identifier denoting an access object whose value designates another
access object whose value designates an array.

T3. Check that the prefix may be:

* an identifier denoting an array object; .*..

* an identifier denoting an access object whose value designates an array
object;

4-4

.4|

Version 1 (Dec 86) 4.1.2 Slices

" a function call delivering an array object;
% Implementation Guideline: Include function calls using & and the logical operators.

* a function call delivering an access value that designates an array;

" a slice (check that both lower and upper bound components can be
accessed);

• an indexed component denoting an array object (array of arrays);

" an identifier prefixed by the name of the innermost unit enclosing its
declaration;

" a record component (of a record containing one or more arrays whose bounds
depend on a discriminant).

Check that the appropriate component is accessed (see also T7).

T4. Check that CONSTRAINTERROR is raised if an expression gives an index value outside
the range specified for the index.
Implementation Guideline: Check for access types and array types. (For entry families, see IG 9.5/T8).
Implementation Guideline: Check for null arrays.
Implementation Guideline: Check for arrays whose bounds depend on the value of discriminants.

TF. Check that CONSTRAINTERROR is raised if the prefix of an indexed component denotes
an access object whose value is null, and also if the prefix is a function call delivering null.

-- T6. Check that for suitably declared arrays, SYSTEM.MIN INT and SYSTEM.MAX INT can be
.- used as subscripts.

Implementation Guideline: Declare small arrays that use these values as bounds.

17. Check that for an array having both positive and negative index values, the proper
component is selected.

Check that for an array indexed with an enumeration type, appropriate components can be
selected.
Check that subscript expressions can be of complexity greater than variable + - constant.

Check that multidimensional arrays are properly indexed.
Implementation Guideline: Use a slice of a STRING, among other cases, and use all parameter modes.

T8. Check that expressions in the prefix are all evaluated either before or after the index
expression.

4.1.2 Slices

Semantic Ramifications

Si. An array aggregate or an allocator creating an array object is not syntactically a name or a
function call, and so cannot be used as the prefix in a slice.

I%

S2. If the prefix of a slice Is a call to an overloaded function, then overloading resolution uses:
1) the requirement that the prefix return a value having a one-dimensional array type or having
an access type whose designated type Is a one-dimensional array type; 2) the type of the
discrete range; and 3) the required type of the slice itself (see IG 8.7.b/S).

* S3. The evaluation of a slice evaluates the discrete range and the prefix in an order not defined
by the language. Since some order is chosen, this means that the prefix must be completely
evaluated before evaluating any expressions in the discrete range, or vice versa. For example:

4-5 -

4.1.2 Slices Version 1 (Dec 86)

FUNC(F1, F2).A(F3..F4)

Assuming that F1, F2, F3, and F4 are functions with side effects, then F1 and F2 must be
evaluated before F3 and F4, or F3 and , must be evaluated first. It is not allowed to evaluate
F1, for example, and then F3 or F4.

S4. In forming a null slice, the lower bound of the null discrete range must satisfy any
constraints imposed by the base type of the index (RM 3.6.1/4 and RM 3.5/3). In particular, a
null slice of a null array can be formed:

type A is array (INTEGER range <>) of BOOLEAN;
NULL 1: A (5..4);
NULL_2 constant A := NULL_1 (50..49); -- no exception raised

S5. Since a slice has an array type, a slice can serve as the prefix for another slice, e.g.: -.

B (1..19) (3..5) ... -- equivalent to B (3..5)
B (2. .15) (4. .10) (5. .6) -- equivalent to B (5. .6)
B (1..10) (l..10) (1..10) ... -- equivalent to B (l..10)
B (5. .5) (5..5) (5) ... -- equivalent to B (5)

If a null slice is given, it can be used as the prefix of another null slice.

Changes from July 1982
a,

S6. The evaluation order of the prefix and the discrete range is explicitly stated to be some
order not defined by the language.

Changes from July 1980

S7. There are no significant changes.

Legality Rules

L1. The prefix of a slice must have a one-dimensional array type or an access type whose
designated type is a one-dimensional array type (RM 4.1.2/3 and RM 4.1/6-8).

L2. The discrete range of a slice must have the base type of the array index (RM 4.1.2/3).

L3. If a prefix of a slice has an access type, the prefix must not denote an out parameter or a
subcomponent of an out parameter (RM 4.1/4).

Exception Conditions

El. CONSTRAINTERROR is raised if the discrete range in a slice is not null and at least one
bound of the discrete range is not in the range of index values for the array specified by the
prefix (RM 4.1.2/4).

E2. CONSTRAINT ERROR is raised if the prefix has the value null (RM 4.1/10).

Test Objectives and Design Guidelines

T1. Check that more than one discrete range is forbidden, even for multidimensional arrays.
Implementation Guideline: Try slicing on the first and last dimension; for example, when A is a two-dimensional .-
array:

* A (1. .10)
A (1. 10. 9)
A (5, 3.. 7)
A (1 10. 3.. 7)

Check that a single discrete range cannot be given when the prefix denotes a
multidimensional array.

4-6

N NJ,-,I

Version 1 (Dec 86) 4.1.2 Slices ;!e
0

Implementation Guideline: These checks should be performed for access types and array types. Function e
calls delivering an array should also be used.

Check that entry families cannot be sliced. %

Check that the base type of the discrete range must be the same as the base type of the 6
index.
Implementation Guideline: Use one-dimensional arrays.

For slices whose prefix is a function call, check that the requirement for a one-dimensional
array, the type of the discrete range, and the required type of the slice value can be used
to resolve an overloading of the prefix or a bound of the discrete range (see IG 8.7.b/T24).

T2. Check that the prefix cannot be:

* an aggregate;

"an allocator; .%',

" an identifier denoting an access object whose value designates another
access object whose value designates an array.

T3. Check that the prefix may be .

" an identifier denoting a one-dimensional array object; .

" an identifier denoting an access object whose value designates a one- 0
dimensional array object;

* a function call delivering a one-dimensional array object;

* a function call delivering an access value that designates a one- dimensional
array;

* a slice; -

* an indexed component denoting a one-dimensional array object (array of
arrays);

" an identifier prefixed by the name of the innermost unit enclosing its
declaration.

* a record component (of a record containing one or more arrays whose bounds .,
depend on a discriminant). ..5

Check that the prefix can have a limited (array) type.

T4. Check that CONSTRAINTERROR is raised if the discrete range is not null and its upper
or lower bound (check both cases separately) is not a possible index for the named array
(see IG 3.6.1 .a/T4).

T5. Check that CONSTRAINTERROR is raised if the prefix of a slice denotes an access
object whose value is null, and also if the prefix is a function call delivering null.

T6. Check that a non-null range, L..R, can be used to form a null slice from an array A (see IG .

3.6.1 .a/T4).

T7. Check that the discrete range in a slice can have the form A'RANGE (when A is either a
constrained array type or an array object).

4-7

g-, e-

4.1.3 Selected Components Version 1 (Dec 86)

4

4.1.3 Selected Components
Semantic Ramifications

si. The rules of the language guarantee that discriminants always have a value (see RM
3.7.2/8-12). Hence, a discriminant value can always be used to check the validity of references
to components whose existence depends on the value of a discriminant.

S2. When the prefix of a selected component has an access type, it is rot correct to think of the
semantic effect as being equivalent to writing all after the prefix. For example:

type REC is
4. record

X : INTEGER := 3;
end record;
-- Implicit declarations include an operation for selection of
-- component X (the operation might be called " X").

type ACC REC is access REC;
-- Implicit declarations include an operation for selection of
-- component X (the operation might be called ".X").
-- Also, an operation to obtain an object designated by an
-- access value is declared here (call the operation ".all"

) .

VA REC ACC REC;
V REC REC;

VAREC.X -Uses ".X" operation declared for ACCREC.
... VAREC.all.X -- Uses ".all" operation declared for ACC REC

-- and ".X" operation declared for REC.
... V_REC.X -- Uses ".X" operation declared for REC.

RM 3.7.4/1 specifies basic operations that are (according to RM 3.3.3,2) implicitly declared for a
record type, and similarly, RM 3.8.2/1 specifies imF;icitly declared basic operat'ons tor access
types. The wording in these sections specifies the operations by referring to tle .,!.tactir f'rm
used to invoke the operations, e.g., RM 3.8.2/1 saye .ne c .erat;ons "icL,.3 - tofifitio c,
selected component with the reserved word all." RNv 3.8.2/1 also says "if tK ,t.. -!,Pt' type ;-
a record type, [the operations) include the ser'<-:. of corresporan,
semantics of the component selection operation-, declared for an acuesLs 'r 1
4.1.3/11-12 (for .all) and RM 4.1.3/6-8 for selection of cornnonent --
These paragraphs apply to the operations declared for access types oec ?u ,
4.1.3/11-12, the type of the prefix is required to be an access type a-,-----
4.1.3/6-8, the prefix is required to be appropriate for a record type (in particular. a reccr. :ype
having a component with the same identifier as that used in the selector of the selected-
_component name); "appropriate for a type" means the prefix can have an access type whose
designated type is a record type with an appropriately named component (RM 4.1/8). The RM
never names these operations, so it must use descriptive phrases that serve to link statements
that the operations exist (in RM 3.7 and RM 3.8) with specifications of their semantics. In
understanding the implications of the RM rules, it Is helpful to give notations for the operations,
as in the example above, where "X" is an overloaded notation denoting the component
selection operations declared for both REC and ACCREC. One might think of the name VA-
_REC.X as being equivalent to ".X"(VAREC), and VAREC.aIl.X as being equivalent to
".X"(".aI"(VAREC)).

S3. The fact that ".X" denotes different operations for an access type and for the destgnated ,- "
type is important only when considering what operations are decbared for pnvat, tipes in - .

conjunction with RM 7.4.2/6-7 (see IG 7.4.2/S for a full discussion):

4-8

.".'.".v ." ...".-.. ."-.- -.-.... ..--. .".,-.-.,.-. ."" "", - : ,-" , + -""/ -"," •-"-' ";"--:' -

Version 1 (Dec 86) 4.1.3 Selected Components

package P is
type T is private;

package Q is
type ACC T is access T; -- ".all" declared

end;
private

type T is new REC; -- using the definition from above
--. ".X" declared for T, but not for ACC T (RM 7.4.2/8, /7)

U :ACC T := now T;
V INTEGER := U.all.X; -- legal; uses T's ".X"
W INTEGER := U.X; -- illegal; no ".X" declared for ACC T

end P;

According to RM 7.4.2.7-8, the "X" operation for ACCT is only declared within Q's body, and
so is not visible within P's private part. Since the two notations are not both legal in the same
contexts, U.X is not semantically equivalent to U.alI.X.

s4. RM 4.1.3/17 says "The prefix must denote a construct that is either a program unit, a block
statement, a loop statement, o. an accept statement." This wording must be interpreted
carefully for prefixes that denote bodies of task types. In particular, the prefix must not denote a
task ooject. If an expanded name is used to refer to an entity declared in an enclosing task
-,), the prefix denotes the task body, not the task object:

task type T;
type T INDEX is range 1..10;
A : ar ay (T_.INDEX) of T;

#'.,task body T is
K: T INDEX;
X : INTEGER;

begin
A(K).X := 5; -- illegal
T.X := 5; -- ok

end T;

The selected component A(K).X is illegal because A(K) denotes an object, not a unit. T.X is
okay even though RM 9.1/4 forbids use of the simple name T as a type mark within the task
body; T's use in T.X is not as a type mark but as the name of an enclosing unit.

s5. The selector of an expanded name must denote a declaration occurring "immediately
within" the construct named by the prefix. Since blocks and loops need not have names, this
means that entities declared immediately within a nameless block or loop cannot be named
using an expanded name.

s6. Since labels are implicitly declared in the declarative part of the innermost enclosing block,
subprogram body, task body, or package body (see RM 51/3), expanded name notation is
available for labels. The prefix must be the name of the construct enclosing the implicit
declaration, not the name of the construct enclosing the label's occurrence, e.g.:

procedure P is
begin
BLK: begin

LP: loop

* goto P.BLK.L" -- P.BLK.LP.L is illegal

end loop LP:

S. 4-

'1 4.A9P - f

4.1.3 Selected Components Version 1 (Dec 86)

end BLX;
end P:

Statement label L is imDlicitly declared wj,, i the innermost enclosing block or body, i.e., within

block BLK. Since L .5 not declared within loop LP, the loop name cannot be used in anexpanded name for L.".

S7. A loop parameter is implicitly declared immediately within the loop (RM 5.5/6 and RM
8.1/6). Hence, if the loop is named, the loop name can be used as a prefix of the loop
parameter identifier. Also, loop names are never declared within enclosing loops:

81: begin
Li: fox I1 in .. 5 loop

L2: for 12 in 1..5 loop

end loop L2;
end loop Li;

end 1l;

Within L2, L2.12 is a legal name for the loop parameter, as is B1.L2.12. 1.L1 .L2.12 is illegal -.

since Li and L2 are both implicitly declared within block B1. B1.12 is illegal, since 12 is implicitly
declared within loop L2, not within block B1.

sO. Generic formal parameters are considered to be declared immediately within the generic 7
unit, since a generic declaration forms a declarative region (RM 8.1/2) and the formal part of a
generic declaration is contained within that region (RM 12.1/2). Consequently, if I is the name
of a generic formal parameter for unit P, the expanded name P.1 can be used within P's body
even though the parameter textually precedes the occurrence of the generic unit's name (see . ,
AI-00412 and IG 12.1/S for further discussion):

generic
I : INTEGER;procedure P;

procedure P is
begin

S... P.I ... legal

sg. A name declared by a renaming declaration can be used as the selector in an expanded
name, even though such a name does not declare an entity (it only declares another name for
an entity; see RM 8.5/1) (see A-00187):

package P is
A: INTEGER: -- declares an entity

end P:

with P;
package Q is

8 : INTEGER renames P.A;
end Q;

with Q;
package R is

C : INTEGER renames Q.B; -- okay
end R,

4-10

,.% %"% 7,,# ' ." . %-" .-. , . . .' , .. * .°.** - " ". ".*.*' *$** ". ". d
5

. ° * " . . /- ' " . % "- - - - ' . . '- %

Version 1 (Dec 86) 4.1.3 Selected Components

The declaration of R.C is legal even though B is not an entity declared within Q (B denotes P.A,
",- an entity declared within P; R.C also denotes this entity).

s10. Consider the following use of a renamed package in an expanded name:

package P is-
X : INTEGER;
package RENAMED PACKAGE renames P;
Y INTEGER renames P.X; -- legal
Z INTEGER renames RENAMED_PACKAGE.X -- legal (AI-00016)

end P;

9M 4.1.3/14-15 allows the expanded name given in Z's declaration since X is deciared
immediately within the visible part of a package. However, RM 4,1.3/18 says, "A name declared
by a renaming declaration is not allowed as the prefix [of an expanded name used within the
construct named by the prefix]." These rules conflict; AI-00016, however, says that it the
selector of a expanded name is declared in the visible part of a package, the prefix can be a
name declared by a renaming declaration.

Si i. When using a name declared by a renaming declaration as the prefix of an expanded
name, it is the context of the expanded name and the selector that determines whether the
expanded name is legal, not the context where the prefix was declared. For example:

package LONG P is
X : INTEGER := 0;

end LONG P;

package P renames LONGP;

package body LONGP is
Y INTEGER := 1;
Z INTEGER := P.Y; -- illegal; Y not in visible part
W INTEGER := P.X; -- legal; X in visible part

P.Y is illegal because P.Y is an expanded name, P is declared by a renaming declaration, and Y
is not declared in LONGP's visible part.

S12. An expanded name can be arbitrarily long if an enclosing package is renamed within its
visible part:

package FRED is
A INTEGER;
package JIM renames FRED; S

private
B : INTEGER;

end FRED.

Since A and JIM are declared in the visible part of package FRED and since a name declared
by a renaming declaration can be used as the selector in an expanded name, it is possible to
refer to FRED.A as FRED.JIM.A or FRED.JIM.- JIM.A, or in general, to use as many .JIM's as
desired. However, inside package FRED, FRED.JIM.B is illegal, since a name declared by a
renaming declaration is not allowed as a prefix in an expanded name except when the selector
is declared in the visible part of a package (AI-00016 and RM 4.1.3/18). (Of course, whether
inside or outside FRED, writing use FREDJIM has the same effect as writing use FRED.)
S13. When the prefix of a selected component is a function name, the effect of evaluating the
prefix depends on whether or not the name is an expanded name:

4-11

-..:.

4.1.3 Selected Components Version 1 (Dec 86)

type REC is
record

X : INTEGER;
end record;

function F return RZC is

X INTEGER := 3;
Z INTEGER := F.X; -- F is not called

begin ... end F;

A : INTEGER := F.X; -- F is called

In the first use of F.X, F denotes an enclosing program unit, and so is considered an expanded
name whose prefix has the syntactic form <name> instead of the form <functioncall>. Hence,
RM 4.1/9 applies, and the evaluation of the prefix just determines the construct enclosing the
declaration of X. In the second usage, we assume there is no enclosing construct whose name
is F, so F.X is not an expanded name. In this case, the only entity denoted by F is the function
F, and since F.X is not an expanded name, the prefix must be considered to have the form
<function call>. The evaluation of the prefix thus causes function F to be called (RM 4.1/10). In
short, from the RM viewpoint, the effect of evaluating a prefix depends on how the prefix is
parsed, and the parse depends on the context containing the name.

S14. Now consider a modification of the original example:

type REC2 is
record

Y :Y INTEGER;
end record;

function F return RRC is
function F return RZC2;
X INTEGER := 3;
Z INTEGER F.X; -- legal

This use of F.X is legal because F is the name of a unit enclosing the declaration of X. and
although two Fs are visible, only one of the visible Fs is the name of an enclosing subprogram.
Therefore, only the interpretation of F.X as an expanded name is considered (RM 4.1.3/19).

S15. If more than one visible enclosing subprogram (or accept statement) has the name of the
prefix, then the name is illegal, independently of the selector (RM 4.1.3/18):

function F return INTEGER is
X : INTEGER;

function F return FLOAT is
Y : INTEGER :- F.X; -- illegal

F.X is illegal because both enclosing subprograms are visible. It does not matter that X is only
declared within one of the enclosing units.

S16. If two subprograms have Identical designators as well as the same parameter and result
type profile, then the outer subprogram is not visible within the inner subprogram (RM 8.3/15):

function F return REC is
X INTEGER := 3;

4-12

Version 1 (Dec 86) 4.1.3 Selected Components

function F return REC is

.,- .X INTEGER 3;
Y INTEGER := F.X; -- legal expanded name I

F.X is legal because the only visible F is the innermost F.

S1 7. Now let's combine some of these cases:

function F return T1 is -- Fl
X : INTEGER;
function G return T2 is

X : INTEGER;
function F return T2 renames G; -- F2
-- note F2 renames an enclosing unit
Y : INTEGER := F.X; -- legai? which F?

If T1 and T2 denote different types, then two Fs are visible. RM 4.1.3/18 says "if the prefix is
the name of a subprogram or accept statement and if there is more than one visible enclosing
subprogram or accept statement of this name [emphasis supplied], the expanded name is
ambiguous, independently of the selector." Although two Fs are visible and each F denotes an
enclosing unit. only one enclosing subprogram is "of the name" given as the prefix, so the prefix

! egal and denotes Fl. (If the RM had mentioned enclosing units "denoted by the name given
The prefix," F.X would have been illegal.)

if TI and T2 denote the same type, the declaration of F2 hides the declaration of F1, so only
one F is visible at F.X. However, since the only visible F is declared by a renaming declaration
and since F denotes an enclosing unit, F.X is an expanded name; therefore, RM 4.1.3/18

,* applies, and F.X is illegal.
s1s. In short, when a subprogram designator is used as a prefix, an implementation must
determine whether more than one visible enclosing subprogram has the same designator. If so,
the name is illegal. If there is only one visible enclosing subprogram, then the prefix is
considered to denote the enclosing unit and is not called. If there is no such enclosing unit, then
the prefix must be interpretable as a function call. Of course, if the prefix can only be parsed as
a function call, then that is the interpretation used:

function F (X : INTEGER) return REC is
X : INTEGER :- 3;

function F return REC is
W INTEGER := F(3).X; -- legal
Z INTEGER F.W; -- illegal

F(3) is unambiguously a function call (since the parameterless F does not return an array type
and so cannot be indexed). Since F(3) is a function call, F(3) cannot be a prefix of an expanded
name. That there are two visible enclosing units called F is irrelevant. This fact is, however,
relevant to F.W, since in this case, F can be interpreted as the name of an enclosing unit. RM
4.1.3/19 says this interpretation is preferred, and then RM 4.1.3/18 says the prefix is illegal
because there are two visible enclosing Fs. Similarly, if the inner F returned an access value,
then Fall would be illegal within the inner function.

Approved Interpretations

s19. An expanded name denoting a generic formal parameter is allowed within a generic unit
(AI-00412).

A simple name declared immediately within the visible part of a generic pack~age specification

4-13

"" " " " ""Q " " " '- " """ .'" " ."" " ." * " '2" """ "%'"'-''' . / ," ','.',",/ - ' ' ' ' " ' G ' ' ' 2

4.1.3 Selected Components Version 1 (Dec 86)
4-

can be the selector of an expanded name occurring within the generic unit if the prefix of the .. ,
expanded name is declared by a renaming declaration and denotes the generic package
(AI-0041 2).
S20. A simple name declared in the visible part of a package specification can be the selector of
an expanded name whose prefix denotes the package and is a name declared by a renaming
declaration (AI-0001 6).

s21. A name declared by a renaming declaration can be used as the selector in an expanded
name (AI-00187).

Changes from July 1982

s22. A name declared by a renaming declaration is not allowed as the prefix of an expanded
name.

S23. If according to the visibility rules, the prefix of a selected component can be interpreted as
the name of an enclosing subprogram or an accept statement, no interpretations as a function
call are considered.

Changes from July 1980

S24. The selector in an expanded name can be a character literal.

S25. Expanded names can be used within the body of an accept statement if the prefix denotes
the enclosing single entry or entry family.

S26. A prefix can be an access value designating a task object when the selector is an entry.

Legality Rules

L1. For a name of the form L.R, if L can only be parsed as a function call or if there is no
enclosing unit denoted by L, then

. a. if L has a record type or an access type whose designated type is a record
type, R must be the identifier of one of the record's components (RM
4.1.3/4-7);

b. if L has a task type or an access type whose designated type is a task type, R
must be an entry, or an entry family, declared in the corresponding task or
task type declaration (RM 4.1.3/9-10);

c. if R is the reserved identifier all, L mist have an access type (RM
4.1.3/11-12); and

d. if L denotes a package, R must be declared immediately within the visible part
of the package (RM 4.1.3/14-15 and AI-00187).

L2. For a name of the form L.8 occurring inside a unit denoted by L (where the unit may be a
subprogram body, task body, accept statement (for single entry L or entry family L),
package specification or body, loop, or block (RM 4.1.3/17)):

e L must not be declared by a renaming declaration (RM 4.1.3/18);

* L must be the only such visible enclosing unit (RM 4.1.3/18);

* R must be an identifier, a character literal, or an operator symbol declared
immediately within L (RM 4.1.3/17).

L3 If a prefix of a selected component has an access type, the prefix must not denote an out
parameter or a subcomponent of an out parameter (RM 4.1/4).

4-14

Version 1 (Dec 86) 4.1.3 Selected Components I

Exception Conditions
El. CONSTRAINTERROR is raised by the evaluation of a selected component of the form

L.R, where R is an identifier, if L has

a a record type with variants, or

9 an access type whose designated type is a record type with variants, 'p

and R is the identifier of a component that does not exist for the current discriminant values
of the record object (RM 4.1.3/8).

E2. CONSTRAINTERROR is raised by the evaluation of a selected component of the form
L.R, if L has the value null (RM 4.1/10). -

Test Objectives and Design Guidelines

Ti. Check that the notation L.R may be used to denote a record component (including a
discriminant), where R is the identifier of such a component, and L may be any of the
following:

" an identifier denoting a record object;

" an identifier denoting an access object whose value designates a record
object; I

* a function call delivering a record value; %
%.

" a function call delivering an access value designating a record;
Implementation Guideline: In the above four cases, reference components of variant records,
and use components selected on both sides of an assignment statement and as a parameter of -

V various modes. U'

" an indexed component;

" an identifier prefixed by the name of the innermost unit enclosing the
identifier's declaration.

" a selected component denoting a record (which is a component of another
record).

Implementation Guideline: In some cases, L should have a limited type and a generic formal or private type ell
with discriminants.

T2. Check that L.R is illegal if L is an aggregate or an allocator for a record type containing
component R.

T3. Check that the notation L.all is allowed if L is the name of an access object designating:

" a record object

" an array object "'.

" a scalar object ..

" another access object

Check that if A is an Identifier denoting an access object that in turn designates an access
object, the form A.all.all is accepted.
Implementation Guideline: Use both sides of the assignment statements and parameters of each mode.

T4. Check that L.R raises CONSTRAINT ERROR if:

4-15 I

% %'

4.1.3 Selected Components Version 1 (Dec 86)
p.-

" L is an access object or a function call having the value null;

" L is a record object or a function call returning a record value such that, for the
existing discrminant values, wu component denoted by R does not exist.

" L is an access object (or a function call returning an access value), and the
object designated by the access value is such that component R does not
exist for the object's current discriminant values.

T5. Check that if L is an operator symbol, L.R must occur inside a function declaring L.

T6. Check that if T has a task type or an access type designating a task type with entry E or
entry family E, T.E is allowed as an entry call.
Implementation Guideline: See IG 9.5/T for cases where T has a task type. It is only necessary to test here %
cases where T has an access type that designates a task and cases where T is a function call.

T7. Check that if L is a package declared by a renaming declaration, D is the package denoted
by L, and R is a name declared immediately within the visible part of D:

" L.R is legal whether L.R occurs outside D, inside D's visible part, inside D's
private part, or inside O's body;

• L.R is illegal if R is declared immediately within the private part or body of D.

Implementation Guideline: Include (in a separate test) a case where R is declared immediately within D as a
renaming of L and the full name is L.R.R.X.

Check that if A is declared immediately within a package, a generic package, a
subprogram, a generic subprogram, a task, a block, a loop, or an accept statement named
L, L.R is allowed inside the unit (L is not declared by a renaming declaration). ..- "
Implementation Guideline: R can be a loop parameter, a label, a block name, a loop name, or a generic format
parameter.
Implementation Guideline: For the accept statement, include both a single entry and an entry family case.
Implementation Guideline: Include cases where R is declared by a renaming declaration.
Implementation Guideline: For the subprogram, generic subprogram, and accept statement cases, there I%
should be no enclosing visible subprogram or accept statement that is also named L.

T8. Check the following cases where F is the name of a function returning a record with
component X and X is also declared within F:

" F.X occurs within F (the function should not be called).

" F.X occurs within F, F is declared within an enclosing subprogram or single
entry accept statement that is also named F, and both Fs are visible (F.X is
illegal).

" F.X occurs within F, F is declared within an enclosing function that is also
named F, and only the innermost F is visible (the function should not be
called).

SF.X occurs within F, F is declared within an enclosing subprogram or accept
statement that is also named F, and both Fs are visible (F.X is illegal).

SF.X occurs within F and F is declared within an enclosing package, task, or
accept statement for an entry family that is also named F (the function should
not be called).

*the prefix has a parameter list so it can only be parsed as a function call;
F(...).X occurs within F; F is declared within an enclosing subprogram or single
entry accept statement that is also named F, and both Fs are visible (F is
invoked).

4-16

Version 1 (Dec 86) 4.1.3 Selected Components

• F.X occurs within F and another subprogram named F is declared immediately
within F:

" the inner declaration of F is not a renaming declaration, and
" the inner F does not hide the outer F (F is not invoked).,
Sthe inner F desnotide the outer F (rF is noinvoked).0

" the inner F hides the outer F (the inner F is invoked).

" the inner declaration of F is a renaming declaration, and

" the inner F does not hide the outer F (F is not invoked).

" the inner F hides the outer F (F.X is illegal).

Check that F.all is illegal within a parameterless function F that returns an access value if
the inner F is enclosed by another visible subprogram named F.
Implementation Guideline: Repeat the above checks when F is the name of a generic function.

T9. Check that an expanded name is allowed even if a use clause has made it unnecessary to
write an expanded name.

T20. For an enumeration type declared In the visible part of a package P (including when P is a
generic instance), check that the following implicitly declared entities can be selected from
jutside the package using an expanded name whose prefix is P: the enumeration literals •
(including character literals), the relational operators.
Implementation Guideline: include a check for an overloaded enumeration literal.

T21. For a derived boolean type declared in the visible part of a package P (including when P is
a generic instance), check that the following implicitly declared entities can be selected
from outside the package using an expanded name whose prefix is P: TRUE, FALSE, the
relational operators, and the logical operators: "and", "or", "xor", and "not".

T22. For an integer type declared in the visible part of a package P (including when P is a
generic instance), check that the following implicitly declared entities can be selected from
outside the package using an expanded name whose prefix is P: relational operators and
arithmetic operators (unary and binary + and -, m,, mod, rem, **, and abs).

T23. For floating point type declared in the visible part of a package P (including when P is a '2
generic instance), check that the following implicitly declared entities can be selected from
outside the package using an expanded name whose prefix is P: relational operators and
arithmetic operators (unary and binary + and -, *,/, *, and abs).

T24. For fixed point type declared in the visible part of a package P (including when P is a
generic instance), the following implicitly declared entities can be selected from outside the
package using an expanded name whose prefix is P: the relational operators, * with one
INTEGER operand, / with the second operand of type INTEGER, unary and binary + and -,

and abs.

Check that the operations for multiplying or dividing two fixed point values are not implicitly
declared in the unit, i.e., check that these operators cannot be named by selection using a 0
prefix that denotes the unit (see RM 4.5.5/9). Also, check that there is no / operator whose
first operand has type INTEGER and whose second Is a fixed point type.

T25. For an array type declared in the visible part of a package P (including when P is a generic
instance), check that the following implicitly declared entities can be selected from outside
the package using an expanded name whose prefix is P if: •

- the component type is not limited: equality and inequality.

17

4.1.4 Attributes Version 1 (Dec 86)

• the array has one dimension and the component type is: ,-

" non-limited: catenation, r,uality, inequality.

" discrete: relational operato,,s.

" boolean: "not" and the logical operators.

Check that the above operations are not provided when the component type is not the
required type.

T26. For an access type declared in the visible part of a package P (including when P is a
generic instance), check that the following implicitly declared entities can be selected from
outside the package using an expanded name whose prefix is P: equality and inequality.

T27. For a private type declared in the visible part of a package P (including when P is a generic
instance), check that the following implicitly declared entities can be selected from outside
the package using an expanded name whose prefix is P: equality and inequality if the type
is not limited; no such operators if the type is limited.

T28. For a derived type declared in the visible part of a package P (including when P is a
,-. generic instance), check that the following implicitly declared entities can be selected from

outside the package using an expanded name whose prefix is P: derived subprograms.

4.1.4 Attributes
Semantic Ramifications

S1. This section discusses general properties of attributes. Specific properties of each attribute
are discussed in the sections corresponding to the RM sections where each attribute is defined.

S2. Syntactically, an attribute such as A'LAST(3) can be parsed either as a function-call whose
name is A'LAST and whose actual parameter is 3, or as an attribute whose prefix is A and
whose attributedesignator is LAST(3). This syntactic ambiguity has no practical
consequences. Attributes are shown in the RM with an optional single parameter for expository
purposes, since some attributes are defined to require a single parameter (having a
universal integer type, e.g.. 'RANGE). The attributes PRED, SUCC, POS, VAL, IMAGE, and
VALUE are considered functions; CHARACTER'SUCC('A') is a function call and is allowed even
though the argument is not a static universaljinteger expression.
S3. The attribute designator is not considered when resolving a prefix. Consider the following
example:

type Al is array (1 .10, BOOLEAN) of ...
type A2 is array (. .10) of . ..

function F (X INTEGER) return Al; '

function F (X INTEGER) return A2;

if F(3)'LAST(2) -- illegal

The fact that the prefix of 'LAST(2) must denote a two-dimensional array (or an access type
designating a two-dimensional array) or the fact that the name F(3)'LAST(2) must have the type
BOOLEAN cannot be used in deciding which F is denoted in the prefix.

S4. The "meaning" of the prefix of an attribute is determined by the visibility rules (RM 8.3/1).
For example:

4-18

..4 "4'i
I
" J j ,j. t. _', =,' " " 'j-% .,." ' = -% % % ' . " " % ,'% . -. ,' % ' ,"="'

Version 1 (Dec 86) 4.1.4 Attributes

type ACC is access INTEGER:
function F return ACC is .

X : SYSTEM.ADDRESS := F'ADDRESS; -- legal?

The meaning of the prefix of 'ADDRESS is to be determined independently of the fact that it is
the prefix of an attribute (RM 4.1.4/3), i.e., the declaration denoted by F is decided
independently of the attribute designator. Clearly in this case, there is only one visible F, so F's
use as a prefix is unambiguous. Now, however, we have to decide whether the prefix is to be
parsed as a function call or simply as the name of a unit. In making this decision (which,
technically speaking, does not affect the "meaning" of the prefix since it does not affect which
ceclaration F denotes), we are not forbidden from looking at the attribute designator. in thiso:
case, RM 13.7.2/6 explicitly states that "if the prefix is the name of a function, the attribute is
understood to be an attribute of the function (not of the result of calling the function)." This
means that F is parsed as a name, not as a function call, and so evaluation of the prefix does
not entail invoking the function.

s5. The nature of the "meaning" of a prefix is further illustrated by this example (suggested by
R. S. Kotler):

type ACC STRING is access STRING;
function F (X : INTEGER) return ACCSTRING; -- F#1
function F return ACCSTRING; -- F#2

... F(3)'ADDRESS -- F#2(3)'ADDRESS

The term "meaning" is defined in RM 8.3/1:
The meaning of the occurrence of an identifier at a given place in the text is defined by tte

01 visibility rules and also, in the case of overloaded declarations, by the overloading rules. I

(The prefix F(3) does not have a meaning in the sense of AM 8.3/1 since it is not an identifier,
but we can understand RM 4.1.4/3's use of the phrase "meaning of the prefix" as entailing "the
meaning of the identifiers in the prefix".)

se. RM 8.7/2 continues:
For overloaded entities, overload resolution determines the actual meaning that an -
occurrence of an identifier has, whenever the visibility rules have determined that more
than one meaning is acceptable at the place of this occurrence.

S7. When more than one declaration of an identifier is visible, overloading resolution is
required. AM 8.7/7 says:

When considering possible interpretations of a complete context, the only rules considered
are the syntax rules, the scope and visibility rules, and the rules of the form described
below [in RM 8.7/8-151.

In particular, note that "the syntax rules" must be used in deciding what the interpretation (i.e..
meaning) of an identifier is.
S8. Now let's consider the effect of these rules on some examples that are simpler than the
one presented originally. First, consider:

type ACC STRING is access STRING;
procedure G (X : INTEGER) is ... end; '

.

function G (X INTEGER) return ACCSTRING is ... end;

G(3)'LAST ... legal
... G(3)'SIZE ..-- legal

4-19
S

4.1.4 Attributes Version 1 (Dec 86)

First, it is clear that the visibility rules alone give two "meanings" for G, so overloading resolution .W':
must be attempted. Overloading resolution takes the syntax rules into account. In this case,
the syntax rules require that G(3) be pa:, 1 as a prefix, and a prefix must be either a name or a
function call. Since the syntax rules forb;,, an interpretation of G(3) as a procedure call, G is
uniquely determined to denote function G. Note that in making this determination, we have not
used any information about the attribute designator nor any information stemming from the use
of G(3) as the prefix of an attribute; we have only used the fact that G(3) must be a prefix.
sg. In short, overloading resolution of the prefix of an attribute can take into account the fact
that only a name or a function call is allowed, but it cannot take into account the nature of the
attribute designator. If the identifiers in the prefix are unambiguous given the fact that they are
being used in a prefix, the "meaning" of the identifiers has been determined. At this point, the
attnute designator can be used to decide whether the prefix is to be parsed as a function call
or not. (Since the meaning of identifiers in the prefix has been determined, the choice of a
parse cannot further affect the "meaning" of the prefix.)
S1 o. For example, consider:

function 8 return ACC STRING is end;

... H'LAST ... -- legal
... H'ADDRESS ... -- legal

Here H unambiguously denotes a specific function, so the "meaning" of H is unambiguous, but
consideration of the prefix alone is insufficient for deciding whether H should be parsed as aname or as a function call. However, once the meaning has been uniquely determined, RM
4.1.4/3 does not forbid using the attribute designator to decide how the prefix should be parsed.
For H'LAST, RM A/21 requires that the prefix be appropriate for an array type, i.e., the prefix
must have either an array type or an access type whose designated type is an array type. This
means the prefix cannot be the name of a function, but It can be a function call, so H'LAST is
unambiguous (H is called). Similarly, for H'ADDRESS, RM 13.7.2/6 requires that:

if the prefix is the name of a function, the attribute is understood to be an attribute of the
function (not of the result of calling the function,

Since the prefix in this case cannot be a function call, there is no ambiguity in deciding how to
parse the prefix (H is not called), and so H'ADDRESS is legal.
Si 1. This example shows how the attribute designator can be taken into account when dec.ci:,c
how the prefix is to be parsed even though the designator cannot be used to help resolve the"meaning" of names occurring in the prefix.
S12. Now let's use this approach in considering the legality of F(3)'ADDRESS in the original
example. F in the prefix has two meanings according to the visibility rules (i.e., F can denote
either F#1 or F#2). If we try to resolve the meanings by taking into account the fact that F(3) i
a prefix, we find that F(3) can be parsed either as a function call or as a name, depending on
which declaration F is considered to denote. This means F(3) is ambiguous even after taking
into account the fact that It Is a prefix. Since the prefix Is ambiguous, F(3)'ADDRESS is
ambiguous; (RM 4.1.4/3 forbids using the attribute designator to help resolve the "meaning" of
identifiers in the prefix). The fact that F(3)'ADDRESS Is only legal if F is considered to denote
F#2 is irrelevant because RM 4.1.4/3 does not allow us to use this information.
S13. The rule in RM 4.1.4/3 is not equivalent to saying that the prefix of an attribute is a
"complete context." If the prefix were considered a complete context, we could use the attribute
designator to help determine how the prefix is to be parsed. Since rules affecting the parse of a --
prefix are considered syntax rules, we would be allowed to use such rules to resolve the
meaning of F(3) in the original example, i.e., F(3)'ADDRESS would be unambiguous.

4-20

Version 1 (Dec 86) 4.1.4 Attributes

I .. .~

S14. If the prefix of an attribute is allowed to be a function call and the prefix is overloaded, the
prefix is ambiguous, regardless of the attribute designator. For example, if the prefix of
'CALLABLE is a function returning a task type and a function returning an array type, the prefix
is ambiguous.

sis. Only the following attributes are allowed to have function calls as prefixes: 'CALLABLE,
'FIRST, 'FIRST(N), 'LAST, 'LAST(N), 'LENGTH, 'LENGTH(N), 'RANGE, 'RANGE(N),
'TERMINATED. In particular, although the prefixes of 'ADDRESS, 'SIZE, 'CONSTRAINED, and
'STORAGE_SIZE can be objects, they cannot be function calls.

si6. If the prefix of an attribute contains a function call, the function must be evaluated, e.g.,
consider:

A(F(X)) 'SIZE

where A is an array and F is a function. Even though the size of an array component may be
the same for each component, the prefix (i.e., F(X)) must be evaluated (RM 4.1/10).

S17. Since T'IMAGE produces a value of type STRING, which has an array type, this attribute
can be used as the prefix of an array attribute, e.g., T'IMAGE(N)'LAST is legal.

Changes from July 1982

S18. For purposes of overloading resolution, the meaning of a prefix must be determined
;r dependently of the attribute designator and independently of the fact that it is the prefix of an S
attribute.

Changes from July 1980

-i. An attribute can no longer be an exception.

s20. An attribute can now be a range. S

S21. Implementation-defined attributes cannot have the same identifier as that of a predefined
attribute.

Legality Rules

L1. The prefix of 'SIZE and 'ADDRESS must not be a function call (RM 13.7.2/6).

L2. The prefix of 'STORAGE SIZE must not be a function call (RM 13.7.2/13).

L3. The prefix of 'CONSTRAINED must not be a function call (RM A/6-7).
L4. If a prefix of an attribute has an access type, the prefix must not denote an out parameter

or a subcomponent of an out parameter (RM 4.1/4).

Exception Conditions

El. CONSTRAINTERROR is raised if the prefix has the value null and the attribute
designator is not SIZE, ADDRESS, POSITION, FIRSTBIT, or LASTBIT (RM 4.1/10). .'-

Test Objectives and Design Guidelines

Each attribute is checked individually in the section where it is defined.

Overloading resolution for prefixes of attributes is checked in IG 8.7.bFT26.

T1. Check that CONSTRAINTERROR is raised if the prefix of the following attributes has the
value null:

' CALLABLE, 'TERMINATED: the designated type must be a task type.

4.1
4-21 "

Irv 'r -. w- ,

4.2 Llterals Version 1 (Dec 86)

* 'FIRST, 'FIRST(N), 'LAST, 'LAST(N), 'LENGTH, 'LENGTH(N), 'RANGE,
'RANGE(N): the designated type must be an array type. '--
Implementation Guideline: The prof,. iould be either an object or a function call.

T2. Check that CONSTRAINTERROR Is not raised if the prefix of 'ADDRESS, 'SIZE, 'FIRST-
_BIT, 'LASTBIT, and 'POSITION has the value null.
Implementation Guideline: For 'ADDRESS and 'SIZE, it will suffice for the prefix to be an access object with
any designated type.
Implementation Guideline: For 'FIRST-BIT, 'LASTBIT, and 'POSITION, the prefix must be a record
component.

T3. Check that the prefix of 'SIZE and 'ADDRESS is evaluated even if the value does not seem
to be needed.

T4. Check that the IMAGE attribute can be a prefix of an array attribute, e.g.,
T'IMAGE(N)'FIRST.
Check that a qualified expression is not allowed as a prefix, e.g., STRING'(N)'LAST and
similar forms are illegal. .,

4.2 Literals
Semantic Ramifications

si. Real literals are often implicitly converted to some real type (RM 4.6/15). Such conversions
must be exact if the real literal Is a model number (RM 4.5.7/6 and IG 4.5.7/S). Note that even if
'DIGITS for a floating point type is N, the exact decimal representation of 'LARGE will require
more than N digits, and this decimal value must be converted exactly to 'LARGE. For example, '
if N = 6, 'LARGE is 19_342_803_890_462_029_940_523_008.

s2. The lower bound of a string literal is determined by the context in which the literal appears.
There are two kinds of context. In one, the context determines an unconstrained array subtype,
and the lower bound is determined by 'FIRST of the index subtype:

subtype 15_10 is INTEGER range 5..10;
type Si is array (15_10 range <>) of CEARACTER;
CS1 : constant S1 :- "A"; -- SI'FIRST = 5
procedure P (S : Sl);
... P("A"); ... -- within P, S'FIRST = 5

If 'FIRST of the index subtype is also 'FIRST of the index base type, then CONSTRAINT-
_ERROR will be raised for all null string literals of the type when they occur in an unconstrained
context:

type ENUM is (A, B);
type S2 is array (ENUM range <>) of CHARACTER;
CS2 constant $2 = ""; -- CONSTRAINT ERROR
CS3 : S2 (B..A) := ""; -- no exception
CS4 : S2 (B..A) := "" £ .. ; -- CONSTRAINT ERROR

. S2' ("A") ... -- CONSTRAINT ERROR

The string literal in the initialization of CS2 is given the lower bound A; CONSTRAINTERROR
is raised when computing the upper bound, since A has no predecessor. No exception is raised
by the initial value of CS3 since the lower bound Is determined by the index constraint, and the
lower bound, B, has a predecessor. CONSTRAINTERROR Is raised by the initialization ,,

expression for CS4 since the null string literals occur in a unconstrained context -- the operands ..

4-22 r-

Version 1 (Dec 86) 4.2 Literals £

of "&" are associated with an unconstrained formal parameter, and so, the upper bound of"" is
undefined. Similarly, CONSTRAINT ERROR is raised for the null string literal operand of the
equality operator.

S3. In the following contexts, the lower bound of a string literal is determined by the index
constraint associated with a constrained array type. (The source of the lower bound information
is given in parentheses.) -.

* the expression of an assignment statement (the lower bound of the target
variable);

I
" the expression giving the initial value of a variable or record component (the

lower bound of the variable or component);

" the expression giving the Initial value of a constant object when the subtype
indication specifies a constrained array type (the lower bound of the subtype
indication); I

* the expression giving the default value of a subprogram, entry, or generic
formal In parameter or the return value of a function when the parameter's or
function's type mark denotes a constrained array subtype (the lower bound of
the type mark);

" the expression in an aggregate specifying the value of an array or record
component (the lower bound of the corresponding array or record component;
note that an array or record component is necessarily constrained);

" the innermost subaggregate of a multidimensional array aggregate (see RM
4.3.2/2) when the multidimensional aggregate appears in one of the above
contexts (the lower bound of the last dimension of the applicable constrained
array subtype); see IG 4.3.2/S for further discussion.

s4. In the following contexts, the lower bound of a string literal is given by 'FIRST of the index
subtype when the literal appears as:

" the expression giving the initial value of a constant object whose subtype
indication denotes an unconstrained array type;

" an actual In parameter in a subprogram or entry call, when the formal
parameter is unconstrained (note that this includes use as an operand of the
predefined relational and catenation operators);

* the actual parameter in a generic instantiation when the formal parameter is
unconstrained;

" the return expression in a function whose return type is unconstrained;

" the operand In a qualified expression, when the type mark denotes an
unconstrained array type;

" the expression in a membership test;

" an expression enclosed in parentheses;

* the innermost subaggregate of a multidimensional array aggregate appearing in
one of the above contexts.

Note that CONSTRAINTERROR will be raised whenever a null string literal appears in one of
%WIT% the above contexts and the lower bound of the Index subtype is also the first value of the index

base type, since in this case, the lower bound has no predecessor. CONSTRAINTERROR will

4.23

-TWI IF ,.Nil 0 W

4.2 Literals Version 1 (Dec 86)

be raised for the same reason when a null string literal is used as a subaggregate of a

multidimensional aggregate appearing in a context imposig an index constraint: .-...
-..t ..

type A2 is array (INTEGEK range <>,
INTEGER range <>) of CHARACTER;

X2 : A2 (3..2, INTKGER'FIRST. .INTEGER'LAST) := (3..2 => ...);

The applicable lower bound is given by the second discrete range,
INTEGER'FIRST..INTEGER'LAST, and since INTEGER'FIRST has no predecessor,
CONSTRAINTERROR is raised. Note that no exception Is raised by the following declaration: N

X3 : A2 (3..2, 1..10) :- (3..2 => ..);

The lower bound of "" is 1, which has a predecessor. The bounds 1..0 are then discarded by
the implicit subtype conversion performed for the assignment.

s5. A string literal can have different lower bounds in a record aggregate even though it occurs
only once. For example:

type R is
record

C1 : STRING (1..2);
C2 : STRING (4..5);

end record;
V R : (Cl I C2 => "ab");

The aggregate is evaluated as though it had been written (Al-00244):
(C1 -> 'lab", C2 => 'lab") -.

Hence, the literal for C1 has lower bound 1 and the literal for C2 has lower bound 4.

S6. The fact that null has an access type can be used in resolving its type:

type Al is access INTEGER;
type AF is access FLOAT,
procedure P (X AI);
procedure P (X INTEGER);

P(null); -- unambiguous

The call is unambiguous because there is only one visible P that takes a parameter of an
access type. Once P is resolved, the type of null is determined to be Al.

S7. The following examples show how overloading resolution can use the fact that a string
literal is a one-dimensional array of character type:

type A2 is array (1..10, 1..5) of CHARACTER;
procedure P1 (X A2);
procedure P1 (X STRING);

P1 ("AB"); -- unambiguous because of dimensionality

The fact that "AS" is a one-dImensional array can be used to resolve the call. Note that P (('A',
'B')) would be ambiguous since dlmensionality Information cannot be used to resolve the type of
an aggregate (RM 4.3/7).

s8. Similarly, one can use the fact that a string literal has an array type.

4-24

% =r

Version 1 (Dec 86) 4.2 Literals P

type R1 is record null; end record;
procedure P2 (X Ri);
procedure P2 (X : STRING);

p
... P2 ("AB"); -- unambiguous because "AB" is an array type

P2 (('A', 'B')); -- ambiguous

The second call is ambiguous because there are two composite types in scope, so ('A', 'B') can
be either one of these types, and P2 accepts parameters of either type.

s9. Finally, the class of the component type can be considered: ._

type AC is array (1..10) of INTEGER;
procedure P3 (X : AC);
procedure P3 (X : STRING);
... P3 ("AB"); -- unambiguous because of component type
... P3 (('A', 'B')); -- ambiguous

si0. A one-dimensional array of a character type can be declared such that there are no usable
string literals for the type except the null string literal:

type NO CHAR is new CHARACTER range ASCII.NUL .. ASCII.BEL;
-- no graphic characters

type NO LIT is array (POSITIVE range <>) of NOCHAR;
X : NO LIT (1..0) ""

Y: NO-LIT (1..3) := "ABC"; -- CONSTRAINT ERROR
procedure P4 (X : STRING);
procedure P4 (X NO LIT);

P4 ("DEF"); -- ambiguous P

"ABC" raises CONSTRAINT ERROR because it is equivalent to ('A', 'B', 'C'), and none of these
character literals belong to the NOLIT component subtype. Note that since NOCHAR is
derived from CHARACTER, NOCHAR is a character type (RM 3.4/4), and all the character
literals belong to NOCHAR's base type. Hence, NOLIT has the basic operation for forming
string literals, and "ABC" is legal as a string literal of type NO LIT,
si 1. Character literals can fail to be visible when a character type is declared in a package:

package P is
type C is new CHARACTER;
type AC is array (l..2) of C;

end P;

X P.AC := "AB"; -- illegal

Unless use P is written before the declaration of X, C's character literals are not visible, so "AB"
is illegal.

S12. In addition, character literals can fall to exist for a type:

type CH is ('A', 'B');
type ACH is array (1..2) of C.;
X : ACE := "BC"; -- illegal

The literal 'C' is not visible for type CH since it is not a value of the type.

4-25

• I

-. % o J " , - ,% ' %- " % " , =. a' " ' a - - ,.•%. . .% a'* *" -.a * . - .

4.2 Literals Version 1 (Dec 86)

Changes from July 1982

S13. The upper bound of a null string lit3,al is defined; CONSTRAINT ERROR is raised when
the bound does not exist.

S14. The character literals used in a string literal must be visible at the point where the string
r, literal is used.
, Changes from July 1980

S15. Rules for determining the bounds of a string literal are given.

si6. Rules are given for determining the type of a string literal and a null literal.

Legality Rules

Li. The type of the literal null must be determinable solely from the context in which the literal
appears, but using the fact that the literal is a value of some access type (RM 4.2/4).

L2. The type of a string literal must be determinable solely from the context in which the literal
appears, but using the fact that the literal is a value of a one-dimensional array type whose
component type is a character type (RM 4.2/4).

L3. The character literals corresponding to the graphic characters contained within a string
literal must be visible at the place where the string literal appears (RM 4.25).

Exception Conditions

El. CONSTRAINTERROR is raised for a null string literal if the lower bound is 'FIRST of the
index {base type (RM 4.2/3).

E2. CONSTRAINTERROR is raised for a string literal if any character in the literal does not
belong to the component subtype (RM 4.2/3 and RM 4.3.2/11).

Test Objectives and Design Guidelines

Ti. Check that real literals are converted with the required accuracy to a floating or fixed point
value (see IG 2.4.1/T2).

T2. Check that the type of the literal null is determined solely from the context but using the
fact that null has an access type (see IG 8.7.b/T28).

T3. Check that the type of a string literal is determined solely from the context but using the
fact that it is a one-dimensional array of character type (see IG 8.7.b/T27).

T4. Check that the character literals in a string literal must be directly visible.
Implementation Guideline: Check when the character literals exist but are not visible, and when the character
literals do not exist for the component type.

Check that a one component string literal Is allowed.
T5. Check that CONSTRAINTERROR Is raised if the lower bound of a null string literal is

'FIRST of the index base type.
Implementation Guideline: Check in each of the contexts in which the lower bound is determined by the index
subtype. IG 4.3.2/T5 requires a similar test for positional aggregates.

Check that CONSTRAINT ERROR is not raised when the lower bound of the literal is
determined by a constraint, e.g., as in A(l..J) :=

T6. Check that CONSTRAINTERROR is raised if a string literal ot array type A contains a
character that does not belong to A's component subtype.
Implementation Guideline: Include a check for a type that has no graphic character in its subtype.

4-26

,"

4=" ", ',# + . ., • - o. . .. " .. - + -% . %" . - , . .,- . . - . .-. .• ° - + .%

.. - ,. .. i

Version 1 (Dec 86) 4.3 Aggregates

17. Check that the lower bound of a string literal is determined correctly (see IG 4.3.2/T14).

4.3 Aggregates
Semantic Ramifications

S1. Note that, syntactically, an aggregate is not a form of name. An aggregate, therefore,
cannot be used as a prefix to form selected components, indexed components, slices, or
attributes.

S2. A vacuous others choice (i.e., a choice that specifies no components) is permissible in an
array aggregate, though not in a record aggregate (RM 4.3.1/1):

type A is array (I .. 10) of INTEGER;

... A' (1 .. 10 => 0, others -> 1) ... vacuous others choice

RM 4.3/5 says the others choice specifies all remaining components, "if any," thereby implying
that the choice may specify no components under some circumstances. RM 4.3.1/1 requires
that an others choice represent at least one component. No similar rule is given in 4.3.2, so an
others choice in an array aggregate can specify no components.

S3. In an aggregate such as

(1..2 => new T) or (AlB => new T)

the expression is evaluated once for each component specified by the choice, i.e., 2 times (RM
4.3.1/3 and RM 4.3.2/10). However, (XJY => 10) can be illegal when (X => 10, Y => 10) is
legal:

type R is record
X : INTEGER;
Y : SHORT INTEGER;

end record;
REC :R := (XIY => 10); -- illegal; RM 4.3.1/1

There is only one expression, which must have exactly one type. However, since array

components must all have the same type, (112 => E) Is always equivalent to (1 => E, 2 => E).
S4. The nule that named association must be used for an aggregate with only one component
eliminates the syntactic ambiguity between such an aggregate and a parenthesized expression,

e.g., (9) can never be parsed as an aggregate.

S5. RM 4.3/4 alone suggests that the following aggregate is legal:

(2, 4, 6, 315 => 0) -- illegal

However, this aggregate cannot be a record aggregate (since 3 and 5 are not component
identifiers), and RM 4.3.2/3 explicitly states that component associations in an array aggregate
(except for an others choice) must be either all positional or all named.
S6. Aggregates are subject to the overloading resolution rules discussed in IG 8.7. in
particular, the type of an aggregate must be determinable solely from the context in which the
aggregate appears, excluding the aggregate itself, but using the fact that this type must be
composite and not limited.

* package P is
type LP (D : INTEGER := 1) is limited private

4-27

7/0 - A09 647 T E D (T E NME) CO MILER VAIDATION C APAILITY 3 9
IMPLEPIENTERS' GUIDE VERSION 1(U) SOFTECN INC WALTAM N

WINCLSSIFID19GOE DC F/0 L2/5S N

' IllU ~ III a "__ III2

IA I N L 11111O SANJ& --is

11111-56
11111 1.8

MICROCOPY RESOLUTION TEST CHART
NATONAL BUREAU OF STAP.OAROS - 1-6

...

w i- w IM

%- %, %

Wfl L MiW aF~ M 7W FrJR r v .1W. w-~.rjr - .rw in ~ It I W-.Jr

4.3 Aggregates Version 1 (Dec 86)

private

type LP (D INTZGER : 1) is ... :

end P;

type RMC is
record

A P.LP;
end record;

procedure PROC (X LP) ;..
procedure PROC (X :MC);
procedure PROC (X STRING);

PROC((1..3 => 'A')); -- unaibiguous

If LP were not a limited type, the PROC call would be ambiguous, since REC would be
composite and nonlimited. Note also that LP Is not a composite type, even though it has
discriminants (RM 3.3/2).
S7. Determination of whether a given aggregate Is an array aggregate or a record aggregate is -,
a consequence of the overloading resolution process. If during the top-down phase of the
resolution process (see IG 8.7.a/S), a unique type has been determined for the aggregate, then
the aggregate is known to be either an array aggregate or a record aggregate. Subsequently,
the choices in the aggregate are resolved as component simple names (in the case of a record
aggregate) or as simple expressions and discrete ranges (in the case of an array aggregate).

Thus the constituents of a given aggregate have different syntactic and semantic properties
depending on whether the aggregate is viewed as a record aggregate or as an array aggregate.
Consider the following example: -

type ENUM is (A, 2, C);
type ARR is array (ENUM) of BOOLEAN;
type REC is

record
A, B, C -> BOOLEAN;

end record;

In REC'(A => TRUE, B => FALSE, C -> FALSE), A, B, and C are identifiers of a record
component (i.e., they are names). In ARR'(A => TRUE, B -> FALSE, C => FALSE), A, B, and
C are expressions (i.e., values).
s. Visibility of identifiers is different inside array and record aggregates, since the identifier of

a record component is directly visible as a choice in a record aggregate of that type (RM ,:
8.3/12). Consider the following example:

package P is
A : constant :- 3
type ,ZC is

record
A : INTEGER; -

end record;
type ARR is ARRAY (3..3) of INTEGER;
procedure PROC (X : MZC);
procedure PROC (X : ARR); . " .*

end P;

4-28

Version 1 (Dec 86) 4.3 Aggregates

package body P is
~begi~n

PROC ((A -> 1).); -- ambiguous
end P;

procedure PROC (X : P.RZC) is ... end PROC;

PROC ((A -> 1)): -- 01 (1)

The last aggregate is unambiguously of type P.REC since only one declaration of PROC is
directly visible; the aggregate is legal since component A is directly visible as a choice. (Note
that (1) would be ambiguous in the presence of use P since in that case there would be more
than one possible resolution for PROC.) Also note that the first call would be ambiguous even if
it were PROC ((3 -> 1)), since the form of the choices cannot be used to resolve the type of the
aggregate (RM 4.3/7).

In short, the set of possible types of an aggregate must include all nonlimited composite types in
scope at the point of occurrence of the aggregate.

Changes from July 1982

sq. The fact that there are no aggregates for limited composite types or private types with
discriminants can be used to resolve the type of an aggregate. .

Changes from July 1980

si0. An aggregate is a basic operation, and hence, aggregate notation is available throughout
the scope of a composite type.
si i. The type of an aggregate must be determined independently of the form of the choices, 5
the types of the choices, the types of the expressions, the presence or absence of choices
(including an others choice), the number of component associations, and whether or not an
expression or choice is static.

Legality Rules

These rules apply to both record and array aggregates.

L. If both positional and named associations appear In the same aggregate, the positional
associations must occur first (RM 4.3/4).

L2. An aggregate containing only one component association must be given in named notation
(RM 4.3/4). S

13. The choice others, if present, must appear alone and in the last component association
(RM 4.3/5).

L4. The type of an aggregate must be uniquely determined by the context in which it appears, ."

excluding the aggregate itself, but using the fact that the type must be composite and
nonlimited (RM 4.3/7). ,

L5. An aggregate cannot be written for a limited type (RM 3.6.2/1, RM 3.7.4/1, and RM %--
7.4.4/11).

Exception Conditions

The exception conditions common to both array and record aggregates are presented 5
here. These exceptions are all associated with the component values specified in an

4"29

4.3 Aggregates Version 1 (Dec 86)

aggregate. Additional exceptions associated with the bounds of an array aggregate are given in ,
IG 4.3.2/E.

For an aggregate of type T, let E be an expression whose value is associated with a
component of type TC. CONSTRAINTERROR is raised if E's value does not belong to TC's
subtype (RM 4.3.1/3 and RM 4.3.2/11). Depending on TC's base type and E's value,
CONSTRAINTERROR is raised specifically under the following conditions.

El. If TC is a scalar type and the component Is not a discrIminant of T, CONSTRAINTERROR
is raised if the value of E lies outside the range specified for TC (RM 4.3.1/3, RM 4.3.2/11,
RM 3.3/4, and RM 3.5/3).

E2. If TC is an array type (note: TC must be a constrained array type), CONSTRAINTERROR
is raised if at least one bound of E is not equal to the corresponding bound specified for TC
(RM 4.3.1/3, RM 4.3.211, RM 3.3/4, and RM 3.6.1/4).

E3. If TC is a constrained record, private, or limited private type, CONSTRAINTERROR is
raised if the values of E's discriminants do not equal the values specified in TC's
discriminant constraint (RM 4.3.1/3, RM 4.3.2/11, RM 3.34, and RM 3.7.2/4).

E4. If TC is a constrained access type designating an object of an unconstrained array, record,
private, or limited private type, DT, and E is not null, CONSTRAINTERROR is raised if

(RM 4.3.1/3, RM 4.3.2/11, RM 3.3/4, and RM 3.8/6):

" any index bound of the object designated by E does not equal the

corresponding bound specified for TC (RM 3.6.1/4).

" any discriminant of the object designated by E does not equal the
corresponding value specified for TC (RM 3.7.2/6). '

". Test Objectives and Design Guidelines

T1. Check that aggregates cannot be used as prefixes to form selected components, indexed
components, slices, or attributes.

Check that aggregates cannot be written for limited array or record types.
Implementaffon Gudeline: Use record and array types that have a task component or a component having a
limited type.

T2. Check that an array or record aggregate cannot contain any of the following:
" an empty list of component associations;

" a single positional association;

e two component associations with the choice others;

" a choice others in any but the last component association;

" a choice others not appearing alone, as in the following example

1l2131others -> 0

* a positional association following a named association.

T3. Check that an expression associated with more than one component is evaluated once for
each component (see IG 4.3.1/T7, IG 4.3.2/1T7, and IG 4.3.2/T8).

T4. Check that CONSTRAINTERROR is raised under the following circumstances, where TC '=-

is the subtype of the component for which an expression is provided in the aggregate: .

4-30

-5- V

Version 1 (Dec 86) 4.3 Aggregates

e a value for a (non-discdminant) component of a scalar type is not within the
range of TC.
Implementation Guideline: Use integer, enumeration, float, and fixed types, including derived
types.

* the bounds specified for a component of an array type do not equal the
bounds of TC.
Implementation Guideline: Use both positional and named notation to determine the bounds.
Include a case where the bounds depend on disriminants. Use static and non-static bounds
(both for TC and for the component In the aggregate). Use null and non-null arrays.

" for a component of a constrained record or private type, the value of a
discriminant in the aggregate does not equal the value of the corresponding
discriminant of TC.
Implementation Guideline: Include a case where the discriminant depends on a discriminant.
Use static and nonstatic discriminants.

" for a component of an unconstrained record or private type, a discriminant
value in the aggregate lies outside the range specified for a discriminant of
TC.

" for a component of a constrained access type designating an object of an
array, a record, or a private type:

e an index bound of the designated object does not equal the bound
specified for TC.

e a disciminant of the designated object does not equal a discriminant
value specified for TC.

Implementation Guideline: Do not use an allocator in the aggregate.

Implementation Guideline: Use both array and record aggregates, including aggregates within aggregates.
Implementation Guideline: When components have different subtypes and their value is specified by a single
component association, check that the subtype checks are performed for each component.

T5. Check that the following are not used in overloading resolution to resolve the type of an
aggregate:

a the number of array dimensions;

e the number of component associations;

a whether the use of an others choice would be illegal; ,,-

e the types of the expressions In the associations;

e the values of the expressions in the associations;

e use of mixed positional and named component associations;

e the staticness or nonstatcness of choices in the aggregate;

e the visibility of names used as choices In the aggregate;

a the fact that CONSTRAINT-ERROR will be raised by certain alternative
resolutions.

Check that if a composite type Is declared in the visible part of a package, any type I,.

conversion within the scope of the package is illegal if the conversion operand is an
aggregate (see IG 4.6/T2).

4-31 ')

4.3.1 Record Aggregates Version 1 (Dec 86)

4.3.1 Record Aggregates.. ,
Semantic Ramifications ..-- ,

Si. Although a single value may be specified for more than one component in a record
aggregate, different components receiving this value might have different subtype constraints
associated with them, as In the example below.

type R is record
X INTEGER range 1..100;
Y INTEGER range 90..110;

end record;
A R := (XIY => 100); -- OK
B R Y(Xi > 10); -- CONSTRAINT ERROR

For each component association, the expression is evaluated and any applicable constraints
must be checked.

S2. When two record components have the same array type with different bounds, the bounds
are checked separately even when a single expression gives the value for each component:

type REC is
record

C1 STRING (1..2);
C2 STRING (2..3);

end record;
V1: REC (Cl I C2 => (others => '));
V2 REC (Cl I C2 => (1..2 => ' ')); -- CONSTRAINTERROR .-...

The first aggregate is evaluated as though it had been written with the same expression for
each component (A-00244), i.e., (Cl => (others => '), C2 => (others => ')). No exception is
raised in this case; the first array aggregate has bounds 1. .2 and the second, 2..3. The second
aggregate is equivalent to writing (Cl => (1..2 => '), C2 => (1-2 => ' ')). CONSTRAINT-
_ERROR is raised because the second array aggregate does not belong to C2's subtype -- the
bounds are incorrect, and no implicit subtype conversion is applied to the aggregate (RM
4.3.2/11).
S3. If an aggregate is used for a record type with a vanant part, the expression given for the
discriminant governing the variant part must be static. The requirement that the expression be
static, however, is not used for overloading resolution. For example, consider the following:

type R1 is
record

: BOOLEAN;
I : INTEGER;

end record;

type R2 (9 BOOLEAN) is
record

case B is
when TRUE -

I : INTEGER:
when FALSE

null;
end case:

end record:

432

Version 1 (Dec 86) 4.3.1 Record Aggregates
procedure P (X : Rl) ;

procedure P (X : R2);

function F return BOOLEAN;

P ((B -> F, I -> 10)); -- ambiguous, although only legal for Ri -,

The aggregate is ambiguous. The fact that it Is legal only if considered of type R1 must not be
used for overloading resolution.

S4. Although the value (or type) of a component may not be used to resolve the type of an
aggregate, once the type has been determined, the value of a discriminant governing a variant
part must be used to determine the types of the components belonging to the variant part, as
shown in the following example:

type R3 (D : BOOLEAN) is
record

case D is
when TRUE >

11 : INTEGER;
when FALSE ->

13 : LOUGINTEGER;
end case;

end record;

X R3 := (TRUE, 5); -- 5 is unambiguously of type INTEGER

Given that the aggregate is type R3, the value of the discriminant shows that 5 has type
-.. INTEGER, i.e., the value of a discriminant is used to resolve the subtype of an aggregate as

well as the type of an aggregate's component. In addition, the value of a discriminant may imply
an aggregate is illegal for a particular subtype, but such illegality does not affect overloading
resolution. For example:

type R4 (D : BOOLEAN) is
record

case D is
when TRUE ->

null;
when FALSE ->

13 : FLOAT;
end case;

end record;
procedure PROC (X : R3);
procedure PROC (X : R4);

PROC((TRUE, 1)); -- ambiguous, although only legal for R3

SS. In all cases, the type of the aggregate must be determined without considering the internal
structure of the aggregate itself (RM 4.3/7). Thus, the various legality considerations and
constraint requirements that pertain to aggregates are not considered for overloading resolution,
and are not applied until after overloading resolution has determined a unique type for the
aggregate.

So. Although a named association with the choice others may appear in an array aggregate
with positional associations for the preceding components, no other form of named association
is allowed In an array aggregate that contains at least one positional association. Hence only 16

a g.record aggregates may have both positional and named associations in their full generality.
.',

4-33

2 .2

4.3.1 Record Aggregates Version 1 (Dec 86)

S7. If a discrminant does not govern a variant part, it need not be specified by a static
expression:

type R5 (A, : POSTZVI; C : BOOLEAN) is
record

D : STRZNG(1..A);
3 : R3(C);

end record;
X : R5 :- (r, G, 3, (1..F -> 'D'), Z -> (TRUE, 3));

The above aggregate Is legal. Neither F, G, nor H need be static. Note, however, that
CONSTRAINT._ERROR must be raised if H /- TRUE, since the subtype of component E is
determined by the value of H. Similarly, CONSTRAINTERROR will be raised if both
evaluations of F do not yield the same value. Finally, the value TRUE in the aggregate for E
must be given with a static expression since this discdminant does govern a variant part.

Ss. A discrminant value can be determined by an others choice:

type R.6 (A : BOOLEAN) is
record

case A is
when TRUE ->

2 : BOOLEAN;
C : INTEGER;

when FALSZ =>
D : XNTEGER

end case;
end record;

Y R6 :- (C -> 3, others -> TRUE);

Note that since the discriminant governs a variant part, the discriminant value must be static,
and therefore, the expression governed by others must be static.

Approved Interpretations

so. In a record aggregate, a component association having multiple choices denoting
components of the same type Is considered equivalent to a sequence of single choice
component associations representing the same components (A1-00244).

Changes from July 1982

sio. There are no significant changes.

Changes from July 1980

si i. Expressions in aggregates are evaluated once for each component (not once for each
textual occurrence).
S12. If the choice others Is given in a record aggregate, It must represent at least one
component.
Legality Rules

LI. An aggregate must specify exactly one value for each component of a record subtype (RM

• each choice in a component association must be an Identifier denoting a -., .

4-34

I' %

Version 1 (Dec 86) 4.3.1 Record Aggregates

component of the record subtype, unless the identifier is the reserved word
others (in particular, choices cannot be specified for components of a
nonexistent variant);

* two choices must not be the same identifier;

* a choice in a component association cannot specify a component whose value
is also specified positionally;

a value must be specified for every component of a record subtype, and for
only those components.

L2. The type of each expression must be the same as the type of the corresponding
component (RM 4.3.1/1).

L3. A component association with more than one choice or with the single choice, others, is
only allowed if the denoted components have the same type and the expression has that
type (RM 4.3.1/1).

L4. It the choice others is given, it must represent at least one component (RM 4.3.1/1).

L5. The value specified for a discriminant governing a variant part must be given by a static
expression (RM 4.3.1/2).

LS. Neither a discrete range nor an expression may be used as a choice in a record aggregate
(RM 4.3/5).

L7. All the legality rules applicable to aggregates in general (IG 4.3/L) must be satisfied.

Exception Conditions

Co See IG 4.3/E.

Test Objectives and Design Guidelines

T1. Check that each of the following is illegal:

" two choices with the same Identifier.

" a choice naming a component whose value was given previously by a
positional component association.

" a choice that is not the identifier of a component.
Implementation Guideline: The choice should be the identifier of a component belonging to a
different subtype of the record, i.e., variant records should be used.

* a component association with more than one choice or with the single choice
others, where the corresponding components have different types.
Implementation Guideline: The corresponding expression should be chosen so that it could
have any of the types in question.

" a component association with the choice others, where the others choice
does not represent at least one component of the record.

" a value is not provided for every component of the record subtype.
Implementation Guideline: Try one case with a variant record type. Use both positional and
named aggregates.

positional associations following a named association (see IG 4.3/T2).

" a range using component names for lower and upper *bounds".

Implementation Guideline: These checks must be repeated for the following cases, where appropriate:

4.-.

' Il[lfk|Jtk~aJitt lbil~i~l~i ~blilillllllnl' t~'mll -35-- -

WMFrV-rK FNVIAPrWv, r~v~r r rWM- L-%A TnT 1 %n n\. %Rnx~.N ~

4.3.2 Array Aggregates Version 1 (Dec 86)

* the aggregate is not overloaded.

* the aggregate is a legal aggregate of some record type R1, but fails the check for some other .,"

record type R2. and its type is not ui ,.ely determined by the context. The aggregate must be
considered illegal.

* the aggregate is a legal aggregate of some array type A. but fails the check for some record type
R, and its type is not uniquely determined by the context. The aggregate must be considered
illegal.

T2. Check that the expression giving the value of a discriminant governing a variant part must
be static. Check both a nonoverloaded and an overloaded aggregate.
Implementation Guideline: Include a case where the discriminant value is given by an others choice
representing more than one component.

Check that the staticness of the expression giving the value of a discriminant governing a
variant part is not used to resolve the type of the aggregate.

T3. Check that if a discriminant does not govern a variant part, its value can be given by a
nonstatic expression.
Implementation Guideline: Use a discriminant not used Inside the record, a discriminant used as an array index
bound, and a discriminant used in a discriminant constraint.

Check that when a disciminant gives the bounds of an array component, the value
assigned to the record has the correct bounds.
Implementation Guideline: Include a check for a generic formal type that has discriminants.

T4. Check that an aggregate is not considered ambiguous if, without considering the value of
the discriminants, it could have more than one subtype of a record type with variants.

T5. Check that in a record aggregate with a form such as (X => E, Y => E), if E is an .,.- .,
overloaded expression, overloading resolution occurs separately for the different
occurrences of E (i.e., the aggregate is not equivalent to (XIY => E) if components X and Y
have different types).

T6. Check that both named and positional notation are permitted within the same record
aggregate if all positional associations appear first. (IG 4.3/T2 checks that positional
associations cannot follow named associations.)

17. Check that an expression associated with more than one record component ;- e-aluated
once for each associated component.
Implementation Guideline: Include a case where others Is associated with more than one compr"
Implementation Guideline: Use expressions with allocators, function calls, and function calls cc, - vD t
operators. Include a case where the expression is an aggregate and the components have dI'efrie os "CX.

T8. Check that the value of a discriminant is used to resolve the type of a compone :- at
depends on the discriminant.
Implementation Guideline: Include a case where the value of a discriminant is determined by an othe.
and a case where the others choice must be static.

4.3.2 Array Aggregates
Semantic Ramifications

si. The type of an array aggregate must be determinable independent of the names used in
choices within the aggregate; the types of the expressions within the aggregate; the forms of the
choices (e.g., the use of 1..2 as a choice does not that imply the aggregate is an array
aggregate); the use of both positional and named associations in the same aggregate (which is
legal only for record aggregates); or the fact that a choice is nonstatic (which may be illegal for
an array aggregate) (RM 4.3/7).

a,.

4-36
- -. *--

Version 1 (Dec 86) 4.3.2 Array Aggregates I

S2. The constraints associated with either the component type or the index type must not be 4.,

used in overloading resolution. In particular, the number of components must not be used:

type S3 is new STRING (1..3);
type S5 is new STRING (1..5);
procedure P (X : 83);
procedure P (X :5);

P ("ABCDE"); -- ambiguous

S3. The requirement that choices be static must be checked after overloading resolution, rather
than being used for overloading resolution. For example:

type MINT is new INTEGER:
function "abs" (X : MINT) return MINT;
type Al is array (INTEGER range 1..10) of INTEGER;
type A2 is array (MINT range 1..10) of INTEGER;

(1..abs(1O) => 0, others => 1) -- ambiguous

It is irrelevant that the aggregate can only legally have type Al (since abs(l 0) is nonstatic for
type A2, and a nonstatic choice is not allowed together with an others choice).

Similarly, if we add the following declarations: 9

type R is
record

X, Y : INTEGER:
end record;

X, Y : MINT := 1;

then the aggregate (X => 0, Y => 1) has type R or A2. The fact that the aggregate is illegal if it
has type A2 is irrelevant when resolving its type.

s4. The fact that a mixture of positional and named notation is forbidden for array aggregates
cannot be used in overloading resolution:

type R is -. 6

record
A, B: INTEGER;

end record;

type Z is (A, 3);

type Al is array (E) of INTEGER;

(0, B => O) -- ambiguous L.
9

It is irrelevant that the aggregate is structurally illegal as an array aggregate.

ss. An array value (and particularly an aggregate) may have an anonymous type introduced by
an object declaration. Although subprograms and operators with formal parameters of such a
type cannot be declared explicitly (because the type cannot be named), the implicit declaration
of operators for the anonymous type can cause ambiguities:

4-37

r" . rd' ,P .- .- .. ,. * W ,P ,, , P " P *,d' #' /' " -"" "''=" "v ,, .=". ' , . ". ' # -" " -- " .," *. " . .- .'" - " ". "

4.3.2 Array Aggregates Version 1 (Dec 86)

type A is array (0..1) of INTEGER;
X array (0. .) of INTEGER;
Y A;

if (1, 2) = (3, 5) ... -- ambiguous

Three equality operators are visible for composite types (equality for STRING, A, and the
anonymous array type), and there is insufficient contextual information to determine which
operator should be chosen; hence the type of the aggregates (1, 2) and (3, 5) cannot be
uniquely determined.

s. String literals are not aggregates according to the syntax, but rather are expressions. ,
Therefore,

" a string literal must be enclosed in parentheses in an allocator and type .5

qualification, where an aggregate would not need extra parentheses:

new STRING "ABCD" . illegal
STRING' "ABCD" . illegal

" a one-component string literal is allowed:
"A".. legal
('A') -- illegal aggregate

S.%

* a null string literal is allowed a e
...... legal "
() -- illegal null aggregate "'

S7. An array aggregate containing an others choice is allowed after := only if the target object
has a constrained subtype. The target object can fail to be constrained in two cases:

• the declaration of a constant object, e.g.:

X : constant STRING := (others => ' '); -- illegal others

• the declaration of a formal parameter of a subprogram, an entry, or a generic
unit, e.g.:

procedure P (X : STRING := (others => ' ')); -- illegal others

s8. The bounds of an array aggregate are computed only after the type of the aggregate has
been determined from the context. If an others choice is used in the aggregate, however, the
bounds of the aggregate must be determined from the context as well. For this reason, the RM
restricts when an others choice may be used in an array aggregate (RM 4.3.2/4-8). In
particular, an array aggregate with an others choice Is not permitted in any context that defines I

an unconstrained subtype for the aggregate. In addition, If the aggregate contains an others
choice and is used in a context where "sliding" of bounds occurs (see below), no other named
associations are permitted.

Since apart from an optional others choice, component associations in an array aggregate must
be either all named or all positional, determination of the bounds reduces to three cases:

* Named or positional associations plus an others choice (or an others choice

alone):

In the presence of an others choice, the bounds of the aggregate are always
determined by the applicable index constraint, since in all contexts where an

4-38

4-38
S -

Version 1 (Dec 86) 4.3.2 Array Aggregates

others choice is permitted, the context determines a unique constrained array
5 subtype for the array aggregate.

Named associations without an others choice:

The bounds are determined by the smallest and the largest choices given. The
bounds of a null array aggregate are always given by a single named
association. The RM does not say, however, that the largest value in this
association is the value of the upper bound, since for a null array, the largest
value Is the value of the lower bound and the smallest value is the value of the
upper bound. Note also that in every legal array aggregate with more than one
choice, each choice must be static (RM 4.3.2/3), and therefore, the bounds can
be determined at compile time for such aggregates.

* Positional associations without an others choice:

The lower bound is determined by the applicable ircex onstraint if the
aggregate appears in a context where an others choice is permitted; otherwise,
the lower bound is defined as S'FIRST where S is the index subtype. In either
case, the upper bound is determined by the number of components.

The rules for positional associations without an others choice apply also to
determination of the bounds of string literals (see RM 4.2/3 and below).

sq. Array assignment and generic instantiation with an array value implicitly convert the array
value to the subtype of the target. This conversion adjusts the bounds of the aggregate to
match those of the target variable (this is sometimes called "sliding"):

type R is
record

0 A - STRING (1..10) := (2..11 => 'A'): -- will slide
end record;

X STRING(I..3) := (2 => 'A', 3..4 => 'B'); -- will slide;
-- X(2) = 'B'

X (21314 => '0'); -- will slide

sio. Named associations are not allowed together with an others choice in contexts where
sliding of the bounds occurs:

type A is array (POSITIVE range 1..4) of INTEGER;
W A (others => 0); -- legal
X A (1, 2, others => 3); -- legal with positional but
Y A := (1 => 1, others => 0); -- illegal with named associations
Z A := A' (1 -> 1, others -> 0); -- legal

This rule derives from consideration of examples like the following:
Z(3..4) := (2 -> 0, others -> 3); -- illegal

What should the lower bound of the aggregate be: 1, the lower bound of the index subtype, or 3,

the lower bound of the applicable index constraint? If the lower bound of the applicable index
constraint is chosen, then the explicit choice, 2, cannot be accepted, and presumably,
CONSTRAINTERROR should be raised. Choosing the lower bound of the index subtype, i.e.,
1, would be a different rule from that used for positional aggregates in this context. By making
such usage illegal, a programmer is required to say explicitly which of these possible
interpretations is intended.

,*,/,., S11. When a null string literal is used in a context where sliding occurs, the lower bound of the

4-39

N

SR l S S l i'Rl i A r Z J M i'S NR S M I l IM ! v IMPUTUT W !flMNWMM 79V VW V9 LWq LWtr

4.3.2 Array Aggregates Version 1 (Dec 86)

literal is determined by the applicable index constraint rather than by 'FIRST of the index .'-.'- -
subtype:

type ENUM is (A, 3, C);
type S is array (ZNUH range <>) of CRARACTER;
SI : S(C..A) := ""; -- no exception
S2 : S(C..B) := (others => 'A'); -- no exception
S3 : BOOLEAN : "" S' ("AB"); -- CONSTRAINT ERROR

CONSTRAINTERROR is raised by the null string literal in the declaration of S3 since its type is
S, there is no applicable index constraint, and the Index subtype's lower bound is ENUM'FIRST.
Since there is no predecessor for ENUM'FIRST (RM 4.2/3), CONSTRAINTERROR is raised.
CONSTRAINTERROR is not raised in the declaration of S1 or S2, however, since the lower
bound of "" and (others -> 'A') Is determined by the index constraints (C..A) and (C..B),
respectively, i.e., the lower bound Is C. (Although the upper bound of the string literal in Si's
declaration is B (see RM 4.2/3), there is no way to check on this since the effect of the
assignment to S1 is to change the bounds to C..A (RM 5.2.1/1 and RM 4.6/11).) Note that the
subtype conversion implicit In the initialization of S1 and S2 cannot be written explicitly since a
string literal Is not allowed as the operand of a conversion (RM 4.6/3), and type conversion is
not one of the contexts in which an aggregate with an others choice is permitted.

S12. If an array aggregate has a null range, it cannot also have an others choice, since static
null ranges are required to be the sole choice of a single component association, and nonstatic
choices (including nonstatic null ranges) are also required to be the sole choice of a single
component association.

S13. If an others choice has no corresponding components (RM 4.3/5), the expression ,"'

associated with the choice is not evaluated (RM 4.3.2/10). Nonetheless, the expression must
have the type of the array component.

S14. If an others choice appears in an aggregate and more than one component association is
also present, the corresponding index subtype and discrete range must be static (AI-0031 0):

subtype SMALL is INTEGER range P..Q; -- P, Q nonstatic

type B1 is array (SMALL range <>) of INTEGER;
Xl : B1(1..5) :- (1, others => 2); -- illegal

type B2 is array (SMALL range <>, INTEGER range <>) of INTEGER;

X2 : B2(1..5, 1..5) :- (1..2 => (3, others => 4), -- legal others
others -> (1..5 =>0)); -- illegal others

SMALL is a nonstatic subtype so 81 has a nonstatic index subtype. Consequently, although the
discrete range in X1's declaration is static, the others choice is not allowed. In B2's declaration,
the first dimension has a nonstatic index subtype; the second index subtype is static.
Consequently, the first others choice is allowed (the corresponding index subtype and discrete
range are both static), and the second Is illegal (the corresponding index subtype is nonstatic).

sis. An others choice In an aggregate can sometimes be associated with both a static and a
nonstatic index constraint, In which case, the enclosing aggregate can be illegal:

type REC is
record

ST : STRING (1..3);
NS : STRING (1..} -- N is nonstatic ,,

end record:

4-40
-. .' -

.
- * *J. 4

Version I (Dec 86) 4.3.2 Array Aggregates

OBJ : REC := (ST I NS => (others => ' ')); -- illegal
The aggregate is equivalent to:

(ST => (others => ' '), -- legal
NS => (others => ' ')) -- illegal others

Since the applicable discrete range for the second others choice is not static, the aggregate is
illegal (AI-00244).
S16. A generic formal discrete type is not static within the generic unit, but it can denote a static
type in an instance. Hence, an others choice can be illegal for an array type that is declared in
a generic template, but legal for the corresponding type in an instance (AI-00409):

generic
type T is range <>;

package SET OF is
type SET is array (T) of BOOLEAN;
X : SET := SET' (I => TRUE, others => FALSE); -- illegal

end SET-OF;

subtype SMALL is INTEGER range 1..10;
package SET OF SMALL is new SET OF (SMALL);
subtype SMALLSET is SET_OF_SMALL. SET;

SET : SMALL SET := SMALL SET' (1 => TRUE, others =>); -- legal

The index subtype for SETOF.SET is not static within the generic unit since T is a generic
"'. ":"' formal type. But in the instance, SET_OF SMALL, T denotes SMALL, and SMALL is a static

type. Hence, SMALLSET has a static Index constraint and the use of others in the
initialization of SET is legal (AI-00O09).
S17. RM 4.3.2/2 allows a string literal "in a multidimensional aggregate at the place of a one-
dimensional array of character type." This rule allows the use of string literal notation even
though no one-dimensional array of character type has been declared:

type A2 is array (1..2, POSITIVE range 2..3) of CHARACTER;
Xl : A2 :- (l..2 -> "EF"); -- legal

The declaration of A2 is not equivalent to:
type anon is array (POSITIVE range 2..3) of CHARACTER;

type two-dim is array (1..2) of anon;

No one-dimensional array Is implicitly declared, since even after A2 is declared, the following
expression is unambiguous:S'.,

= "AB" . . unambiguous

It is unambiguous because only one equality operation is visible for a one-dimensional array of
a character type, namely, the operation declared in STANDARD for the type STRING. (Note:
('A', 'B') - ('A', 'B') would be ambiguous because two equality operators for composite types are
visible; hence, the type of the aggregate ('A', 'B') cannot be determined from the context of its
use.)
SIS. Although RM 4.3.22 allows a string literal to be used in a multidimensional aggregate, it

V .does not allow an expression that delivers a value of type STRING to be used, e.g.:

XIA : A2 := (1. .2 => "E" £ "F"); -- illegal
"E" & "F" is an expression, not a literal, and so is not allowed as a subaggregate.

4-41

.'., .-I .' . .-'..- '' ' -''-''-'" " ' •.-" "....'-. -". "" ". ". "- "- "-.', .'..'2'=,- ...%.%.. , .'2'.""4""-" ".'JS

4.3.2 Array Aggregates Version 1 (Dec 86)

SSig9. There are two kinds of array aggregates: multidimensional aggregates, whose form is ;, ,
specified in AM 4.3.212, and one-dimensional aggregates that are not subaggregates of
multidimensional aggregates. There are ,)veral significant differences between these kinds of
aggregates. For example, consider the use of an others choice together with named
associations:

type AS is array (1. .2) of STRING(2. .3);
X2 A2 (1..2 => (2 => 'E', others => 'F')); -- illegal
Z2 AS (1..2 => (2 => '3', others => 'F')); -- legal

For X2, the outer aggregate has a multidimensional array type; hence, the inner aggregate is a
subaggregate, and the legality of the others choice depends on the context in which the
multidimensional aggregate is used (AM 4.3.2/6 and AI-00177). In this case, the context does
not allow an others choice together with named associations (RM 4.3.2/6). For Z2, the outer
aggregate has a one-dimensional array type; the Inner aggregate Is therefore not a
subaggregate, but instead, Is an expression of a component association. An others choice is
allowed in this context (RM 4.3.2/8); moreover, since the restrictions on named associations
(AM 4.3.2/6) don't apply in this context, the named associations are allowed as well.

S20. The syntactic form of a multidimensional array aggregate is fully specified in P"" ; -.:
In particular, extra parentheses are not allowed to enclose a subaggregate of c"
multidimensional aggregate. Hence:

X3 A2 (1..2 => ("EF")); -- illegal parentheses
Z3 AS (1. .2 => ("EF")); -- legal

'-"

For Z3, the extra parentheses are allowed since ("EF") is not a subaggregate.

S2i. Although all choices of an aggregate must, In principle, be evaluated, and although all 14

expressions associated with non-vacuous choices must be evaluated, the AM does not specify
whether all choices and expressions must be evaluated before the checks in AM 4.3.2/11 are
made. AM 4.3.2/10 simply specifies that no expression in a component association can be
evaluated until all choices have been evaluated; RM 4.3.2/11 simply specifies what checks must
be made when values are known. In the absence of specific wording stating that the checks
can only be made after all choices are evaluated, an Implementation is free to make the checks
as soon as possible. For example:

AS' (F..G > (H..I => 'XI)) -- (1); one-dixmensional

If F..G is not a null range, an implementation is allowed to check that the values of F and G
belong to the index subtype prior to evaluating the inner aggregate. However, since the index \bi

subtype checks need not be performed before evaluating the expressions of an aggregate, it is -
also permissible to evaluate H and I prior to checking the F and G values, and if H..I is not a null
range, the expression 'X' can be evaluated before checking that F, G, H, and I belong to the
index subtype. If F .G is a null range, then H, I, and 'X must not be evaluated (AM 4.3.2/10).

S22. The evaluation of choices in a multidimensional aggregate proceeds differently from the
evaluation for a one-dimensional aggregate whose component type is an array:

A2'(F..G -> (W..1 -> 'X')) -- (2); aultidimensional

If F..G is a non-null range and F or G does not belong to the index subtype, CONSTRAINT- 1P
_ERROR can be raised before evaluating H or I, and must be raised even If H..I is a null range
(AI-00313i If F..G is a null range, then H..i must be evaluated to see whether it also is a null
range. If it is rot, CONSTRAINTERROR must be raised If H or I does not belong to the index
subtype. Since the order of evaluation of choices is not defined for a multidimensional array,
the range H..1 could he evaluated and checked before evaluating F or G.

4-42

= - IP
- '

. .. I - • . . . •

Version 1 (Dec 86) 4.3.2 Array Aggregates

If F..G and H..I are both non-null ranges and no exceptions are raised, F, G, H, and I are
evaluated just once (RM 4.3.2/10). In the one-dimensional case, if F..G and H..I are both non-
null ranges and no exceptions are raised, then H and I are each evaluated G-F+1 times, since
the expression in the aggregate must be evaluated once for each component.

In short, the semantic differences between the evaluation of choices and expressions in one-
dimensional and multidimensional aggregates can be summarized as follows:

* if F..G is a null range, then

1. H must be evaluated (in the multidimensional case);

2. H must not be evaluated (in the one-dimensional case); -'

* if F..G is not a null range and F does not belong to the index subtype, -

CONSTRAINTERROR can be raised before or after evaluating 1-:, ;, or X, in
either the multidimensional or one-dimensional case.

* if F..G Is not null and F and G belong to the index subtype,

1. H and I must be evaluated once (if neither raises an exception) (the 1.

multidimensional case);

2. H and I must be evaluated G-F+1 times, i.e., once for each component of
subtype AS (the one-dimensional case). I

The above conclusions are not changed even if F..G is replaced with a static range.

S23. Now consider:

A2 '(1 => (H..I => 'x'),
2 => (H..1 => 'Y')) -- (3)

As'(1 => (H..I => 'X'),
2 => (H..1 => 'Y')) (4)

For the multidimensional aggregate in (3), H and I are evaluated once for each textual
occurrence as a choice (unless an exception is raised before all the evaluations are done); an
exception could be raised for any of the following reasons:

" the evaluation of H or I raises an exception.

" a range, H..I, is non-null, H or I does not belong to the index subtype, and this
check is made before evaluating all occurrences of H and I.

" a check that all the subaggregates have the same bounds is done before all
occurrences of H and I are evaluated.

S24. For the following multidimensional array:
(1..2 =>(,..G =>,Fl),

3..4 => (H..1 => F2))

CONSTRAINTERROR can be raised as soon as:

" F and H have been evaluated and It has been determined that F/= H;

o F and G have been evaluated, F..G does not define a null range, and the value
of either F or G does not belong to the Index subtype.•II

S25. Just as all choices do not have to be evaluated before making certain checks, so all .
expressions do not have to be evaluated before checking to see if an expression's value

4-43

Y~i P

4.3.2 Array Aggregates Version I (Dec 86)

belongs to a component subtype. CONSTRAINTERROR can be raised as soon as a violation
of a component subtype constraint is detected. For example, if F1 above does not satisfy the ...
component constraint, then F2 need not LC .valuated.

S26. Note that the reason for not evaluating certain choices or expressions in an aggregate is
independent of the optimization rules given in RM 11.6. The RM leaves an implementation free
to perform the checks before all the choices or expressions are evaluated. If the consequence
of performing a check is to raise an exception, then an additional consequence is that certain
expressions or choices may not have yet been evaluated.

S27. A multidimensional aggregate can specify a null array even if no choices in the aggregate
are null:

type S2 is array (POSITIVE range <>,
POSITIVE range <>) of CHARACTER

X6 : S2(4..3, 1..2) := (F..G => ""); -- no exception

No exception is raised for the above aggregate unless F..G Is non-null and the value of F or G
does not belong to the index subtype, POSITIVE. The lower bound of the string literal is 1,
since the second discrete range of (4..3, 1..2) determines the lower bound. Hence,
CONSTRAINTERROR will be raised in the following case:

X7 : S2(4..3, INTEGER'FIRST..-1) := (F..G => fill);

The lower bound of "" is INTEGER'FIRST, which has no predecessor, and so CONSTRAINT-
_ERROR is raised (RM 4.2/3) before the implicit subtype conversion is applied.

S28. For multidimensional aggregates, the bounds of each subaggregate are determined .. ,
independently:

X4 : A2 := (1 => "AS",
2 => (3 -> 'D', 4 => 'E'));

CONSTRAINTERROR will be raised because the bounds of "AB" will be 2..3, and these
bounds do not equal the bounds of the second subaggregate. Note that CONSTRAINT-
_ERROR cannot be raised because the bounds of the subaggregate in tla second component
association are 3..4 instead of the bounds of A2's second dimension. The following aggregate
would raise no exception:

X5 : A2 -- (1 => (3..4 => 'A'),
2 => (3..4 => 'B'));

No exception is raised because the index subtype for A2's second dimension is POSITIVE, not
2..3 (see RM 3.6/5), and the bounds of the multidimensional aggregate are not required to
match the bounds of A2's subtype. Moreover, the subtype conversion associated with
assignment adjusts the bounds of the second dimension. The same aggregate would give rise
to CONSTRAINTERROR in the absence of the subtype conversion, e.g., if the aggregate were
used as an actual parameter when the formal parameter's subtype was A2.
S29. Consider the same aggregate assigned to a variable of type AS:

Z5 : AS := (1 -> (3..4 -> 'A')
2 => (3. .4 => 'B'));

CONSTRAINTERROR will be raised because the subtype of the Inner aggregate must satisfy
the subtype constraint for AS's component (RM 4.3.2/11), and AS's component subtype is
STRING(2..3) p....

S30. If a positional aggregate (or string literal; see RM 4.2/3) is enclosed in parentheses, the

4-44

Version 1 (Dec 86) 4.3.2 Array Aggregates

bounds of the aggregate (or literal) are determined by the index subtype since the aggregate no
longer appears in one of the contexts specified by RM 4.3.2(a-c), e.g.:

X6 : AS :- (1..2 -> ("EW")); -- CONSTRAINTERROR
-- -.

The bounds of *EF" are 1..2, but the AS component subtype requires bounds 2..3. Hence,
CONSTRAINTERROR will be raised. CONSTRAINTERROR would not be raised if the
parentheses enclosing "EF" were omitted, since the bounds of the string literal would then be
determined by the applicable index constraint, 2..3.
S31. Even for null array aggregates, subaggregates must have the same bounds. For example:

(3..4 => (1..0 -> 0),

5..6 => (2..1 => 0)) -- CONSTRAINTERROR

(1..0 => (3..4 => (1..2 => 0)
(5..6 => (7..8 => 0))) -- CONSTRAINT ERROR

--- w

In the first example, the null choices do not have the same bounds; in the second example, the
non-null choices, 1..2 and 7..8, have different bounds.
S32. AI-00019 specifies that the bounds of a positional aggregate must belong to the -"

corresponding index subtype. In particular, consider:

type ENUM is (A, B, C, D); 5
subtype SMALL is ENW range A..C;
type ARR is array (SMALL range <>) of INTEGER;
function F (CEOICE : BOOLEAN) return ARR is
begin

return (1, 2, 3, 4); -- CONSTRAINT ERRORend P; -

The lower bound of (1, 2, 3, 4) is A and the upper bound does not belong to the index subtype, %
SMALL, so CONSTRAINT-ERROR is raised when the aggregate is evaluated.

Approved Interpretations

S33. An others choice is static if the corresponding index subtype is static and the •
corresponding index bounds are specified with a static discrete range (AI-00310).
S24. If an index subtype has a generic formal type (or a type derived directly or indirectly from a
generic formal type), the index subtype is not static within the generic unit, so aggregates can
have only a single component association with a single choice (Al -00190). i-V

S35. For a generic Instantiatlon, if an actual generic parameter Is a static subtype, then every
use of the corresponding formal parameter within the instance is considered to denote a static
subtype, even though the formal parameter does not denote a static subtype in the generic
template (A1-00409).
s3e. If an aggregate containing an others choice is the expression of the component
association of an enclosing array aggregate, and the aggregate containing the others choice is S

a subaggregate, the others choice Is allowed (with or without additional named associations) if
and only if the enclosing multidimensional aggregate Is In a context that allows an others choice
(with or without additional named associations). If the aggregate with the others choice is not a
subaggregate, the others choice is allowed (with or without additional named associations)
(AI-00177).
S37. For positional aggregates, a check is made that the index bounds belong to the
corresponding index subtype; CONSTRAINT ERROR is raised if this check fails (AI-00019).

4.'-,4,5
4-45 S.

\' ,' Z,:, ,."ZP_"r3 .'W :-.: ..' . ,>- , ;._,' % '% -.. .. , :. .. ,. ,"•*.", , /." " " .' '. . .

4.3.2 Array Aggregates Version 1 (Dec 86)

s3s. For the evaluation of a non-null dimension of a multidimensional aggregate, a check is -
made that the index values defined by choices belong to the corresponding index subtype. The
exception CONSTRAINTERROR Is rais-:, if this check falls (AI-00313).

Changes from July 1982

S39. Named associations are not allowed in an aggregate with an others choice that appears
as an actual generic parameter.

S4O. If an object is declared with an anonymous array type, it can be initialized with an
aggregate that has an others choice.

S41. For a multidimensional aggregate, a check is made that all (n-i)-dimensional
subaggregates have the same bounds.

Changes from July 1980

s42. A null range must not be given if there is more than one component association or more
than one choice in the aggregate. (Hence more than one null range is forbidden.)

s43. An aggregate with an others choice (but no other named associations) is allowed after:=
in an assignment statement, constrained formal parameter declaration, constrained object
declaration, or record component declaration.

s,4. An aggregate with an others choice is allowed as a generic actual parameter.

S45. Rules for evaluating an aggregate's choices and expressions are given. In particular, an
expression is evaluated once for each choice specified in a named association, and the
evaluation order of expressions Is explicitly not defined by the language.

s46. CONSTRAINTERROR is raised if the value of a subcomponent does not belong to the / .-. '.. .

subtype of the subcomponent.

$47. In a multidimensional array aggregate, the one-dimensional subaggregates must have the
form of either string literals or aggregates; arbitrary expressions yielding suitable one-
dimensional array values are not allowed. Similarly, (n-1)-dimensional subaggregates must be
written as aggregates when n > 2 (i.e., no other form of expression is allowed).

Legality Rules

L The type of each choice must be the type of the corresponding index (RM 4.3.2/2).

L2. The type of an expression specifying an array component value must be the same as the
type of the component (RM 4.3.2/1).

L3. If an aggregate has an n-dimensional array type where n > 1, the aggregate must be
written as a one-dimensional aggregate in which each expression is written as an (n-i)-
dimensional subaggregate, and similarly, an n-dimensional subaggregate (for n > 1) must
be written as a one-dimensional aggregate In which each expression is an (n-i)-
dimensional subaggregate. However, when n - 2 and the array's component type is a
character type, an expression In the two-dimensional subaggregate may have the form of a
string literal (RM 4.3.2/2).

L4. An array aggregate must not contain a mixture of positional and named component
associations unless the only named component association is the last component
association, and this association has the single choice others (RM 4.3.2/3).

L5. When more than one choice is given, every choice must be static and non-null, i.e., for
choices of the form E, L..R, ST, and ST range L..R, L, R, and E must be static '" i
expressions, ST must denote a static subtype, and the discrete ranges L..R, ST, and ST -...
range L..R must not be null (RM 4.3.23).

4-46

two.%r

Version 1 (Dec 86) 4.3.2 Array Aggregates

L6. If others is a choice in an aggregate containing more than one component association, the,.
corresponding index subtype and discrete range must both be static (RM 4.3.2/3 and
AI-0031 0).

L7. An array aggregate (one-dimensional or multidimensional) with the choice others can only
appear:

" as an actual parameter corresponding to a constrained formal parameter of a
subprogram or entry (RM 4.3.215-6); .

" as an actual generic parameter corresponding to a constrained generic formal ._

parameter, and where no other named associations are used in the aggregate
(RM 4.3.2/5);

" in a return statement in a function whose return type is constrained (RM
4.3.2/5-6);

* as the expression following := in: an assignment statement, a record
component declaration, the declaration of a formal parameter of a
subprogram, entry, or generic unit when the formal parameter is constrained, .
or the declaration of a variable or constant having a constrained subtype ..'
indication; all component associations must be positional, except for the
association having the choice others (RM 4.3.25-6);

" in a qualified expression (or allocator), where the type mark denotes a I
constrained array subtype (RM 4.3.2/7);

" as the expression of an enclosing record or array aggregate if the aggregate ,
with the choice others (RM 4.3.2/8 and AI-001 77):

* is not a subaggregate (named associations are also allowed);
9 is a subaggregate of a multidimensional aggregate that occurs in a

context that allows an others choice (named associations are allowed
in addition if the multidimensional aggregate appears in a context that
allows an others choice with such named associations).

L8. For an array aggregate using named associations without an others choice, the set of
values covered by the choices must be complete, i.e., If the minimum choice value is L and
the maximum is R, every value in the range L.. R must be represented exactly once in the
set of choices (there must be no omissions and no duplicates) (RM 4.3/6).

L9. A choice must be an expression or a discrete range (RM 4.3/5).
LI0. All the restrictions of IG 4.3/L must be satisfied.

Exception Conditions

Note: We list here only those conditions under which the type of an array aggregate alone
is sufficient to determine that CONSTRAINT_ERROR should be raised. When such an
aggregate Is used as an Initialization, assigned value, actual parameter, return value, or
operand of a qualification, additional conditions determine whether an exception must be raised.
These conditions are specified explicitly in each of these contexts (see IG 3.6/E, IG 3.7.2/E2, IG .
4.3/E, IG 4.7/E, IG 5.2.1/E, IG 5.8/E, and IG 6.4.1/E).

The conditions listed in IG 4.3/E are In addition to the following:
.0.

El. For a multidimensional aggregate, CONSTRAINT-ERROR is raised if the subaggregates
for a given dimension do not all have the same bounds (RM 4.3.2/11).

4-47

4.47 "

-5

4.3.2 Array Aggregates Version 1 (Dec 86)

E2. For a multidimensional or one-dimensional aggregate, CONSTRAINTERROR is raised if
the lower or upper bound for at least one non-null discrete range does not satisfy the range %

constraint of the associated index s- , ype (RM 4.3.2/11 and AI-00313).

E3. CONSTRAINTERROR is raised for a positional aggregate If the upper bound does not
belong to the index subtype (A1-00019).

Test Objectives and Design Guidelines

T1. Check that:

" an array aggregate must not contain a positional component association .
preceding a named association that does not have the choice others.

" a choice must not be a nonstatc expression or a static null discrete range in
an aggregate with more than one component association or more than one
choice.
Implementation Guideline: Try choices of the form E, L..R, ST, ST range L..R, and A'RANGE
(where A is an array object or a constrained array type with static bounds and a static index
subtype.)
Implementation Guideline: Include cases such as (F..G -> 0), others -> 1) and (2..1 => 0,
others -> 1) when the index subtype is static.
Implementation Guideline: In some cases, the index subtype should be a generic formal
discrete type, or a type derived directly or Indirectly from a formal type.

if an aggregate has more than one choice or component association and one
choice is others, the corresponding Index subtype and discrete range
(AI-00310) must be static. ,, .
Implementation Guideline: Include a use of a null static range and a vacuous others choice.
Implementation Guideline: Check where the component associations are both positional and
named.
Implementation Guideline: Include a case where the subtype and index bounds for an index are
static, but another dimension has either a nonstatic index subtype (with static index bounds) or
nonstatic index bounds.

" for a non-null dimension of an aggregate, no index value between the lower
and upper bound of the aggregate can be left uncovered by the set of choice
values.
Implementation Guideline: Include a null multidimensional aggregate with one non-null
dimension. eg.,

S(1. 2 -> (2..1 -> 1),
-- 3 oitted
4.5 -> (2..1 -> 2))

" an index value must not be represented more than once in the set of choices.
Implementation Guideline: Check for ranges that overlap, for duplicate choice values, and for
an overlap between a choice value and a range.

" the type of a choice must be the same as the corresponding Index type.

" the type of the expression specifying an array component value must be the
same as the type of the array component.
Implementation Guideline: Include a case where the expression associated with a vacuous
others choice is not the correct type.

" the innermost subaggregate of a multidimensional aggregate cannot be
enclosed in parentheses. -.

Implementaton Giideine Check for both one-dimensional and multidimensional aggregates.

"a

4-48

V V ;

Version 1 (Dec 86) 4.3.2 Array Aggregates

T2. Check that an array aggregate with an others choice is illegal: A

* as an Initial value in a constant declaration where the subtype indication
specifies an unconstrained array type.

* in the declaration of an object or formal parameter (of a subprogram, entry, or
generic unit) when the object or parameter has a constrained array subtype
and additional named associations are used in the aggregate.

" in the declaration of a subprogram, entry, or generic formal parameter that has %
an unconstrained array type. to "o

" in an assignment statement when additional named associations are used in
the aggregate.

" as the operand of a predefined operator when the context specifies a
constrained array subtype (e.g., F(not(others -> TRUE)), where F's formal
parameter is constrained).
Implementation Guideline: Check for not, and, or, xor, "-"P "/-", &. ">", ">-" "<",and

" as the expression in a membership test when the type mark denotes a ,'
constrained or unconstrained array type.

" in a qualified expression when the type mark denotes an unconstrained array
type.

" as an actual In parameter corresponding to an unconstrained formal .
parameter of a subprogram, entry, or generic unit.

* p-' " as an actual In parameter corresponding to a constrained formal parameter of ,.
a generic unit, when additional named associations are present.

" in a return statement In a function returning a result of an unconstrained array
type. ..

when the corresponding index subtype or discrete range is nonstatic and more
than one component association Is present (see TI).

Implementation Guideline: Include cases where the aggregate appears as a subaggregate.
Implementation Guideline: When possible, for every illegal case with a multidimensional aggregate, create a
legal aggregate having the same form, but for an array of array type. -o

T3. Check that a parenthesized array aggregate with an others choice is illegal:

" as an actual In parameter of a subprogram call, an entry call, or a generic
instantiation, when the formal parameter is constrained.

" as the result expression of a function when the result type is constrained.

" as the initialization expression of a constrained constant or variable object
declaration, constrained formal parameter (of a subprogram, entry or generic ,
unit), or record component declaration.
Implementation Guideline: Include initialization of a variable having an anonymous array type.

" as the expression in an assignment statement.

" as the operand in a qualified expression when the type mark denotes a
corstralned array subtype.

" as an expression specifying the value of an array or record component.

'."J4-49

% F,4' o % I P d %

rwvv v -77-7. -rp777 'V .1r7,W -7. r7u .- u -7YW-be -. * ~ *

4.3.2 Array Aggregates Version 1 (Dec 86)

Implementation Guideline: Use parqnthesized exprezsions in both one-dimensional and

multidimensional aggregates.

Implementation Guideline: Try both multid'-r'qnsionai and one-dimensional parenthesized aggregates. l,
Implementaton Guideline: Use both positional and named associations when possible, i.e., except in the
generic instantiation and after :-.

T4. Check that an aggregate with an others choice can appear in the following contexts, and
that the bounds of the aggregate are determined correctly (e.g., no CONSTRAINT-
_ERROR is raised and the components covered by the others choice have the correct
values):

an actual parameter of a subprogram call, an entry call, or a generic %

instantiation, when the formal parameter is constrained.

*the result expression of a function when the result type of the function is a
constrained array type.

* the initialization expression of : constrained constant or variable object
declaration, constrained formal parameter (of a subprogram, entry, or generic
unit), or record component declaration.
Implementation Guideline: Include Initialization of a vadable having an anonymous array type.

e as the expression in an assignment statement.

o as the operand in a qualified expression when the type mark denotes a
constrained array subtype.

e as an expression specifying the value of an array or record component.
Implementation Guideline: Use both one-dimensional and multidimensional aggregates for
which a component value is specified with an others choice. "* *'

Implementation Guideline: Try both multidimensional and one-dimensional aggregates with others choices.
Implementation Guideline: Use both positional and named associations, except for the generic instantiation
and after:-.
Implementation Guideline: Include cases where the others association is the only association and the
corresponding index subtype or discrete range is nonstatic.
Implementation Guideline: Include cases where more than one component association is present.
Implementation Guideline: Include a multidimensional array case In which some dimensions have static index -
subtypes and some do not, and check that an others choice is allowed when the index subtype is static (see
also T1).
Implementation Guideline: All the above contexts should be checked for both null and non-null aggregates. In
particular, for null aggregates, 'FIRST of the Index subtype should have no predecessor in some cases.

T5. Check that the bounds of a positional aggregate are determined correctly. In particular,
check that the lower bound Is given by:

* 'FIRST of the index subtype when the positional aggregate is used as:

" an actual parameter in a subprogram or entry call, and the formal
parameter is unconstrained;

" an actual parameter in a generic instantlation, and the formal parameter
is unconstrained;

" the return expression in a function whose return type Is unconstrained;

" the initialization expression of a constant whose type mark denotes an
unconstrained array;

" the ieft or right operand of "&", the relational operators, and the equality
operators;

4-50

Version 1 (Dec 86) 4.3.2 Array Aggregates P

an expression enclosed in parentheses when the value of the
the expression is the value of a record component or array component.

the lower bound of the applicable Index constraint when the positional
aggregate is used as:

* an actual parameter In a subprogram or entry call, and the formal
parameter Is constrained;

" an actual parameter in a generic instantiation, and the formal parameter
is constrained;

" the return expression in a function whose return type is constrained;
* the initialization expression of a constant, variable, or formal parameter

(of a subprogram, entry, or generic unit) when the type of the constant.
variable, or parameter Is constrained;

" the expression of an enclosing record or array aggregate, and the
expression gives the value of a record or array component (which is
necessarily constrained).
Implementation Guideline: Include a case where the aggregate is the value of more
than one component, each of which have different bounds (see IG 4.3T7).

Implementation Guideline: A multidimensional positional aggregate should be tried in some of the above
cases.

T6. Check that the bounds of a null array aggregate are determined by the bounds specified by

the choices. In particular, check that the upper bound is not the predecessor of the lower
bound.
Check that neither the upper nor the lower bound need belong to the index subtype.
Check that if one choice of a multidimensional aggregate is non-null but the aggregate is a
null array, CONSTRAINTERROR Is raised If one of the bounds of the non-null range does
not belong to the index subtype.
Implementation Guideline: IG 4.3.2/T1 I makes the equivalent check for non-null arrays.

17. For a multidimensional aggregate of the form (F..G -> (H..I => J)), check that:

o H and I may but need not be evaluated if F..G is a non-null range and F or G
do not belong to the Index subtype;

* if H..I Is a null range, CONSTRAINTERROR Is raised if F..G is a non-null
range and F or G do not belong to the Index subtype.

@ if no exception is raised, F, G, H, and I are evaluated once, whether or not
F..G Is a null range.

e J Is evaluated once for each component (zero times if the array is null).

T8. For a one-dimensional aggregate of the form (F..G -> (H..I -> J)), (i.e., an array of array
type rather than a multidimensional array type), check that:

* if F..G is a null range, H, I, and J are not evaluated;
* if F..G is a non-null range, H and I are evaluated G-F+1 times, and J is

* evaluated (I-H+1) "(G-F+1) times if H..l Is non-null.

Perform similar checks for a multidimensional array type that has an array component type,
i.e., check that the expression giving the component value is evaluated the appropriate
number of times.

4-51

.t%• - ? -j, ~ M~~''

4.3.2 Array Aggregates Version 1 (Dec 86)

T9. Check that a stnng literal can be used in a multidimensional aggregate in place of the final
one-dimensional aggregate.
Implementation Guideline: Repeat the relevant tests for IG 4.3.2/T5.

Check that the string literal cannot be enclosed in parentheses in such a case.
Implementation Guideline: Include a check that the multidimensional array declaration does not implicitly
declare a one-dimensional array of a character type, so "AB" - "AB" is unambiguous.

T10. Check that a non-aggregate expression in a named component association is evaluated
once for each component specified by the association. (Aggregates are checked in T7 and
T8.)

T11. Check that CONSTRAINTERROR is raised if a bound in a non-null range of a non-null
aggregate does not belong to the index subtype.
Implementation Guideline: IG 4.3.2/T6 makes the equivalent check for null arrays.

Check whether all choices are evaluated before the check is made.
Implementation Guideiine: Use a multidimensional aggregate with at least two subaggregates, In one case. a
subaggregate should have static bounds; in another case, all subaggregates should have nonstatic bounds.

T12. Check that CONSTRAINT ERROR is raised if all subaggregates for a particular dimension
do not have the same bounds.
Implementation Guideline: Check for both null and non-null subaggregates.

Check that bounds for subaggregates are determined independently of each other.

Check whether all choices are evaluated before subaggregates are checked for identical
bounds.

T13. Check that "sliding" occurs for a multidimensional aggregate, but not for the component ,,
expression of an identical array of array aggregate.

T14. For a multidimensional aggregate of the form (F..G => ."), check that CONSTRAINT-
_ERROR is raised if F..G is non-null and F or G do not belong to the index subtype.

Check that the lower bound for a string literal is determined by the applicable inoex
constraint, when one exists (see IG 4.2/T7).

T15. Check that CONSTRAINTERROR is raised for a positional array aggregzte whose upper
bound exceeds the upper bound of the index base type.
Implementation Guideline: Use both an integer and an enumeration type for the index subtype. In the integer
case, NUMERIC ERROR can be raised when the upper bound exceeds SYSTEM.MAXINT. but
CONSTRAINT_EIROR is preferred (see AI-00387).

T21. Check that

a. completeness of an aggregate is not used in overloading resolution.
Impleenntation Guideline: The aggregate must be simultaneously a legal record aggregate and
an incomplete array aggregate. The compiler must consider it ambiguous.

b. The length of the aggregate is not used for overloading resolution.

T22. Check that an array aggregate need not be resolvable to a constrained subtype, as shown
by the following example:

type A is array (INTEGER range <>) of INTEGER
B : BOOLEAN := (1, 2, 3) = A' (1, 2, 3); -- legal

T23. Check that the restrictions on the contexts in which an array aggregate with an others
choice may legally appear are not used in overloading resolution.

T24 Check that a nonstatic choice of an array aggregate can be a range attribute.

4-52

z,

Version 1 (Dec 86) 4.4 Expressions

4.4 Expressions
Semantic Ramifications

Si. The syntax for expressions containing logical operators does not permit them to be
intermixed without using parentheses. For example, A and B or C is illegal and must be written
as (A and B) or C or as A and (B or C). Similarly, unless parentheses are used, sequences of
exponentiations, such as A *° B °* C, and sequences of unary adding operators, such as -+A or
A + -B, are not permitted. Since "abs" is at a higher level of precedence than unary "-", it is ,-
legal to write A - abs B. However, since "" Is at a higher level of precedence than "-", it is
illegal to write A °° -B. Finally, since and "abs" are at the same level of precedence, it is
illegal to write A °° abs(B).

S2. Names that denote types, subtypes, procedures, packages, tasks, entries, exceptions,
operators, labels, blocks, or loops are not permitted as primaries in expressions. Similarly, the
BASE and RANGE attributes do not have values and hence are not permitted as primaries.

S3. Overloading resolution in expressions is covered in IG 8.7.

s4. It is important to note that any real (or integer) expression can be calculated with more
precision than that requested. For instance, all computations could be performed double length,
with only single-length loading and storing to memory. In addition, an optimizing compiler is
permitted to perform some computations at compile time (possibly using hardware that is
different from the run-time hardware; the compile-time hardware might compute results more
precisely or use different rounding algorithms, so different results could be obtained depending •
on whether computations are performed at run time or at compile time). Compile-time (and
run-time) computations are only required to yield results that fall within the appropriate model
interval; they need not produce exactly the same values that would be produced by the target
hardware. These points are discussed further in IG 4.10/S.

s. Each primary has a value only if its evaluation does not raise an exception. C

s6. Operator symbols and character literals appearing in expressions are subject to the usual
visibility rules (RM 8.3/18). In particular, if a type is declared in a package, its operators are not
visible outside the package unless a use clause is applied:

package P is
type INT is range 1..100; •
-- implicit declaration of "+" etc.

end P;

X P.INT 3;
Y : P.INT := X + 3; -- illegal; "+" not visible 1%'

use P;
Z : P.INT X + 3; now legal

In, not in, and then, or else and := are not operators; they are notations associated with basic , N"
operations (see RM 3.3.3/4). Basic operations are visible throughout their scope (RM 8.3/18).
In particular, since assignment Is a basic operation, the initialization of X and Y is legal even
without the use clause for P. Moreover,

8 : BOOLEAN :- 3 in P.INT;

would be legal before or after the use clause for P.

Changes from July 1982

S7. "abs" and "not" are given the same precedence as

4.53
S

'U%

4.4 Expressions Version 1 (Dec 86)

ss. Reading of out parameters (or their subcomponents) is not allowed (except for bounds and
discriminants). .

Changes from July 1980

S9. The membership operation now requires a type mark Instead of a subtype indication.

Si0. "abs" is now an operator instead of a predefined function.

Legality Rules

L1. Only the following names are permitted as primaries in expressions (RM 4.4/3):

" attributes other than 'BASE and 'RANGE; and

" names that denote objects or values (in particular, identifiers declared 'n
object declarations, parameter declarations, or number declarations, indexed
components, slices, selected components, and character literals).

L2. Names of formal parameters having mode out are not allowed as primaries in expressions
(RM 4.4/3).

L3. Names of subcomponents of formal parameters having mode out are not allowed as
primaries, except for names that denote disciminants (RM 4.413).

L4. An operator must be directly visible before it can be used In an expression as an operator
(RM 8.3/18).

Test Objectives and Design Guidelines

Ti. Check that :.. .

a. the logical operators (and, or, xor, and then, or else) cannot be intermixed in
expressions unless parentheses are used to separate the different operators.
Implementation Guideline: Try at least the following illegal expressions:

A and B or C
A and B and C or lase D and E

b. a relation can have at most one relational operator, e.g., a sequence of
relations such as A <= B <= C is not permitted unless parentheses are used
(as in (A <= B) <= C) or the implicit and is made explicit (as in A <= B and B
<=C).

c. unless parentheses are used, a simple expression can have at most one
unary adding operator, which must precede the leftmost term.
Implementation Guideline: Try at least the following illegal expressions:,"

-+A A *-B
-- A A **- B

A + -C aba - A

Note that - abs A is legal.

": d. a factor can have at most one operator, e.g., a sequence of exponentiations
such as A *B C is not permitted unless parentheses are used (as in A ** (B
*" C)). Also, A * abs (B) and not not D are illegal. %

e. a procedure call cannot be a primary.

T2. Check that type, subtype, subprogram, package, task, entry, exception, label, block, and
loop names are not permitted as primaries.

4-54

. a . N ,..

Version 1 (Dec 86) 4.5 Operators and Expression Evaluation
P

Check that the following attributes are not permitted as primaries: BASE and RANGE.

T3. Check that all operations have the correct precedence.

T4. Check that the form

X in typemark constraint

is illegal.

4.5 Operators and Expression Evaluation

Semantic Ramifications

si. Membership tests and short-circuit control forms are basic operations, not operators (RM
3.3.3/4). Since they are not operators, these operations are visible throughcut their scope (RM
8.3/18). Operators are visible according to the usual visibility rules (RM 8.3/18), and so a use
clause may be needed to make a set of operators directly visible (see IG 4.4/S).

S2. An operator can be invoked using named notation, e.g., "+"(LEFT => A, RIGHT => B).

S3. The rules for evaluation of operands in an expression require evaluation in some order,
which means evaluation in parallel is not allowed. For example, consider:

FI*F2 + V3 S

Itf F1, F2, and F3 are all functions with side effects, then the evaluation orders F1, F3, F2 or F2,
F3, F1 are not allowed: F1*F2 is one operand of "+"; if this operand is evaluated before the
second operand, it must be completely evaluated before the second operand is evaluated.

s4. In principle, all operands must be evaluated and all operations performed, e.g., in principle

I /= 0 and A/Z > 100

must raise NUMERICERROR (or CONSTRAINTERROR; see AI-00387) when I = 0 since A/0
raises NUMERIC ERROR (or CONSTRAINT ERROR). However, RM 11.6/7 allows
predefined operations to be omitted if their only effect is to raise an exception. If an
implementation takes advantage of this rule, no exception need be raised by the above
expression. However, if A Is a function, it must be evaluated whether or not the division is
performed. (Of course, A's evaluation can be omitted If an implementation can determine that
the evaluation has no effect, i.e., does not raise an exception and does not change any global
variables.)

s5. RM 4.5/4 says operators having the same precedence are associated left to right with their
operands. This association of operators with operands defines a canonical association. RM
11 .6/5 then specifies that different associations are allowed if they produce the same result. For
integers, "same result" means that the same value is produced or an exception (NUMERIC-
ERROR or CONSTRAINT ERROR; see AI-00387) is raised. For reals, the result must belong

to the model interval defined by the canonical association or an exception (NUMERICERROR
or CONSTRAINTERROR) must be raised. For example, consider:

P1 + F2 + F3

This expression can be evaluated as if it had been written F1 + (F2 + F3), even if F2 + F3 raises
NUMERICERROR (or CONSTRAINTERROR; see AI-00387) and the evaluation of (F1 + F2)
+ F3 would not raise any exception. Because of the possibility of reassociating operators, F3
can be evaluated after F2 and before Fl; in such a case, the sum of F2 and F3 must be I
computed. No reassociation of operands with operators allows F3 to be evaluated after F1 and ;Z'
before F2.

4.5
I

4.5 Operators and Expression Evaluation Version 1 (Dec 86)

S6. Suppose the evaluation order is F2, F3, "+", F1 and the evaluation of F1 will raise an
exception only for this order of evaluation. Since the reassociation of operands with operators is
only allowed to introduce a predefined exception (raised by a predefined operation), the

suggested evaluation order would not ba allowed by RM 11.6/5. In effect, if the primaries of an
expression contain calls to user-defined functions, an expression must be evaluated in the
canonical order defined by RM 4.5/4-5. These issues are discussed further in IG 11.6/S.

S7. Although, in general, the operators mentioned In RM 4.5 are implicitly declared by type
declarations, the ... operator for fixed point multiplication and the "/" operator for division with
two fixed point operands are both declared in STANDARD (RM 4.5.5/9).

S8. If, when computing an operand of an expression, an integer arithmetic operator returns a
value that does not belong to the base type, NUMERICERROR (or CONSTRAINTERROR;
see AI-00387) need not be raised if the mathematically correct result is returned. This can
happen, for example, if arithmetic is performed using an operation with a wider range, e.g.. if
INTEGER arithmetic is performed using LONG_INTEGER operations. RM 11.6/6 allows such
substitutions. However, NUMERICERROR (or CONSTRAINTERROR; see AI-00387) must
be raised for the final result if the expression's value Is not a value of the type. For example,
consider:

X := (A*B)/C;

Suppose A. B, C, and X are INTEGER variables. NUMERICERROR (or CONSTRAINT-
_ERROR) need not be raised if A*B lies outside the range of the base type as long as the
quotient lies within the range. If the quotient does not lie within the range, then NUMERIC-
_ERROR (or CONSTRAINTERROR) should be raised (by the "/" operation).

sq. NUMERIC ERROR for real types is discussed in IG 4.5.7/S. .--.

Approved Interpretations

SiO. When the RM requires that NUMERICERROR be raised (other than by a raise
statement), CONSTRAINTERROR can (and should) be raised instead (AI-00387).
Changes from July 1982

si 1. "abs" and "not" have the same precedence as ".

S12. Parameter names for predefined operators are LEFT and RIGHT (not L and R).

Changes from July 1980
S13. Evaluation order rules are specified more completely. Operands cannot be evaluated in

parallel.

S14. "abs" is now an operator (instead of a predefined function).

Legality Rules

Li. If named notation is used to call a predefined operator, the operand names are LEFT and
RIGHT (RM 4.5/6).

L2. An operator must be directly visible before it can be used In an expression as an operator
(RM 8.3/18).

Test Objectives and Design Guidelines

Ti. Check that each binary operator can be called using named notation with formal parameter
names LEFT and RIGHT (see subsequent tests).

Check that each unary operator can be called using named notation with the formal ". "
parameter name RIGHT (see subsequent tests).

4-56

Version 1 (Dec 86) 4.5.1.a Logical Boolean Operators

4.5.1 Logical Operators and Short-Circuit Control Forms
Semantic Ramifications
si. The logical operators and short-circuit control forms are implicitly declared for derived
boolean types and return a result having the derived type. Relational operators are also
declared for derived boolean types, but these operators return a predefined BOOLEAN result
(RM 3.5.5/15, RM 4.5.1/2, and RM 4.5.2/3).

Approved Interpretations

s2. If both operands of a predefined logical operator do not have the same number of
components, execution of a program is not erroneous (CONSTRAINTERROR is raised)
(Ai-00426).

Changes from July 1982

S3. If both operands of a logical operator are null arrays, the upper bound of the result array is
the upper bound of the left operand.

Changes from July 1980

s4. The logical operators now return a value having the same type as their operands when the
operand has a derived boolean type or an array type with a derived boolean component type.

S5. The short-circuit control forms now return a value having the same type as their operands
". when the operand has a derived boolean type.

S6. When the operands are arrays, the lower bound of the result is no longer defined by the

index subtype of the array type.

Legality Rules

L1. Both operands of the predefined logical operators must have the same base type (RM
4.5.1/1).

L2. Both operands of the short-circuit control forms must have the same base type (RM
4.5.1/4).

L3. "and", "oro, and "xor" are predefined only for boolean types (i.e., the predefined type
BOOLEAN and types derived (directly or indirectly) from the predefined BOOLEAN type)
and for one-dimensional arrays whose component type is a boolean type (RM 4.5.1/2).

L4. The operands of the short-circuit control forms must have a boolean type (RM 4.5.1/4).

Exception Conditions

El. CONSTRAINTERROR is raised by "and", "or", and "xor" if both operands are arrays
having different lengths (RM 4.5.1/3 and RM 4.5.27), even if the arrays have undefined
component values (AI-00426).

4.5.1.a Logical Boolean Operators
Legality Rules

L1. The operands of predefined "and", "or", and "xor" must both have the same base type (RM4.5.1/1)."

L2. "and", "or", and "xor" are predefined for boolean types (i.e., the predefined type BOOLEAN
and types derived (directly or indirectly) from predefined BOOLEAN) (RM 4.5.1/2).

4-57

4.5.1.b Logical Array Operators Version 1 (Dec 86)

Test Objectives and Design Guidelines

T1. Check the correct operation of and, or, and xor, including combinations with not.
Implementation Guideline: Use deMorgan's iw. i.e.,

not (A and B) - not A or (not B)
not (A or B) - not A and (not B)
not (not A and (not 8)) - A or 8

as well as simpler tests.
Implementation Guideline: Include some calls using named notation for parameters.

Check that types derived from BOOLEAN are permitted.

T2. Check that the operands of predefined and, or, and xor cannot have scalar nonboolean
*h" types.

Implementation Guideline: Use integer types and nondiscrete types.

4.5.1.b Logical Array Operators

Semantic Ramifications

si. When a logical operator is applied to two null arrays, the bounds of the result are the
bounds of the left operand (RM 4.5.1/3), but when two null arrays are catenated, the right
operand determines the bounds of the result (RM 4.5.3/4).

S2. The operands of a logical array operator are checked to see if they have the same number
of components. This check is performed before the components are evaluated (AI-00426).
Consequently, if some components have undefined values, CONSTRAINTERROR is raised
and execution of the program is not erroneous (see RM 3.2.1/18).

Approved Interpretations

S3. If both operands of a predefined logical operator do not have the same number of
components, execution of a program is not erroneous (CONSTRAINTERROR is raised)
(AI-00426).

Legality Rules

L1. The operands of the predefined logical operators must both have the same base type (RM
4.5.1/11).

L2. "and", "or", and "xor" are predefined for one-dimensional arrays whose component type is
a boolean type (RM 4.5.1/2).

Exception Conditions

El. CONSTRAINT ERROR is raised by "and", "or", and "xor" if both operands are arrays
having different lengths (RM 4.5.1/3 and RM 4.5.2/7), even if one of the operands has a
component with an undefined value (AI-00426).

Test Objectives and Design Guidelines

TI I. Check the correct operation of and, or, and xor for array operands (including combinations
with not).
Implementation Guideline: Check the truth table for these operations.
Implementation Guideline: Include a check that the operators are defined when the component type is a
derived boolean type.
Implementation Guideline: Use named notation for some calls. " . -s

4-58

, , ;, r; - W1U U WN WV WV pis , "'I., . LIT: r 7II, '.\.

Version 1 (Dec 86) 4.5.1.c Short-circuit Control Forms

T1 2. Check that the operations yield correct results for operands having different bounds but the
V same length.

Check that the bounds of the result are the bounds of the left operand, using each of the
contexts in which the bounds of the result have a detectable effect.
Implementation Guideline: These contexts are: initialization of an unconstrained constant array; actual
parameter when the formal parameter is unconstrained (both for subprograms and generic instantiations);
allocating a constrained array (exception should be raised if bounds are not correct); return statement of a
function; qualified expression (exception should be raised); value of a component in an aggregate; default initial
value of a record component; default initial value of a constrained formal parameter.
Implementation Guideline: Repeat some of the tests when the result is a null array.

T13. Check that CONSTRAINTERROR is raised when the operands have different lengths.
T14. Check that the operations are defined for arrays having both INTEGER'LAST components

and more than INTEGER'LAST components.

Check that the operations are defined for packed arrays.
Implementation Guideline: The type declarations for such arrays might raise NUMERICERROR (or
CONSTRAINT ERROR; se AI-00387). The object declarations might raise STORAGEERROR, NUMERIC-
_ERROR, or CONSTRAINTERROR (see IG 3.6/S and AI-00387).

T16. Check that multidimensional arrays and one-dimensional nonboolean arrays are forbidden
,

as operands.
implementation Guideline: Check private types whose full declaration declares a derived boolean type.

Check that and then and or else are not defined for one-dimensional BOOLEAN arrays
(see IG 4.5.1 .c/T21).

4.5.1.c Short-circuit Control Forms
A .Legality Rules

LI. The operands of short-circuit control forms must both have the same boolean type (RM
4.5.1/4).

Test Objectives and Design Guidelines

T21. Check that operands of short-circuit control forms cannot have a nonboolean type.
Implementation Guideline: In particular, check one-dimensional arrays of BOOLEAN and derived boolean
types.

T22. Check that and then and or else are actually short-circuit evaluated.
Implementation Guideline: Use conditions such as

A /- 0 and then B/A > C

or

PI=null and then P.F - D

and check that the appropriate alternative is selected. Also check that no exceptions (such
as NUMERICERROR or CONSTRAINTERROR) are raised by the evaluation of the
condition. Try some conditions with and and or operators as well as short circuited and
then or or else.

T23. Check the truth tables for and then and or else.
Implementation Guideline: Include a check for derived booleans.

4-59

P

4W.5W .pi naW1i W pors . n MI go t Version R1 An 861

4.5.2 Relational Operators and Membership Tests Version 1 (Dec 86)

4.5.2 Relational Operators and Membership Tests
Semantic Ramifications

si. Operands of relational operators must have the same base type, but they may have
different subtypes. The subtype of one operand does not have to satisfy the subtype constraint
of the other operand. For example, if X is a variable having subtype WEEKDAY (so it can only
have the values MON..FRI), X can be compared with SUN, even though SUN is not a permitted
value of X.

S2. The note in RM 4.5.2/12 states that a predefined relational operation never raises an
exception although (of course), evaluation of an operand may cause an exception to be raised.
This note implies that even if an Implementation evaluates A < B by computing A - B and
comparing the result with zero, NUMERICERROR (or CONSTRAINTERROR; see AI-00387)
should not be raised (even though RM 11.1/6 suggests that this exception could be raised). A
programmer-defined relational operator may, of course, raise an exception.
S3. Although RM 4.5.2/3 says the operand type for equality and inequality may be "any type,"
other rules in the language imply that equality operations are not predefined for all types. In
particular, equality operations are not implicitly declared for limited types. Moreover, even if a
user-defined equality operator is provided for a limited type, no equality operator is implicitly
declared for a composite type having components of the limited type. For example:

type T is limited private;
function "=" (X, Y : T) return BOOLEAN;
type R is array (1..10) of T;

"= is not implicitly declared for type R. Unless an explicit declaration of "=" is provided,
objects having type R cannot be compared for equality (or Inequality).
s4. For scalar types, the membership tests, in and not In, are defined in terms of the
predefined ordering operators, even if the user has redefined these operators.
ss. A comparison such as null = null is legal if there is only one visible equality operator for an
access type (since, in such a case, null's type can be determined from the fact that null has
some access type and from the type required by the visible ",=- operator). In particular, the
scope of an ac,:ess type is not directly relevant:

package P istype STR ACC is access STRING; declares "=" for STR ACC

end P:

with P:
package Q is

type INT ACC is access INTEGER; -- declares "=" for INT ACC
X : BOOLEAN := null - null; -- legal; only one "=" visible
use P;
Y : BOOLEAN := null = null; -- illegal; two "='"'s visible

end Q;

The comments in each case refer to equality operations declared for access types.

Changes from July 1982

S6. There are no significant changes.
Changes from July 1980 ." 1

S7. Lexicographic order is defined.

4-60

Version 1 (Dec 86) 4.5.2.a Relational and Membership Operations (Enumeration)
0

Legality Rules *."

Li. The operands of the predefined ordering and equality operators must have the same base
type (RM 4.5.2/1).

L2. For a membership operation, the base type of the type mark (and similarly, the base type I
of each bound in a range, or the base type of a RANGE attribute) must be the same as the
base type of the left operand (RM 4.5.2/10).

L3. Equality (and inequality) are not predefined for limited types (RM 4.5.2/1) or for the type
universal fixed (RM 4.5.5/11). (A limited type is a task type, a limited private type, or a
composite type containing a subcomponent having a limited type (RM 7.4.4/2)).

L4. The ordering operators are predefined only for scalar operands and for operands having a
one-dimensional array type whose components have a discrete type (RM 4.5.2/1).

Test Objectives and Design Guidelines

(For T1, T2, and T3, see IG 4.5.2.a/T1 -T3.)

T4. Check that relational and membership operations return values of type
STANDARD.BOOLEAN, even when this type is hidden.
Implementation Guideline: Try declaring a new type BOOLEAN: check that expressions involving relational
and membership operations can be used as conditions, but are not legal expressions of the user-defined
BOOLEAN type. Derived boolean types are checked in IG 4.5.2.c/T20.

T5. Check that relational expressions of the form A < B < C are forbidden for discrete types.
17. Check that equality and inequality are not predefined for limited types or for types derived

from a limited type (see also IG 7.4.2/Ti).
Implementation Guideline: Check a task type, a limited private type, array of tasks, array of limited private
types, record with a task or limited private component, arrays of a limited composite type. and records with a
component of a limited composite type. I--
Implementation Guideline: For composite limited types, try cases where equality is defined for all components 4.

of the type.

T8. Check that relational operators are not defined for operands of different types.
T9. Check that membership operations are not defined for operands of different types.

Implementation Guideline: Use operands that belong to the same class of types.
Implementation Guideline: Include a check using the RANGE attribute when the index range does not have the
correct type..',r

4.5.2.a Relational and Membership Operations (Enumeration) A
Test Objectives and Design Guidelines

T1. Check that: ,.4,-

= and /- produce correct results, in particular, for operands having different
subtypes; "4'

the ordering of enumeration literals, as defined by the ordering operators, is
the same as the order of occurrence of the literals in the type definition. ;'.
Implementation Guideline: For example, check that

(A < B) - (T'POI (A) < T'POS ())
holds for any A and B, where the subtypes of A and B may be different from
each other and from T.

4-61
S

-4..;

-. -- .".". - - . - . .%. w, - .-"-• .. '-" .-"..,.. ". ."." °.. . ." .".," ° .-, ,'-% .,--,,- ,," .- 4 '.,'." ; , :

4.5.2.c Relational and Membership Operations (Boolean) Version 1 (Dec 86)

Implementation Guideline: Use named notation for some calls of each equality and ordering operator. .".
.-. "

T2. Check the proper operation of the membership operations in and not in, using subtype .,, -
names and explicit ranges as the second operand.
Implementabon Guideline: Include a use of A'RANGE.
Implementation Guideline; When a subtype name is used, at least one case should contain a first operand
value that lies outside the range associated with the subtype name. e.g.. MON In MIDWEEK;
Implementation Guideline: Try a case where the user has redefined the ordering operators. e

Implementation Guideline: Check all forms of membership test:

X in typemark
X .n T'RANGZ
X in L. R:

T3. Check that variables of two enumeration types having identical sets of enumeration values
appearing in the same order cannot be compared with an equality or ordering operator.
Implementation Guideline For example, given

type T is (A. B.C. D):
type U is (A. B. C, D):
X T:
Y U;

it is illegal to write X - Y or X < Y..,

4.5.2.b Relational and Membership Operations (Character)
Test Objectives and Design Guidelines

T10. Check that an enumeration type imposing an 'unnatural' order on alphabetic characters,
e.g., type T is ('C', 'B', 'E', 'D'); yields the appropriate results for the ordering operators,
e.g., T'('C') < T'('B').

Ti 1. Check membership tests for an 'unnatural' ordering of character literals.

4.5.2.c Relational and Membership Operations (Boolean)
Semantic Ramifications

si. When a boolean type is derived, the predefined equality and ordering operations are
implicitly declared for the derived type (RM 3.4/6). These operations take operands having the
derived boolean type and return a predefined BOOLEAN result. The result has a predefined
BOOLEAN type as specified in RM 4.5.2/3. In particular, the result does not have the derived
type:

type NB is new BOOLEAN; %
A, B : N8 := TRUE;
X : BOOLEAN :A = B = B; -- illegal
Y : BOOLEAN A = B = TRUE; -- legal
Z :NB A - B; -- illegal

A - B = B is illegal because (A = B) has type BOOLEAN, and there is no equality operator with
a BOOLEAN left operand and an NB right operand. A - B - TRUE is legal because TRUE can
be resolved to the BOOLEAN enumeration literal. The initialization of Z is illegal because A = B
does not return an NB value. ",

Test Objectives and Design Guidelines

T20. Check all combinations of the relational and membership operations for BOOLEAN values
and ranges.

4-62

#""'" " ', ''','.'Z .'. ' "" "' " '". '., '.'' '' ' ' '"" " """ " " " ' " " ° " " " " " " '." 4a

F 9 I ff Y - kW - h W - W ~ ~ V d U ~ W
W U - Y

-U W WW 1 V W V W V W ; W W -w
m l N - bV

W "- - ;

Version 1 (Dec 86) 4.5.2.d Relational and Membership Operations (Integer)

Implementation Guideline: Include a check for derived boolean types.
III-

T21. Check that for a derived boolean type, the relational, equality, and membership operations
"- have the result type predefined BOOLEAN.

Implementation Guideline: To ensure that an implementation does not provide, say, an equality that returns a
predefined BOOLEAN type and one that returns the derived boolean type. include some cases such as
DERIVEDBOOL'(A-B-C), which will be unambiguous if the two equality operators are provided.

I."

4.5.2.d Relational and Membership Operations (Integer)
Semantic Ramifications

si. Comparisons with integer literals do not raise any exception if the literal belongs to the
base type, and need not raise NUMERIC_ERROR (or CONSTRAINTERROR; see AI-00387)
even if the literal has a value outside the base type:

type T is rang* 0. .3000;
X T := 15;
C BOOLEAN :- X - 1 000 000; -- NUMERIC ERROR?

If T'BASE'LAST is less than 1_000_000, then the implicit conversion of 1_000_000 to T'BASE
can raise NUMERICERROR (or CONSTRAINTERROR; see AI-00387) (RM 4.5/7). However,
the exception need not be raised, because in the above case, the answer is obviously FALSE if
1 000_000 exceeds T'BASE'LAST; RM 11.6/6 explicitly states that NUMERICERROR need
not be raised in such a case.

S2. Relational operators are defined to take arguments belonging to the base type. For
example, consider:

type T is range -12..10:
X T -3:-3;

B BOOLEAN :- X - 12; - no exception raised ..
No exception can be raised by the equality operator because the base type of T at least "

includes the symmetric range -12..12, so 12 belongs to the base type even though it does not
belong to T.

Approved Interpretations

S3. When the RM requires that NUMERICERROR be raised (other than by a raise
statement), CONSTRAINT ERROR can (and should) be raised instead (AI-00387).

Test Objectives and Design Guidelines

T31. Check that the relational and membership operations yield correct results for integer types. S
Implementation Guideline: Include a use of A'RANGE. -.

Implementation Guideline: Separately test SHORT INTEGER, INTEGER. LONGINTEGER, other predefined _
integer types (if any). and derived Integer types.
Implementation Guideline: For some of the membership tests, include cases when the ordering operators have
been redefined.
Implementation Guideline: Use named notation once for each of the equality and ordering operators. I rv
Implementation Guideline: Check all forms of membership test:

X in type_ N.a
X in T'RiG&
X in L. .R:

T32. Check whether NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised
when a comparison (or the first operand in a membership test) is a literal exceeding the
range of the base type.

4-63

I)-

4.5.2.e Relational and Membership Operations (Fixed/Float) Version 1 (Dec 86)

Implementation Guideline: If an implementation supports more than one predefined integer type, distinguishcases where the literal exceeds SYSTEM.MAX INT and cases where the literal is less than SYSTEM.MAX- ",.:m

_INT.-",..-

Check that no exception is raised when a literal is used that belongs to the base type but
lies outside the subtype of the other operand. --
Implementation Guideline: Use values such that overflow could occur if the relational result is computed by
subtracting one operand from the other.

"a,

4.5.2.e Relational and Membership Operations (Fixed/Float)
Semantic Ramifications -

St. "not" (A < B) need not be equal to (A >= B) under certain circumstances, e.g., when the
model intervals associated with A and B have more than one value in common (see RM 4.5.7).
This is a natural consequence of the rules specified for real computations; because of these
rules, the values of A and B are, for nonmodel numbers, implementation-defined within certain
limitations. This potential imprecision makes the results of comparisons implementation-
dependent.

S2. Ada does impose a language-defined relationship between the results of "=" and "/=",
i.e., Ada does require that not (A = B) = (A/= B) (RM 4.5.2/2). Similarly, in and not in have a
complementary relationship (RM 4.5.2/10).

Test Objectives and Design Guidelines

T41. For floating point types, check the following:

a. A = same as not (A = B), even for numbers that are not model numbers,

b. A < B same as not (A >= B), for model numbers,

c. A > B same as not (A <= B), for model numbers,

d. adjacent model numbers give correct results,

e. nonmodel numbers with distinct model intervals give correct results,

f. when the intersection of two model intervals is a single model number, the
correct result is given.

Implementation Guideline: Use named notation at least once for each equality and ordering operator.

T42 For floating point types, check whether NUMERICERROR (or CONSTRAINTERROR;
see AI-00387) is raised when a literal used In a comparison or as the first operand of a
membership operation does not belong to the base type.

Check that no exception is raised for a floating point relational operator or for a
membership operation If literal values belong to the base type.
Implementation Guideline: Include values such that overflow would occur if the relational operation were
implemented using subtraction.

T43. Check that A In T and A not In T give the appropriate results even when user-defined
ordering operators exist for T.
Implementation Guideline: Check both forms of membership test: 5%

X in type_ mark
X in L. R;

T51. For fixed point types: "

a. A B same as not (A = B), even for numbers that are not model numbers,

4-64

Version 1 (Dec 86) 4.5.2.f Relational and Membership Operations (Array)

b. A < B same as not (A >- B), for model numbers,

,,~ c. A > B same as not (A <= B), for model numbers,

"' d. adjacent model numbers give correct results,

e. nonmodel numbers with distinct model intervals give correct results,

f. when the intersection of two model Intervals is a single model number, the
correct result is given.

Implementation Guideline: Use named notation at least once for each equality and ordering operator.

T52. For fixed point types, check whether NUMERICERROR (or CONSTRAINTERROR; see
AI-00387) is raised when a literal used in a comparison or as the first operand of a
membership operation does not belong to the base type.

Check that no exception is raised for a fixed point relational or a membership operation if
literal values belong to the base type.
Implementation Guideline: Include values such that overflow would occur if the relational operation were
implemented using subtraction.

-".1

T53. Check that A In T and A not In T give the appropriate results, even when user-defined
ordering operators exist for T.
Implementation Guideline: Check both forms of membership test:

X in typemrk
X in L. .R;

4.5.2.f Relational and Membership Operations (Array)

Semantic Ramifications

Si. When a subcomponent of an array has a record type with default discriminants, equality
comparisons must generally be performed on a component-by-component basis. For example:

subtype SMALL is INTEGER range 0..2000,
type VSTRING (CUR-LEN : SMALL :- 0) is

record
VAL : STRING (1..CURLEN); -- or a variant part

end record;
type VARRAY is array (1..10) of VSTRING;

X : VARRAY;

X :((1..10 => (5, "AAAXX"))

Y : X;

X(1) := (3, "CCC");
Y(1) := (3, "CCC");

if X Y then ...

The comparison, X - Y, must yield the value TRUE even though the position occupied by
X(1).VAL(4) probably equals 'X' and Y(1).VAL(4) probably equals 'Y' for most implementations.
Alternatively, the assignments of (3, "CCC") must set the unused positions of the VAL
component to a specific value. If this approach is taken, then component-by-component
comparison is not necessary. The situation illustrated by this example occurs whenever an

4-65

4.5.2.f Relational and Membership Operations (Array) Version 1 (Dec 86)

array component type contains (directly or indirectly) a component whose discriminant values
can be changed by assignment.

S2. Two null arrays are equal even if ccrresponding dimensions do not have the same bounds.
In particular, if a dimension of one null array specifies a null range, the corresponding dimension
of the other null array need not be null. (Of course, some other dimension of the second array
must be null.) If A and B are null arrays, A < B is false since A = B.
S3. If the component type of a one-dimensional array is a discrete type with a user-defined
ordering operator, the user-defined operator is not used when computing the lexicographic
ordering relationship (RM 4.5.2/9). Note that lexicographic order is defined even for arrays
having noncharacter component types, e.g., arrays of integers.

S4. For arrays, the membership test In checks whether the value of the expression belongs to
the subtype denoted by the type mark, i.e., it checks to see if the value satisfies the constraints
of the subtype indication (RM 3.3/4):

e if the subtype indication is a type mark for an unconstrained array, the test
returns TRUE.

e if the subtype indication is for a constrained array, then the test returns TRUE if
and only if corresponding dimensions of the value and the subtype have the
same bounds (RM 3.6.1/4).

Since corresponding dimensions of arrays need not have the same bounds in equality
comparisons, A = B can be true even though A In T is true and B In T is false:

X STRING (l..O);
Y STRING (5. .3);

subtype NULL STRING is STRING (1..0);
X = Y -true

... X in NULL STRING -- true

... Y in NULLSTRING -- false

Note that in gives the result FALSE if and only if a qualified expression using the type mark
would raise CONSTRAINTERROR.

S5. If two arrays have different lengths, they can be compared for equality without raising an
exception (as long as all components have defined values; see RM 3.2.1/18). In particular, an
exception should not be raised when comparing null arrays even though some ways of
computing the length might raise an exception. For example: X(1 ..INTEGER'FIRST) = Y should
not raise an exception even though, when computing the length of the slice, an implementation
might attempt to compute INTEGER'FIRST - 1, which would overflow. An implementation
should first check to see if the upper bound is less than the lower bound, and only then should it
attempt to compute the length.
Test Objectives and Design Guidelines

T61. Check that the ordering relations are not predefined for multidimensional arrays or for one-
dimensional arrays of nondiscrete types.
Implementation Guideline: For the one-dimension.' case, include a component type that is a one-dimensional
array of a discrete type. as well as a nondiscrete component type for which user-defined ordering operators
have been prosded.

T62. Check that ordering comparisons yield correct results for one-dimensional discrete array
types.
Implementation Guideline: Try the following combinations: null array operands; one operand a null array: -.- '•" .

operands with an identical number of components and different bounds (include one-component arrays as well
%4 - as N-component arrays; include cases where all components are equal and cases where all but the last

4-66

1i' - . . . • . -• • • . -• . . . = , , .

0"" '"''' ,, '''''•,,,-,-"''''" . - - '" ' ". z . " " -. '.. . " . , ."•"•"-"."-"""• " -" - "

Version 1 (Dec 86) 4.5.2.g Relational and Membership Operations (Record)

component is equal); operands with different (nonzero) numbers of components (include cases where the
shorter operand is identical to the longer operand).

• .Implementation Guideline: Try STRING types, arrays of integers, and arrays of an enumeration type other than
CHARACTER.
Implementation Guideline: Repeat portions of this test when user-defined ordering operators are available for
the discrete component type.
Implementation Guideline: Use named notation at least once for each ordering operator. -. '

T64. Check that equality comparisons yield correct results for one-dimensional and
multidimensional array types.
Implementation Guideline: Use both null and non-null arrays with identical bounds, different bounds and the
same length, and bounds with different lengths. Also for null arrays, try cases where corresponding dimensions
are not both null.
Implementation Guideline: Check a case where the array has a bound that depends on a discriminant with
defaults; ensure that only the correct components are compared (see IG 4.5.2.f/S).
Implementation Guideline: Use named notation at least once for each equality operator.

Check that comparing arrays of different lengths does not raise an exception.
Implementation Guideline: Include a null slice with bounds 1..INTEGER'FIRST.

T65. Check that the In and not In operations yield correct results for one-dimensional and
multidimensional array types when:

a.s t'a

a. the type mark denotes an unconstrained array type mark;
b. the type mark denotes a constrained array. ,

Implementation Guideline: Include a case where A -B but A and B do not belong to the same subtype.
Implementation Guideline: Use both null and non-null array operands and subtype indications.
Implementation Guideline: Use arrays with components of a limited type as well as nonlimited types.

4.5.2.g Relational and Membership Operations (Record)

Semantic Ramifications

s1. For most record types, equality can be implemented without considering the internal
structure of the record object. However, equality comparisons must make sure that unused
fields of a record's representation have the same value if whole-object comparison is to work
correctly. There is one kind of record type for which component comparison must usually be
used because currently unused parts of a record value can contain information from a previous
value. For example, consider a record type having components of a varying length string type:

subtype TWO FIVE FIVE is INTEGER range 0..255;

type VSTRING (CUR LEN : TWOFIVEFIVE 0) is
record

VAL : STRING(I..CUR LEN):
end record:

type TWO STR is
record

A, 3 : VSTRING;
end record;

X, Y TWO STRING,

4-67

,. "- . . ," .- ,,.- - - *, .. s- . . r . - - . . . " , -. .. 5-. • . ' " . .. ' -J '':

WKt

4.5.2.h Relational and Membership Operations (Access) Version 1 (Dec 86)'1
I.

." X :=((5, "AAAXX"), (5, "BBBYY"1)); -

Y := ((5, "CCCZZ"), (5, "BBBYY"));
V.' X.A (3, "HER"); S"

Y.A (3, "HUH",);
if X =Y then

% X = Y is TRUE, but a careless implementation could easily yield FALSE in this case by
comparing the no longer valid values of X.A.VAL(4) and X.B.VAL(4), namely, 'X' and 'Z'. (Note
that X.A.CURLEN is 3, not 4; since the value X.A.VAL(4) no longer exists, it must be ignored
when comparing X and Y.) In short, when a component of a record has a type with default
discriminants, a whole-object comparison of the complete record value will not necessarily yield
correct results.
S2. A similar situation arises with the 'CONSTRAINED attribute. Two record values can be
equal even though their CONSTRAINED attributes have different values. If an implementation
has chosen to store the value of this attribute in the record itself, the value must be ignored in
equality comparisons.

s3. For a record type T without discriminants, R In T is always TRUE. If T is an unconstrained
type with discriminants, then R In T is also always TRUE. If T is a constrained record type, then
R in T is TRUE if and only if R's discriminant values equal the discriminant values imposed by
T's discriminant constraint.

Legality Rules

Li. The ordering operators are not predefined for record types (RM 4.5.2/3). ,.61

Test Objectives and Design Guidelines

171. Check that equality and inequality are evaluated correctly for records whose components
do not have changeable discriminants.
Implementation Guideline: Try some record types that are likely to have unused bits in some portions of their
representation.
Implementation Guideline: Use named notation at least once for each equality operator.

T72. Check that equality and inequality are evaluated correctly for records with changeable
discriminants, including records designated by access values.

173. Check that equality and inequality are evaluated correctly for record objects having
different values of the 'CONSTRAINED attribute.

T74. Check that the membership test In (not in) always yields TRUE (FALSE) for record types,
private types, and limited private types without discriminants or for unconstrained types
with discriminants.
Check that the membership operator In (not In) yields TRUE if the discriminants of the left
value equal the discriminants of the subtype Indication.
Implementation Guideline: Check record, private, and limited private types.

4.5.2.h Relational and Membership Operations (Access)
Semantic Ramifications
st. The value null for different access subtypes is the same value, and hence compares as
being equal:

type PERSON (SEX GENDER) is record ... end;
4-68. .

-p.-,
4 68

.p.. . . .- . % •-. . . . - . . • " . . * . - . ' .•% '. " .. ' . . . = -

Version 1 (Dec 86) 4.5.2.h Relational and Membership Operations (Access)

type PERSON NAME is access PERSON;
subtype MALE is PERSON NAME(M),

'V subtype FEMALE is PERSON NAME (F);

A MALE; -- null default value

B FEMALE; p

C PERSON NAME;
EQUAL BOOLEAN := A = B; -- is TRUE; so is A = C

S2. The membership test checks whether a value belongs to a type, i.e., for access types, in
returns TRUE if:

" the access value is the null value, or

" the designated subtype is a scalar type, an access type, a task type, a record or
private type without discriminants, or an unconstrained array, record, or private
type (AI-00324), or

" the designated subtype is a constrained type with discriminants and the '
designated object has the same discriminants, or

" the designated subtype is a constrained array type and the designated object
has the same index bounds. I

S3. For access types designating arrays, the situation is a bit more complicated since such
r.'types need not be specified with index constraints, e.g.:

type STR NAME is access STRING;

S : STRNAME (1..15); I
S in STR NAME """

This membership test will always yield TRUE, since the value of S will always either be null or
will designate an object of type STRING.

S4. The other possibility for access types designating arrays is that an index constraint is
imposed on the access type. In this case, In yields TRUE if the value of the first operand is
null, or if it designates an array object whose bounds equal those specified for the type mark.
For example:

subtype NAME is STR NAME (1..15);

S in NAME ...-- yields TRUE even if S null

S5. For access types designating records (or private types with discriminants), the situation is
similar and Is unaffected by whether default values are specified for the discriminants. In
essence, In yields TRUE If the value of the first operand is null or if it designates an object
whose discriminant values equal the discriminant values specified for the type mark. If the type
mark denotes an unconstrained record type, then In always yields TRUE.

A in PERSON-NAME -- always TRUE (see IG 4.5.2.b/S1)

A in MALE -- always TRUE since A is constrained
C in MALE -- TRUE if C = null or C.SEX = .

Approved Interpretations

An access value of type T belongs to every subtype of T if T's designated type is neither an
array type nor a type with discriminants (AI-00324).

4-69

Z. IF
4" ~.w - -

4.5.3 Binary Adding Operators Version 1 (Dec 86)

Test Objectives and Design Guidelines

T81. Check that equality and inequality are evaluated correctly for access values.
Implementaton Guideline: Include a case where the acceus values designate different objects having the
same value.
Implementation Guideline: Use named notation at least once for each equality operator.

T82. Check that in and not in operators are evaluated correctly for access types when the
designated subtype is:

a. a scalar type;

b. an array type (constrained or unconstrained);

c. a record, private, or limited private type without discriminants;

d. a record, private, or limited private type with discriminants (with and without
default values),; where the type mark denotes a constrained and
unconstrained type;

e. a task type.

Implementation Guideline: Check null and non-null values.

4.5.2.i Relational and Membership Operations (Private/Ltd)
Semantic Ramifications

si. For a private or a limited type without discriminants, the in membership test always yields
the value TRUE.

Test Objectives and Design Guidelines
T91. Check that the membership tests yield correct results for task types, limited private types

(see IG 4.5.2.g/T74), composite limited types (see IG 9.5.2.f/T65 and IG 4.5.2.g/T74), and
private types without discriminants (see IG 4.5.2.g/T74).

4.5.3 Binary Adding Operators
Semantic Ramifications

si. The addition and subtraction operators are defined to take arguments belonging to a base
type and to return values of the same base type. For example, consider:

type T is range -12..10;
X: T := -3;
Y T := X + 11; -- no exception; Y = 8

Even though 11 does not belong to the subtype T, T's base type covers at least the symmetric
range -12..12, so 11 belongs to T's base type. Since the value of X + 11 belongs to T, no
exception will be raised. Similarly:

Z T : Y - X - 2; -- no exception; Y-X = 11

No exception is raised for the result of the first "-" or for the operand of the second "-" even
though the value of Y-X does not belong to subtype T.

4 J7
4-70

q.

Version 1 (Dec 86) 4.5.3.a Integer Adding Operators

Changes from July 1982

LS2. The bounds of the result of catenation are determined by the bounds of the right operand if
the left operand is a null array (including when the right operand is a null array).
S3. CONSTRAINTERROR is raised when a scalar operand for catenation has a value that
does not belong to the component subtype of the result.

Changes from July 1980

s4. The bounds of the result of catenation are defined differently.
s5. CONSTRAINTERROR is no longer raised if the result of catenation is a null array.
s. The catenation operator can be used when both operands have a scalar type.

Legality Rules

L1. The operands of the predefined "+" and "-" operations must have the same numeric base
type (RM 4.5.3/2).

L2. The base types of the operands of the predefined "&" operator must not be limited (RM
4.5.3/1) and must either be (RM 4.5.3/2):

@ the same type, or

* one operand must have a one-dimensional array type whose component type
is C and the base type of the other operand must be C.

Exception Conditions
See individual subsections.

tO Test Objectives and Design Guidelines

T1. For integer, fixed point, and floating point types, check that " and "-" are not predefined
for operands having different base types.
Check that "+" and "-" are not predefined for non-numeric types.
Implementation Guideline: Check using operands of a parent and a derived numeric type, an integer plus a
noninteger discrete type, different predefined integer types, etc.

T2. Check that "&" is not defined for multidimensional arrays having the same type or for one-
dimensional arrays related by derivation (including derived index types).

4.5.3.a Integer Adding Operators
Semantic Ramifications

si. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) need not be raised for a
subexpression when the result of an addition or subtraction lies outside the base type, if the
result of the complete expression is mathematically correct (RM 11.6/6). For example, when
computing A + B - C, the sum might overflow, but the overall result might lie within the base
type. If an implementation computes the sum in an overlength register, no overflow will actually
occur and the correct result can be obtained.
S2. Note that INTEGER'SUCC (INTEGER'LAST) raises CONSTRAINTERROR (see RM
3.5.5/8), but INTEGER'LAST + I raises either NUMERICERROR or CONSTRAINTERROR
(AI-00387).

4-71

• U,1 I t 1 , = * % " q =% w % % % " ' ' ° ,• " % • • % -q % % % - = = . % . - /

4.5.3.b Floating Point Adding Operators Version 1 (Dec 86) p

Approved Interpretations :.0. '

S3. When the RM requires that NUMERICERROR be raised (other than by a raise . I'
statement), CONSTRAINTERROR can (and should) be raised instead (AI-00387).

Legality Rules S.

Li. The operands of the predefined integer "+" and "-" operations must have the same integer -z

base type (RM 4.5.3/2).

Exception Conditions

El. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised if the
mathematically defined result lies outside the range of the base type (RM 4.5/7).

Test Objectives and Design Guidelines

T3. Check that "+" and %" yield the correct results for all predefined integer types.
* Implementation Guideline: Check single values as well as values yielding 'LAST and 'FIRST of the base type.

Implementation Guideline: Attempt to declare a type that might be represented as an unsigned integer. Check
that neither NUMERICERROR nor CONSTRAINTERROR (see AI-00387) are raised if intermediate negative
values are produced.
Implementation Guideline: Use named notation for some calls.

T4. Check that NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised by "+"
and "-" for all predefined integer types when the result is outside the range of the base
type.
Implementation Guideline: Include cases such as INTEGER'LAST + N and FLOAT(INTEGER'LAST+I).

4.5.3.b Floating Point Adding Operators
Semantic Ramifications

si. The rules of real addition are a consequence of the semantics for all operaions giv-.
real result (see RM 4.5.7). Hence the testing required is determined by the relationsnip
between the two operands, the result, and the corresponding model intervals. The rules allow
computations to be performed with an "overlength accumulator," i.e., with more precision in theregisters than the stored values (or the model numbers) demand.

S2. A computer may have a single instruction to extend the precision of two operands and
perform the double-length operation. For example, consider:

declare
Dl, D2, D3 : DOUBLE:
A, B, C : SINGLE;

begin
-- calculate A and B
C A + B;
D1 := DOUBLK(A + B);
D2 : DOUBLZ(A) + DOBLZ(B) ; -

D3 := DOUBLZ(C)-

end;

D1 does not necessarily equal D2. A simple compiler will use single length addition for D1 and
then convert to double length. However, it could use double-length addition (which could be
advantageous if this can be done in a single instruction) and hence get the same value as D2.
The code generated need not be consistent. For instance, D1 need not equal D2 or D3. '

4-72

Version 1 (Dec 86) 4.5.3.b Floating Point Adding Operators

S3. An optimizer must not treat floating point addition as associative. To check for such an
% error, write:

D = + C;
E A + B + C;

Let A = -B, let A, B, and C be model numbers, and let the model interval for B + C include B
(e.g., give C a value that requires one more bit in B's mantissa if the sum B + C is to be
computed exactly). Then A + B must equal zero (since A and -B are model numbers), and E
must equal C. However, D - B might evaluate to FALSE; if an optimizer computed A + B + C as
A + D, it could generate an incorrect result such that E is not equal to C.

s4. For a discussion of when the exception NUMERICERROR can be raised for real
operations, see IG 4.5.7/S.

Approved Interpretations

S5. When the RM requires that NUMERICERROR be raised (other than by a raise
statement), CONSTRAINTERROR can (and should) be raised instead (AI-00387).

Legality Rules

Li. Operands of the predefined floating point "+" and "-" operations must have the same
floating point base type (RM 4.5.3/2).

Exception Conditions

El. For floating point types, NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is
raised if the result of predefined addition or subtraction lies outside the range of the
operand's base type and MACHINE_OVERFLOWS is true for the base type (RM 4.5.7/7).

fe E2. For floating point types, NUMERICERROR (or CONSTRAINTERROR; see AI-00387)
can be raised if the result of predefined addition or subtraction lies outside the range of
safe numbers for the operand type (RM 4.5.7/7).

Test Objectives and Design Guidelines
T21. For floating point types, check that the operators "+" and "-" produce correct results when:

a. A, B, A.B, and A-B are all model numbers.
b. A is a model number but B, A+B, and A-B are not.

c. A, B, A+B, and A-B are all model numbers with different subtypes.

d. A and B are model numbers with different subtypes, but A+B and A-B are not
model numbers.

Implementation Guideline: Use named notation for some calls to "+" and "-" ."

T22. Check that NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised if
MACHINEOVERFLOWS is true and the result of an addition or subtraction lies outside
the range of the base type.
Implementation Guideline: If MACHINE OVERFLOWS is not true, report whether NUMERICERROR or
CONSTRAINT-ERROR is raised when the expression occurs as an operand of a relational operator.

Check whether NUMERICERROR (or CONSTRAINT ERROR; see AI-00387) is raised if
MACHINE_OVERFLOWS is true and the result is outside the range of safe numbers, but
within the range of the base type (see IG 4.5.7/Ti).

T23. Check that nonassoclativity of real arithmetic is preserved, even when optimization would
benefit if floating point addition were associative.

4-73

' " '7 ", "" P ," "" ," t"' - :' . ; .. ,.,-;.. -. .:; , , , ,. ,-,. . , , ., ,. ,,

4.5.3.d Array Adding Operators (Catenation) Version 1 (Dec 86)

4.5.3.c Fixed Point Adding Operators
Semantic Ramifications

Approved Interpretations

Si. When the RM requires that NUMERICERROR be raised (other than by a raise
statement), CONSTRAINTERROR can (and should) be raised instead (AI-00387). '.

Legality Rules

L1. The operands of the predefined fixed point "+" and "-" operations must have the same fixed
point base type (RM 4.5.3/2); the type cannot be universalfixed (RM 4.5.5/11).

Exception Conditions

El. For fixed point types, NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is
raised if the result of a predefined addition or subtraction lies outside the range of the
operand's base type and MACHINE_OVERFLOWS is true for the base type (RM 4.5.7/7).

E2. For fixed point types, NUMERICERROR (or CONSTRAINTERROR; see AI-00387) can
be raised if the result of a predefined addition or subtraction lies outside the range of safe
numbers for the operand type (RM 4.5.7/7).

Test Objectives and Design Guidelines

T31. For fixed point types, check that the operators "+" and "-" produce correct results when:

a. A, B, A+B, and A-B are all model numbers.

b. A is a model number but B, A+B, and A-B are not. . ,

c. A, B, A+B, and A-B are all model numbers with different subtypes.

d. A and B are model numbers with different subtypes, but A+B and A-B are not
model numbers.

Implementation Guideline: Use named notation for some calls to "+" and

T32. Check that NUMERICERROR (or CONSTRAINTERROR: see AI-00387) is raised for "+;
and "-" if MACHINEOVERFLOWS Is true and the result lies outside the range of the base
type.
Implementation Guideline: Report whether NUMERIC-ERROR is raised even it MACHINEOVERFLOWS is
not true.

4.5.3.d Array Adding Operators (Catenation)
Semantic Ramifications

S1. Catenation is defined for any nonlimited component type, including array, record, and
private types. For example:

type INT ARR TYPE is array (POSITIVE range <>) of INTEGER;
ARR : INT ARR TYP(1. .2) := 1 & 2; -- same as (1, 2);

S2. When catenating two null arrays, the lower bound of the result is given by the right operand
(RM 4.5.3/4). When applying a logical operator to two null arrays, the lower bound of the result
is given by the left operand (RM 4.5.1/3). ..

s3. CONSTRAINT ERROR is raised if an operand value does not belong to the result's -

component subtype (RM 4.5.3/6):

4-74

.,',-,, , ,.. , - , -.-""",' -.,.-.: , .:,.,.':.':',,:.'7..-.-,:,.'.,.< ." ,.'.,'. ,.-....,...'.-% .

Version 1 (Dec 86) 4.5.3.d Array Adding Operators (Catenation)

subtype UPPERCASELETTERS is CHARACTER range 'A'..'Z';

/ ,.. type UPPERCASESTRING is
. 9 .' array (POSITIVE range <>) of UPPER CASE LETTERS;

UPPER : UPPERCASESTRING (l..2) := 'B'-& '3'; -- CONSTRAINTERROR

CONSTRAINTERROR is raised since '3' does not belong to UPPERCASELETTERS.

S4. The catenation operators can be overloaded to take operands having the same component
type, e.g., in the previous example, "&" was implicitly declared to take operands of type
CHARACTER, producing a result of type UPPERCASESTRING. The catenation operator is
also defined for operands of type CHARACTER. producing a result of type STRING. The
normal overloading resolution rules determine whicil operator is to be used:

STRING VAR STRING (1..2) := 'B' & 'C'' -- STANDARD."&"
UPPER VAR UPPERCASESTRING (1._2) := 'B' & 'C',

ss. The length of the result of catenation need not be known at ompile time. It is usually
undesirable to allocate the maximum possible !ergth for a catenation result. One fairly well-
known implementation technique for minimizing siarage is to put the result on the end of the
stack, adding space as the result is computed.

Legality Rules

L' The base types of the operands of the predetined "& operator must not be limited (RM
4.5.3/1) and must either be (RM 4.5.3/2):

* the same type, or

-one operand must have a one-dimensional array type whose component type
f-",. is C and the base type of the other operand must be C.

Exception Conditions

El. CONSTRAINTERROR is raised if the upper bound of the catenation result exceeds the
upper bound of the index subtype and tne result is not a null array (RM 4.5.3/6).

E2. CONSTRAINTERROR is raised if an operand of "&" has the type of the array component
but does not belong to the array component's subtype (RM 4.5.3/6).

Test Objectives and Design Guidelines

T41, Check that catenation is not defined for mu!tidimensional arrays or for arrays having a
limited component type.

T42. Check that the result of catenating two non-null operands has the lower bound of the left
operand when the left operand has the same type as the result, and the lower bound of the
index subtype when the left operand has the component type of the result.
Implementation Guideline: There are four cases: array & array, component & array, array & component.
component & component. Also, the component type can itself be an array type.
Implementation Guideline: When the left operand is an array, its lower bound should not equal either the lower
bound of the index subtype or the lower bound of the right operand.
Implementation Guideline: Use the result as an actual parameter when the formal parameter is an
unconstrained array type or as the result of a function call that has an unconstrained return type.
Implementation Guideline: Use named notation for some ralls of each of the four catenation operators.

T43. Check that when the left operand is a null array, and

e the right operand is an array (null or non-null) having the type of the result, the
bounds of the result are the bounds of the nght operand.

54..75

,''--"'* "" ' "" *" "" -"" " "."' '" 5- .-, "" "" "" " " ' " :-""-" ,"" .'',"',,"". . /

.,- g[.'p • p, '\. ,. . W '.- ' X , W, a,-,, _ . .

N 4.5.4 Unary Adding Operators Version

* the right operand is a component value, the lower bound of the result is the
lower bound of the index subtype.

Check that when the right operand i. null array, and

e the left operand is a non-null array having the type of the result, the bounds of
the result are the bounds of the left operand.

e the left operand is a component value, the lower bound of the result is tho
lower bound of the index subtype.

T44. Check that the correct result is produced when a function returns the result of a catenation
whose bounds are not defined statically.
Implementation Guideline: Consider catenating the result of recursive function calls in the return statement of a
function, when the length of each catenation is not statically defined.

T45. Check that CONSTRAINTERROR is raised if the upper bound of a non-null catenation
result would lie outside the range of the index subtype.
Implementation Guideline: The length of the result should not exceed the length allowed by the index subtype.

Check that CONSTRAINTERROR is not raised if the length of the result equals the
maximum length permitted by the index subtype.

T46. Check that NUMERICERROR is not raised if the length of the result exceeds
INTEGER'LAST or SYSTEM.MAXINT. (Note: CONSTRAINTERROR or STORAGE-
_ERROR should be raised instead.)

T47. Check that catenation is defined for the following component types: records, arrays, private
types, and access types.

Check that catenation is defined when the component type is an array type and both
operands are arrays.

a,

4.5.4 Unary Adding Operators

Semantic Ramifications

Si. The unary operators are defined for a base type, not a subtype:
type T is range 1..10;
X: T :=3;
Y T -X + 5; -- no exception raised

No exception can be raised even though -3 does not belong to T, since the result of -X does
belong to T's base type (which at least includes the symmetric range -10..10); moreover, -X + 5
does belong to T. In addition, the operators accept any operand value belonging to the base
type, e.g.,

Z : T := -(1 - X), -- no exception raised

No exception can be raised even though 1 - X = -2, and -2 does not belong to T.

S2. It is possible for the operand of unary "+" to be outside the range of the base type if the
operand is an expression, and the expression is evaluated using higher precision operations
than required. e.g.,

Z := + (X*Y):.

If the result of X*Y is held in a double length register, as is often the case, then the value might

4-76

Version 1 (Dec 86) 4.5.4.a Integer Unary Adding Operators
0

be greater than that allowed by Z's base type. NUMERIC_ERROR (or CONSTRAINTERROR;
see AI-00387) must be raised by "+" if it Is not raised by "".

Approved Interpretations ,'

S3. When the RM requires that NUMERICERROR be raised (other than by a raise
statement), CONSTRAINT ERROR can (and should) be raised instead (AI-00387).

Changes from July 1982

s4. "abs" and "not" are no longer unary adding operators. (They are highest precedence
operators.)

Changes from July 1980

S5. There are no significant changes.

Legality Rules

Li. The operand of predefined unary "+" and "-" must have a numeric type (RM 4.5.4/1). P..

Test Objectives and Design Guidelines

T1. Check that unary "+" and "-" are not predefined for non-numeric types.

..5.4.a Integer Unary Adding Operators
Semantic Ramifications

.1.
si. For an integer type, T, NUMERIC ERROR (or CONSTRAINT ERROR; see AI-00387) is
only raised for -T'BASE'FIRST if abs T'BASE'FIRST > T'BASE'LAST; -T'BASE'LAST never
raises an exception since T'BASE'LAST is in practice never greater than abs T'BASE'FIRST.
Approved Interpretations .

S2. When the RM requires that NUMERIC ERROR be raised (other than by a raise "
statement), CONSTRAINTERROR can (and should) be raised instead (AI-00387).

Legality Rules

L1. The operand of predefined integer "" and "-" must have an integer type (RM 4.5.4/1).

Exception Conditions

El. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised if the result of
unary integer "+" or "-p lies outside the range of the base type (RM 4.5/7). I

Test Objectives and Design Guidelines

T11. Check that unary "" and "+" give the correct results for integer operands.
Implementation Guideline: Try alI the predefined integer types and derived integer types.
Implementabon Guideline: Use named notation for some calls.

T12. Check that NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised by
unary "-" if the ranges of the base types indicate a nonsymmetric range of values.

Ti 3. Check that for a user-defined integer type. unary "+" and "-" yield and accept results
belonging to the base type (rather than the subtype defined by the user).

%A°°

4-77 -,
p

a. 'a ' '- '.

a a.. *.-.'.'. % a * ~% * % % . .*,°

4.5.4.b Real Unary Adding Operators Version

4.5.4.b Real Unary Adding Operators
Semantic Ramifications

s1. If A is a model number, then so is -. ,ence, the operation is exact.

S2. For a twos-complement representation of floating point or fixed point, -T'BASE'FIRST could
raise NUMERICERROR (or CONSTRAINTERROR; see A1-00387), but unary minus cannot
raise an exception when applied to a model number, since the range of model numbers is
symmetric.

Approved Interpretations

S3. When the RM requires that NUMERICERROR be raised (other than by a raise
statement), CONSTRAINTERROR can (and should) be raised instead (Ai-00387).

Legality Rules

L1. The operand of predefined floating point "+" and "-" must have a floating point type (RM
4.5.4/1).

L2. The operand of predefined fixed point "+" and *-" must have a fixed point type (RM 4.5.4/1).'.,

Exception Conditions

El. For floating and fixed point types, NUMERIC_ERROR (or CONSTRAINTERROR; see
AI-00387) is raised if the result of a predefined unary "+" or *-" lies outside the range of the
operand's base type and MACHINE OVERFLOWS Is true for the base type (RM 4.5.7/7).

E2. For floating and fixed point types, NUMERIC_ERROR (or CONSTRAINTERROR; see
AI-00387) can be raised if the result of a predefined unary "+" or "-" lies outside the range
of safe numbers for the operand type (RM 4.5.7/7).

Test Objectives and Design Guidelines

T21. For floating point types, check that:

a. +A is equal to A and

b. -(-A)=A for model numbers.

Implementation Guideline: Check for digits 5 through 29.
Implementation Guideline: Use named notation for some calls.

T2 For floating point types, check that NUMERICERROR (or CONSTRAINTERROR; see-,

AI-00387) is raised if MACHINEOVERFLOWS is true for the type and -A exceeds the
range of the base type.

T23. For floating point types, check whether NUMERICERROR (or CONSTRAINTERROR;
see AI-00387) is raised for unary "+" or "-" when the operand value lies outside the range
of safe numbers but within the range of the base type.

T31. For fixed point types, check that:

a. +A is equal to A and

b. -(-A)=A for model numbers.

Implementahon Guideline: Use named notation for some calls.

T32 For fixed point types, check that NUMERIC_ERROR (or CONSTRAINTERROR: see
AI-00387) is raised if -A exceeds the range of the base type, and MACHINE- -.- .
OVERFLOWS is true.

4-78

,, ,. ,,,. .,,- .' : , ,.
, 4 ,p ; . .p .', ." " .,,. #, o ; .* ,, - - ° . " . - , . . . , . , - -

Version 1 (Dec 86) 4.5.5 Multiplying Operators

T33. For fixed point types, check whether NUMERIC ERROR (or CONSTRAINTERROR; see
AI-00387) is raised for unary "+" or "-" when the operand value lies outside the range of
safe numbers but within the range of the base type.

p

4.5.5 Multiplying Operators
Semantic Ramifications

Approved Interpretations
si. When the RM requires that NUMERICERROR be raised (other than by a raise t.

statement), CONSTRAINTERROR can (and should) be raised instead (A-00387).

Changes from July 1982 .

S2. There are no significant changes.

Changes from July 1980

s3. Fixed point multiplication and division operators (when both operands have a fixed point
type) are declared in STANDARD.

S4. Multiplication or division of a fixed point value by a value of any integer type is no longer
predefined. Such operations are only allowed for a fixed point type and the predefined
NTEGER type.

Legality Rules

L1. For predefined integer multiplication and division, both operands must have the same
- integer base type (RM 4.5.5/1).

L2. For predefined "mod" and "rem", both operands must have the same integer base type
(RM 4.5.5/1).

L3. For predefined floating point multiplication and division, both operands must have the same
floating point base type (RM 4.5.4/1). "-,

L4. For predefined fixed point multiplication, either:

" one operand must have the predefined type INTEGER and the other some
fixed point type (RM 4.5.5/7); or

" both operands must have a fixed point type (not necessarily the same fixed
point type) (RM 4.5.5/11).

Neither operand can have the type universalfixed (RM 4.5.5/11). .

L5. For predefined fixed point division, either:

" the second operand must have the predefined type INTEGER and the first
operand must have some fixed point type (RM 4.5.5/7); or

" both operands must have a fixed point type (not necessarily the same fixed Y
point type) (RM 4.5.5/10).

Neither operand can have the type universal_fixed (RM 4.5.5/11).

L6. The product or quotient of two fixed point types must be explicitly converted to some -
numeric type (RM 4.5.5/11).

1L7. An operand of a fixed point multiplication or division operation must not be a real literal
(see IG 4.5.5.b/S4).

4-79

I

• " _ _ ,. ==a.a.. ' ; ., , a-. ' a= ,t ':, " :... ".." .'. .'. , . _. ,'r ," :'

4.5.5.a Integer Multiplying Operators ior

Exception Conditions

El. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) can be raised by r.'-,*. .,
predefined -" and "/" if the mathe lical result lies outside the range of the base type or ", '
outside the range of safe numbers t A 4.5/7 and RM 4.5.7/7). vi

E2. NUMERIC_ERROR (or CONSTRAINTERROR; see !4-00387) is raised by predefined "/",
mod, and rem if the second operand has the value zero (RM 4.5.5/12).

4.5.5.a Integer Multiplying Operators
Semantic Ramifications

si. Integer division can never produce a result outside the range of the base type, so division
raises NUMERICERROR (or CONSTRAINTERROR; see AI-00387) only for division by zero.

S2. RM 11.6/6 allows an implementation to compute intermediate results using operations for a
type with a wider range than the operands' base type. In particular, when computing an

expression such as A8B/C, the product, A6B, can be held in a double-length register and used
directly as the operand for the division operation. In such a case, even though A°B might have
a value that lies outside the base type, the result of the division can be computed correctly and
can lie within the operands' base type; no exception need be raised.

S3. Consider a type declaration such as:

type T is range -25. .10;

The range of the base type T'BASE must at least be -25..25 (RM 3.5.417) and must be the
range of some predefined integer type. An expression such as T'(5)*5/5 must yield 5 without -.
raising an exception, even though 25 lies outside T's range.
s4. INTEGERFIRST 1 should not raise any exception, although this computation may be .
difficult to perform on some machines.
Approved Interpretations

S5. When the RM equires that NUMERIC_ERROR be raised (other than by a raise
statement), CONSTRAINT ERROR can (and shoL) be raised instead (A1-00387).

Legality Rules
Li For predeti-:. Fteger multiplication and division, both operands must have the sam.'

integer ase type RM 4.5.5/1). Z,

L2. For predetned mod and rem, both operands must have the same integer base type (RM
4.5.5 1).

Exception Conditions

El NUMERIC ERROR (or CONSTRAINTERROR; see AI-00387) is raised for the predefined
integer "- operator if the mathematically defined product of the operand values lies outside
the range of the base type (RM 4.5/7).

E2. NUMERIC, RROR (or CONSTRAINT ERROR; see AI-00387) is raised by predefined /,
mod. and rem it the second operand has the value zero (RM 4.5.5/12).

Test Objectives aid Design Guidelines

Ti. ChecK -. e .utiplying operators are not predefined for operands having different
*. integer type.-

4-80
N N%

i- "..

Version 1 (Dec 86) 4.5.5.b Real Multiplying Operators

Implementation Guideline: Check operands related by derivation and operands of different predefined integer
types. "

% Check that the multiplying operators are not predefined for operands of an integer and a
floating point type, integers and arrays of integers, arrays of integers (matrix multiplication),
etc.

Check that mod and rem are not predefined for real operands of the same type or when
the first operand is real and the second is an integer.

T2. Check that multiplication and division yield correct results.
Implementation Guideline: Use operands with different and identical signs. For division, also check division
with and without remainders.
Implementation Guideline: Use named notation for some calls.

T3. Check that rem and mod yield correct results. .

Implementation Guideline: Use operands with different and identical signs. Check a'! ,as for a small value
of the second operand.
Implementation Guideline: Use named notation for some calls.

T4. Check that NUMERICERROR (or CONSTRAINTERROR, see AI-00387) is raised when
a product lies outside the range of the base type.

Check that NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised when
the second operand of /, mod, or rem equals zero.

T5. Check that multiplication for integer subtypes yields a result belonging to the base type.

4.5.5.b Real Multiplying Operators
Semantic Ramifications

St. There are effectively four multiplication operations to check (float-float, fixed-fixed, fixed-
INTEGER, and INTEGER-fixed) and three for division (float-float, fixed-fixed, and fixed-
INTEGER). The difficult cases for both are those for two fixed point operands. The reason for
the difficulty is that the potential number of tests is cubed due to the need to consider the type of
each operand and the result type separately. In addition, if 'SMALL for both operands is not a
power of the same integer, an implementation must take extra care to produce correct results
(see IG 3.5.10/S).

S2. If a machine performs division by computing the reciprocal and then multiplying, the result
will not generally be within the model interval Ada requires (see IG 4.5.7/S). This means a
conforming compiler will not be able use the computer's division instruction.

S3. In principle, since fixed point multiplication or division yields a result having type
universalfixed, NUMERICERROR can never be raised, except when the divisor is zero (i.e.,
when the model interval of the divisor includes zero). However, since universalinteger results
must be converted to some other numeric type, the conversion operation can raise NUMERIC-
_ERROR (or CONSTRAINTERROR; see AI-00387); it is not possible to tell which operation
caused the exception to be raised.

S4. Fixed point multiplication and division by literals is forbidden. Consider for example, FP
(V1 * 3.14), where V1 is a variable having a fixed point type and FP is a fixed point type. For
the multiplication operation to be defined, both operands must have a fixed point type. The
literal 3.14 has the type universalreal and can be implicitly converted to any required fixed
point type (RM 4.6/15), but the context Is insufficient to determine a unique fixed point type
since there are always at least two fixed point types whose scope includes any compilation unit.
These types are the type DURATION (RM 9.6/4 and RM C/19) and the anonymous predefined

"NI

% - r t ., ,, ml , -,** %' -r-l.- ** % %%, *i-* lii i -

4.5.5.b Real Multiplying Operators ".rsior.

fixed point type required by RM 3.5.9/7. Both types are declared in STANDARD, so their scope
includes every compilation unit. Since there is no unique fixed point type to which the literal can
be converted, the expression is illegal. , general, real literals cannot be used with fixed point
multiplication or division operators unleb ie literals are explicitly qualified by a type mark.

S5. When a fixed point value is divided oy an integer, NUMERIC-ERROR (or CONSTRAINT-
_ERROR; see A!-00387) is raised if the divisor is zero because the model interval of the result
is undefined, not because the divisor is zero. This distinction is only important when
suppressing the exception check. DIVIDECHECK Is used to suppress the check for division
by zero for integer divide, rem, and mod. DIVIDECHECK does not apply to any fixed or
floating point operator. including division of a fixed point value by an integer, since the RM does
not mention making a special check for division by zero for fixed point division (RM 4.5.5/12).

Approved Interpretations

S6. When the RM w-quires that NUMERICERROR be raised (other than by a raise
statement), CONS7,AINTERROR can (and should) be raised instead (A1-00387).

Legality Rules

Li. For predefrnedl foaring point multiplication and division, both operands must have the same
floating point hase 1ype (RM 4.5.4/1).

L2. For predefined fixed point multiplication, either:

& one ,cerd must have predefined type INTEGER and the other some fixed
poim type FRM 4.5.5/7); or

9 both oerand .s must have a fixed point type (not necessarily the same fixed ..

point RM 4.5.5/11).

Neither ooa,3cd can have the type universal-fixed (RM 4.5.5/11).

L3. For predefino,, viceo point division, either:

" th :: I ;'Dperand must have the 2e-, efined type INTEGER and the tir-t
op- ... ave some fixed poir, ' A..5117%; ,,-

• ootc c , js must have a fixed p.-). .ype (riot necessarily the s.>.-ne fix
po!n tvP-i R M 4.5.5/10).

Neither :-,,::i. have the type universal fixed (RM 4.5.5/11).

L4. The pi.ji.u ,,ent of two fixed point types must be explicitly converted to some
numeric ryp, ,. -4.5.5/11).

L5. An operand . r . ed point multiplication or division operation must not be a real literal
(see G45 -

Exception Cond! ions

El. NUMERIC J+:FH-OR (or CONSTRAINTERROR; see A1-00387) is raised for predefined
floating point - 'np!ication and division if the result lies outside the range of the base type
and MAOHIh.;E QVERFLOWS is true for the base type.

E2. NUMER' -- (or CONSTRAINTERROR; see AI-00387) may be raised for
predetine -' ,,, point multiplication and division if the result is within the range of the
base type o,, ,- de the range of safe numbers (see RM 4.5.7/7). .w,.,

E3. NUMERIC or CONSTRAINT ERROR; see AI-00387) is raised for predefined ".,"" .>
floating poi -, -ln if the divisor is zero (RM 4.5.7/7).

4-82

. ,_' 4j' .'' . ',.. °. . . ,- .*'- , '. -- "-", -"-". " ". -'-'z ," .. .' .. '. ' ,' '. ' .' -. " ,, , , " "-V. . ", -

Version 1 (Dec 86) 4.5.5.b Real Multiplying Operators

E4. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised for fixed point
• ,multiplication by an INTEGER if the result lies outside the range of the base type (RM

, ,..4.5.7/7).

ES. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised for fixed point

division by an INTEGER if the divisor is zero (RM 4.5.7/7

Test Objectives and Design Guidelines

T21. Check that for the predefined floating point -" operator, correct results are produced when:

a. A, B, and A*B are all model numbers.

b. A and B are model numbers, but A*B is not."%

c. A is a model number, but B and A*B are not.

d. A, B, and A*B are all model numbers with different subtypes.

e. A and B are model numbers with different subtypes, but A*B is not a model -

number.

Check that for the predefined floating point "" operator, correct results are produced when:

a. A, B, and A/B are all model numbers.

b. A and B are model numbers, but A/B is not.
..

c. A is a model number, but B and A/B are not.

d. A, B, and A/B are all model numbers with different subtypes.

e. A and B are model numbers with different subtypes, but A/B is not a model
number. I

Implementation Guideline: Use named notation for some calls.

T22. Check that the same floating point type must be used with multiplying operators.

Check that mod and rem are not predefined for floating point types (see IG 4.5.5.a/T1). %

T23. Check that NUMERIC ERROR (or CONSTRAINT ERROR; see AI-00387) is raised if
MACHINE_OVERFLOWS is true and the result of multiplication or division lies outside the
range of the base type.

Check that NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised when
a floating point value is divided by zero, if MACHINEOVERFLOWS is true.
Implementation Guideline: If MACHINE -OVERFLOWS is not true, report whether NUMERICERROR (or P
CONSTRAINT-ERROR) is raised in the above cases.

Check whether NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised if
MACHINEOVERFLOWS is true and the result is outside the range of safe numbers, but
within the range of the base type (see IG 4.5.7/T1).

T24. Check that no exception Is raised when underflow occurs.
Implementation Guideline: In particular, NUMERIC ERROR should not be raised.

-5Implementaion Guideline: Report whether underflow is gradual or not. ,..

T31. Check the following for a variety of fixed point types:

a. fixed'integer when all values are model numbers.

b. fixed'integer values are bounded correctly for nonmodel numbers (check
same values for integer'fixed).

-,- .3

L...,.. ., v ,.-., %.

4.5.6 Highest Precedence Operators Version 1 .c 8'

c. fixed/integer when all values are model numbers. i.

d. fixed/integer values are bounded correctly for nonmodel numbers.

Implementation Guideline: Use named nota. for some calls.

T32. Special tests are needed for fixed'fixed and fixed/fixed because of the three types
involved. Check for a variety of the three types involved:

a. fixed*fixed with all values being model numbers.

b. fixed*fixed with operands as model numbers but results are not.

c. fixed*fixed with no model numbers.

d. fixed/fixed with all values being model numbers.

e. fixed/fixed with operands as model numbers but results are not.

f. fixed/fixed with no model numbers.

T33. Check that mod and rem are not predefined for fixed point types (see IG 4.5.5.1/T1).%' :..

T34. Check that NUMERICERROR (or CONSTRAINT ERROR; see AI-00387) is raised for

multiplication or division of two fixed point values when the result is converted to some
:, numeric type and the value does not belong to the target base type.

Check that NUMERIC_ERROR (or CONSTRAINTERROR; see AI-00387) is raised for
multiplication of a fixed point value by an integer, or division of a fixed point value by an
integer, if the result lies outside the range of the fixed point base type.

Check that NUMERICERROR (or CONSTRAINT ERROR; see AI-00387) is raised when

a fixed point value is divided by zero (either an INTEGER zero or a fixed point zero).
Implementation Guideline: If MACHINE_OVERFLOWS is not true, report whether NUMERICERROR (or
CONSTRAINTERROR) is raised in the above cases.

T35. Check that a product or a quotient of fixed point values cannot be used in a comparison, a
membership operation, or a real numeric type definition, e.g., A*B = 6.0 or A * B = A * B
are both illegal.

T36. Check fixed point multiplication and division when 'SMALL of the operands are not both
powers of the same base value.

T37. Check that fixed point multiplication and division are not predefined when one of the
" .operands is an integer type other than predefined INTEGER.

T38. Check that fixed point multiplication or division by a real literal is illegal.
Implementation Guideline: Use 0.0, 1.0, and other real literal values.

-'=-

4.5.6 Highest Precedence Operators

Semantic Ramifications

St. The type of 2 **N or 3.14 **N is determined by the context of the expression since the 2
(or the 3.14) must usually be implicitly converted to an appropriate type determined by the
context; the conversion determines the type of the whole expression. Given more than one
visible declaration of -.", the call "" (2, N) or "**" (3.14, N) Is not by itself generally sufficient to
determine which --. operator should be invoked. However,

-. 2**N = 2**M

4-84

'.A, 4-84 '

.|S.- - ~ * S .

Version 1 (Dec 86) 4.5.6.a Integer Exponentiating Operator

is legal even if more than one "**" is visible that takes a nonuniversal integer type as its first
operand since equality is defined for universalinteger. Therefore, no implicit conversion is
needed. (In this case, the universalInteger expression is nonstatic and must be computed at
run time; see IG 4.10/S).

s2. A ** B "* C is forbidden syntactically, and the precedence rules imply that -A *° B is
evaluated as - (A"B).

Approved Interpretations

S3. When the RM requires that NUMERICERROR be raised (other than by a raise
statement), CONSTRAINTERROR can (and should) be raised instead (AI-00387).

Changes from July 1982

s4. "abs" and "not" now have the same precedence as

s5. "not" is predefined for any boolean type (and any one-dimensional array of any boolean
type).

Changes from July 1980

s. "abs" is no longer a function.

S7. The second operand of must have the type predefined INTEGER.

Legaiity Rules

L1. The operand of predefined "abs" must be a numeric type (RM 4.5.6/1).

L2. The operand of predefined "not" must be a boolean type or a one-dimensional array type
-: *----.having a boolean component type (RM 4.5.6/1).

L3. The second operand of the predefined "**" operator must have the type predefined
INTEGER; the first operand must have either an integer or a floating point type (RM
4.5.6/4).

Test Objectives and Design Guidelines
9.?

Ti. Check that fixed point values cannot be exponentiated.

Check that floating or fixed point values cannot be used as the value of an exponent.

4.5.6.a Integer Exponentlating Operator
Semantic Ramifications

si. Note that X ** 4 can be evaluated as (X*X) * (X'X) although a similar rearrangement is not
allowed for floating point (see IG 4.5.6.b/S).

Approved Interpretations

S2. When the RM requires that NUMERICERROR be raised (other than by a raise
statement), CONSTRAINTERROR can (and should) be raised instead (AI-00387).

Legality Rulestomut

L1. The second operand of the predefined integer "*- operator must have the type predefined
INTEGER; the first operand must have an integer type (RM 4.5.6/4).

4-85

I) S,.IL

lie

4.5.6.b Floating Point Exponentlating Operator Versior.

Exception Conditions

El. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised by predefined
integer "'. if the result lies outside base type (RM 4.5/7).

E2. CONSTRAINTERROR is raised by predefined integer if the second operand has a

negative value (RM 4.5.5/6).

Test Objectives and Design Guidelines

T11. Check that X "" 0 = 1 and X ** 1 = X for all integer types.
Implementation Guideline: Use positive, negative, and zero values.
Implementation Guideline: Use named notation for some calls.

Check that exponentiation to a small integer value is correctly evaluated.
T1 2. Check that exponentiation to large Integer values is correctly evaluated.

T13. Check that NUMERIC_ERROR (or CONSTRAINTERROR; see AI-00387) is raised if the
expected value exceeds the range of the base type.
Implementation Guideline: Check both positive and negative values.

T14. Check that CONSTRAINTERROR is raised if the exponent value is negative.
Implementation Guideline: Use both static and nonstatic exponent values.

T1 5. Check that the exponent must not have any integer type other than predefined INTEGER.

4.5.6.b Floating Point Exponentiating Operator

Semantic Ramifications <'-

S1. Since 0.0-0 = 1.0, it may be necessary to check explicitly for this case if, for instance,
overflow is to be avoided.

S2. For integer exponentiation, X**4 can be computed as (X'X) (X*X). Although any method
can be used for floating point exponentiation as long as results are within the required model
interval, there are cases where the error bounds f, X*'XXX can be smaller than the bound . ,
(X**2)**2. That is, the result of (X**2)*'2 can h~e outside the bounds for X*X*XX for sot' :
values of X. This means the only method guaranteed to stay within the error bounds specitied
by RM 4.5.7/9 is to perform N-1 multiplications when N > 0.
s3. In practice, performing N-1 multiplications is not inefficient because 90 percent of the time
the exponent is 2; 7 percent of the time, it is 3; and only in 3 percent of the cases is the
exponent larger than three [Wichmann, B. A., "Algol 60 Compilation and Assessment,"
Academic Press, 1973]. So the possibility of reducing the number of multiplications does not
arise very often.
S4. X**N for negative N should not be computed as (1.0/X)*(abs N). For example, if X is 3.0
and N is 3, 81.0 is a model number and 1.0/81.0 must lie within the smallest possible model V
interval. But 1.0/3.0 is not a model number and so Is not exactly representable as a binary
floating point value. The accumulated error in multiplying an approximation to 1/3 by itself will
yield a result outside the required model interval If the exponent Is sufficiently large.
Approved Interpretations

s5. When the RM requires that NUMERICERROR be raised (other than by a raise
statement), CONSTRAINTERROR can (and should) be raised instead (AI-00387).

4-18

, -4.86

Version 1 (Dec 86) 4.5.6.c Integer Absolute Value Operator

Legality Rules

Ll. The second operand of the predefined floating point operator must have the type
predefined INTEGER; the first operand must have a floating point type (RM 4.5.6/4).

Exception Conditions

El. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised by predefined
floating point "°*" if the result lies outside the range of the operand's base type and
MACHINEOVERFLOWS is true for the base type (RM 4.5.7/7).

E2. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) can be raised by
predefined floating point ". if the result lies outside the range of safe numbers for the
operand type (RM 4.5.7/7).

Test Objectives and Design Guidelines

T21. Check that " is performed correctly for a variety of floating point types, and in particular,
that:

,.a. X ** 0 = 1.0, X ** 1 - X, and X ** (-1) = 1.0/X.

X. b. Error bounds on the numerical result are acceptable.

c. Large variable exponent values are accepted.

d. Exponents of powers of two down to -30 are represented exactly.

Implementation Guideline: Use named notation for some calls.

T22. Check that NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised if
,.Al MACHINE_OVERFLOWS is true and the result is outside the range of the base type.

T23. Check whether NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised if
the result is outside the range of safe numbers, within the range of the base type, and
MACHINEOVERFLOWS Is true.

T24. Check whether NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised
for floating point types if MACHINEOVERFLOWS is false.

T25. Check that the exponent cannot have any integer type other than predefined INTEGER
when the base has a floating point type.

4.5.6.c Integer Absolute Value Operator
Semantic Ramifications

Approved Interpretations

si. When the RM requires that NUMERICERROR be raised (other than by a raise
statement), CONSTRAINTERROR can (and should) be raised instead (AI-00387).

Legality Rules

L1. The operand of predefined integer abs must have an integer type (RM 4.5.6/1).

Exception Conditions
5,.

4' El. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised by predefined
integer "abs" if the result lies outside the range of the base type (RM 4.5/7).

4-87 4

4.5.6.d Real Absolute Value Operator (Fixed/Float) Version 1 Jec 8E,

Test Objectives and Design Guidelines

T31. Check that abs A equals A if A is pnvitive and equals -A if A is negative. ' '
Implementation Guideline: Use named not. i for some calls.
Implementation Guideline: Explicitly check zero as an argument value, among other cases. Check all
predefined types.

T32. Check that NUMERIC ERROR (or CONSTRAINT ERROR; see AI-00387) is raised for
abs (T'BASE'FIRST) if-T'BASE'LAST > T'BASE'FIRST.

4.5.6.d Real Absolute Value Operator (Fixed/Float)

Semantic Ramifications

si. For model numbers, the exact result is obtained since model values are symmetric with
respect to the sign. With a fixed point type F filling a word on a twos-complement machine, the
expression -F'BASE'FIRST will overflow and hence should raise NUMERICERROR (or
CONSTRAINTERROR; see AI-00387).

*" Approved Interpretations

S2. When the RM requires that NUMERICERROR be raised (other than by a raise
statement), CONSTRAINTERROR can (and should) be raised instead (AI-00387).

Legality Rules

Li. The operand of predefined floating point abs must have a floating point type (RM 4.5.6/1).

L2. The operand of predefined fixed point abs must have a fixed point type (RM 4.5.6/1). ...

Exception Conditions
El. NUMERIC ERROR (or CONSTRAINT ERROR; see AI-00387) is raised by predefined

floating point abs if the result lies outside the base type and MACHINEOVERFLOWS i.
true (RM 4.5.7/7).

E2. NUMERICERROR (or CONSTRAINT_EP'OR; see AI-00387) can be raised by
predefined floating point abs if the result lies within the base type but outside the range of
safe numbers (RM 4.5.7/7). ',

E3. NUMERIC ERROR (or CONSTRAINTERROR; see AI-00387) is raised by predefined
fixed point "abs" if the result lies outside the range of safe numbers (RM 4.5.7/7).

Test Objectives and Design Guidelines

T41. For a variety of floating point types, check that:

a. for model numbers A >= 0, abs A=A,

b. for model numbers A <= 0, abs (A) = -A,

c. for operands that are not model numbers, the result Is within the appropriate
model interval.

Implementation Guideline: Use named notation for some calls.

T42. Check that NUMERICERROR (or CONSTRAINT ERROR; see A-00387) is raised for
floating point abs if MACHINEOVERFLOWS Is true and the result lies outside the range

* of the base type.

Check whethe, NUMERIC ERROR (or CONSTRAINT ERROR; see AI-00387) is raised
for floating point abs if MACHINEOVERFLOWS is false.

4-88

Z'S

Version I (Dec 86) 4.5.7 Accuracy of Operations with Real Operands

T51. For a variety of fixed point types, check that:

a. for model numbers A >= 0, abs A=A,
b. for model numbers A <= 0, abs (A) = -A,

c. for operands that are not model numbers, the result is within the appropriate
model interval.

Implementation Guideline: Use named notation for some calls.

T52. Check that NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised for
fixed point types if the result lies outside the range of the base type.

4.5.6.e Scalar Negation Operator
Legality Rules '

L1. The operand of predefined "not" for boolean types must be a boolean type (RM 4.5.6/1).

Test Objectives and Design Guidelines

T61. Check that nonboolean arguments are not allowed for the predefined not operator, "
including nonboolean scalar types and multidimensional arrays of boolean types. .5.

T62. Check the truth table for not, including for derived boolean types.
Implementation Guideline: Use named notation for some calls.

4.5.6.f Array Negation Operator
Semantic Ramificatlons

Si. When "not" is applied to an array, the bounds of the result are the same as the bounds of
the operand.

Legality Rules

L1. The operand of predefined "not" for arrays must have a one-dimensional array type with a
boolean component type (RM 4.5.6/1).

Test Objectives and Design Guidelines

T71. Check that not is not predefined for multidimensional boolean arrays (see IG 4.5.6.e/T61).

T72. Check that not yields the correct results (both values and bounds) when applied to one-
dimensional boolean arrays.
Implementation Guideline: Use named notation for some calls.
Implementation Guideline: Use packed arrays as well as arrays whose representation is chosen by the
compiler.
Implementation Guideline: Use some arrays whose representation is unlikely to occupy a full word and some
arrays whose representation is likely to occupy many words.

4.5.7 Accuracy of Operations with Real Operands
Semantic Ramifications

si. This section specifies bounds on the accuracy with which floating and fixed point
operations must be performed. The operations covered are +", "-, ... /", "... abs", and
conversions.

4-89

..
..I *S~*.... ..----

4.6 Type Conversions Vrsion

S2. For all practical purposes, machine operations conform to the requirements of this section,
and hence, can be used directly by an implementation. There is one notable exception - v'.
machines that perform division by comouting the reciprocal of the divisor and multiplying.
Consider FIFTEEN/THREE, where thb. variables have the values implied by their names.
Since 15.0, 3.0, and 5.0 are all model floating point numbers, an implementation is required to
produce exactly the value 5.0 as the quotient of 15.0 and 3.0. However, if a machine actually
computes 15.0/3.0 as 15.0 ° 0.333333.... it is unlikely that a result exactly equal to 5.0 will be
produced. In general, such a machine instruction cannot be used by a conforming Ada
compiler.

S3. For floating point numbers, an implementation is permitted to raise NUMERICERROR (or
CONSTRAINTERROR; see AI-00387) as soon as a model interval associated with a result has
a bound lying outside the range of safe numbers. However, if MACHINEOVERFLOWS is true
for floating point types, the RM requires that NUMERICERROR (or CONSTRAINTERROR;
see AI-00387) be raised if an attempt is made to produce a value that lies outside the range of
the base type of the result. Neither exception need be raised if the result lies outside the range
of safe numbers and within the range of the base type. In addition, RM 11.6/6 allows predefined
numeric operations to be performed using a wider range than is otherwise required. NUMERIC--',

_ERROR (or CONSTRAINTERROR) need not be raised in such a case if the correct result will
be obtained, even if the result lies outside the range of the base type. For example, when

evaluating A*B/C, the product might be held in a double-length register where it can be used
directly as the dividend. No exception need be raised even if the product exceeds the range of
the base type.

S4. If MACHINEOVERFLOWS is false, NUMERIC_ERROR (or CONSTRAINTERROR) may
nonetheless be raised for some floating point operations.

Approved Interpretations " A.

S5. When the RM requires that NUMERICERROR be raised (other than by a raise
statement), CONSTRAINTERROR can (and should) be raised instead (AI-00387).

Changes from July 1982

s6. The conditions under which NUMERICERROR can be raised have been changed.

Changes from July 1980

S7. The definitions are extended to include safe numbers.

Ss. The model interval for the result of exponentiation is the interval defined for the underlying
multiplication and division operations.

Test Objectives and Design Guidelines

Ti. For floating point addition, subtraction, multiplication, division, and exponentiation, check
whether NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised when a
result is outside the range of safe numbers but within the range of the base type, and
MACHINE OVERFLOWS Is true.
Implementation Guideline: Report whether NUMERICERROR (or CONSTRAINT-ERROR) is raised even if
MACHINEOVERFLOWS is false.

4.6 Type Conversions
,J.

Semantic Ramifications

S1. Although T("ABC") is illegal (RM 4.6/3), T("A" & "BC") is allowed if only one catenation

4-90

I)P.

Version 1 (Dec 86) 4.6 Type Conversions

operator is visible that takes arrays of characters as operands, since in this case, the type of the
conversion operand is uniquely determined.

S2. A fixed or floating point operand value might lie outside the range of the target type before
conversion but not after, e.g., NATURAL (-0.4) might yield the result zero. CONSTRAINT-
_ERROR is not raised in such cases.
S3. When converting a value to a fixed or floating point type, NUMERICERROR (or
CONSTRAINTERROR; see AI-00387) is raised if MACHINEOVERFLOWS is true and the
operand value lies outside the range of the target base type. NUMERIC_ERROR or
CONSTRAINTERROR can also be raised if the operand value lies outside the range of safe
numbers for the target type (whether or not MACHINEOVERFLOWS is true). If the result lies
outside the range of the target subtype, but within the range of safe numbers, NUMERIC-
_ERROR cannot be raised; CONSTRAINTERROR must be raised.
s4. For array conversions, when the RM says that index or component types must be the
same, it means that the base types must be the same. Hence:

type T1 is azray (NATURAL range <>) of INTEGER;
type T2 is array (INTEGER range <>) of NATURAL;

T1 and T2 are considered to have the same index and component types. An attempt to convert
a value of type T1 to type T2 will, however, raise CONSTRAINT ERROR, since the component
subtype constraint for T1 Is not the same as the constraint for T2.
S5. When converting null array values, it is possible for a non-null dimension of the operand to
have values that lie outside the index subtype for the target array type:

subtype INT 8 is INTEGER range 1..8;
subtype INT_7 is INTEGER range l..7:
type ARR_88 is array (INT 8 range <>, INT_8 range <>) of INTEGER;
type ARR_7_8 is array (INT_7 range <>, INT_8 range <>) of INTEGER;

... ARR7_8 (ARR_' (7..S8 => (..0 => 0)))
In the conversion to ARR 7 8, the operand is a null array and the target type is an
unconstrained array type. The non-null index range, 7..8, contains a bound, 8, that does not
belong to the INT_7 subtype. It no exception were raised by the conversion, the result would
contain a non-null index range with a bound that lies outside its index subtype. It has been
determined by the Language Maintenance Committee that the intent of the RM is that bounds of
non-null index ranges should always belong to their index subtype. Therefore, when converting
to an unconstrained array type, AI-00313 requires that CONSTRAINTERROR be raised if any
bound of a non-null dimension of a conversion's operand does not belong to the corresponding
index subtype of the target type.
S6. RM 4.6(15) gives a rule for interpreting expressions that contain literals, named numbers,
and attributes returning values of type universalInteger or universal real. The rule specifies,first, that if a legal Interpretation exists when no implicit conversions are performed, this
interpretation is used. This part of the rule allows expressions such as ARR'LENGTH = 6 to be
considered unambiguous -- the equality operator for universaljinteger operands is used no
matter how many equality operators are visible for other integer types.

S7. As another example, consider:

X := 1 + 2;

Suppose X is an INTEGER variable. The expression 1 + 2 can be interpreted without implicit
"-.conversions as yielding a universal integer result, but such a result cannot be assigned to an

4-91

- ~ FJV"W, ~ V YW ? V I. %rw -. nlk .~- -a-w ~ -a,,-

4.6 Type Conversions version

% integer variable. In addition, the whole expression cannot be implicitly converted to INTEGER;
only the literals can be implicitly converted. Since there is no legal interpretation of the
assignment statement without implicit c " ,ersion, implicit conversions must be considered. The
only implicit conversion that will succe (i.e., that will allow the statement to be considered
legal, assuming that only the predefined '+" operators are visible) will be the implicit conversion
to INTEGER. So the expression is legal and invokes the INTEGER addition operator.

s5. Now consider the analysis of:
4**2 = 2**3

If only the predefined exponentiation operators are visible, there are no legal interpretations
unless the exponents are implicitly converted to INTEGER. After these conversions, no further
implicit conversions are needed to make the exponentlation legal, so the equality operator for
universal integer operands is used.

59. Note that attnbutes are implicitly convertible. In particular, given

INTEGER' POS '1+2)

the 1, 2, and the attmbute itself are all candidates for implicit conversion. Since POS accepts an
argument having type universalinteger, no implicit conversions are be applied to the literals 1
and 2.
si0. The antrbu~te. CHARACTER'POS('A') is, technically speaking, parsed as a function call, .
since the syntax for attnbutes (RM 4.1.4/2) requires an argument that is a static expression .

having a universal type. The intent, however, is that implicit conversion is allowed for such an
"attribute" (AI-00218).

Sli . For array conversion, RM 4.6(11) requires that corresponding index types be convertible to ' -
each other. index types must be discrete, i.e., an index type must be either an enumeration
type or an integer type. Since there are no conversions defined between integer and
enumeration types, the rule means that both ndex types must either be integer types or both
must be enumeration types. Since any integer type is convertible to any other integer type (AM
4.6/7), there are ro further requirements for inteper index types. Enumeration base types are
convertible only i. they are identical or are relat6 : de, vation (RM 4.3/9), i.e., either or: .
is derived (directly or indirectly) from the otnhe r both types are derved rom a c -nr-
ancestor type.

S12. The RM does not specify what kind of rounding is to be done when converting h -

real values to integer values. Most programmers would probably expect INTEGER(1 ., ;,.,.
2, and INTEGER,-1.5) to equal -2. However, if a "round to even" rule is used when a ,aLe is
exactly midway between two integer values, then INTEGER(1.5) = INTEGER(2.5) - 2, a., fc, a
twos-complement machine, INTEGER(-1.5) = -1 but INTEGER(-2.5) = -3. Another possibility is
rounding up, in which case INTEGER(1.5) = 2 and INTEGER(-1 .5) = -1: this is equivalent to
adding 0.5 to the vaiue and truncating the result to an Integer value. Rounding down is also
possible: INTEGER(1 .5) = 1 and INTEGER (-1.5) - -2. Any of these possibilities is permitted by
the RM. Moreover, the RM does not limit an Implementation to just these methods; these are
just the most likely methods to be supported by actual implementations.

S13. When the type mark in a conversion denotes a subtype that has less accuracy than its
base type the conversion is nonetheless performed with the accuracy of the base type. For
example:

tpe T is digits 5:
subtype ST is T digits 3 range 12345.0 15099.0:

ST(12345 0) = T(12345.0) -- must evaluate to TRUE

4-92

, % -

Version I (Dec 86) 4.6 Type Conversions

For subtype ST, 12345.0 falls in the model interval 12344.0 .. 12352.0 (since 12345.0
V- 16#3039.0# and ST'MANTISSA = 11). Although 12345.0 is not a model number for subtype
-AS-- ST, the conversion, ST(12345.0), is performed with 5-digit accuracy (AI-00407) and yields the

result 12345.0. In addition, the bounds in the subtype declaration are evaluated using
operations of the base type, and hence, are represented with the accuracy of the base type.
(See IG 3.5.7/S for further discussion.)

Approved Interpretations

When the RM requires that NUMERICERROR be raised (other than by a raise statement),
CONSTRAINTERROR can (and should) be raised instead (AI-00387).

S14. When the target type in an array conversion is an unconstrained array type and the
bounds of the operand do not lie within the range of the target type's index subtype,
CONSTRAINTERROR can be raised instead of NUMERICERROR (AI-00368).
S1 5. If a name can be considered either an attribute or a function call, the name is considered
to be an attribute for purposes of deciding whether the value of the name can be implicitly
converted to a numeric type (AI-00218).

Changes from July 1982

ss6. The operand of a type conversion is not allowed to be the literal null, an allocator, an
aggregate, or a string literal enclosed in parentheses.

Changes from July 1980

S1 7. A string literal is not allowed as the operand of a type conversion.

SiS. Conversions between derived types are allowed if the operand and the target types are
both derived from the same type.

sig. For array conversions, it is only required that corresponding index types be convertible to
each other (rather than requiring that one be derived from the other).

S20. For array conversions, it is required that for component types with discriminants or for
access component types, the component subtypes be both constrained or both unconstrained.

S21. CONSTRAINTERROR Is raised for array conversions if any constraint on the component
subtype is not the same for both target and operand types.

S22. For conversion to an unconstrained array type, CONSTRAINTERROR is raised (for non-
null arrays) if any bound of the operand does not belong to the corresponding index subtype of
the target type.

S23. For conversion to a constrained array subtype, CONSTRAINTERROR is raised if the
lengths of corresponding dimensions do not match, or if only one array subtype is null.

S24. Literals are implicitly converted to some type instead of being considered overloaded.

Legality Rules

L1. The type of the operand of a type conversion must be determinable independently of the
target type (RM 4.6/2).

L.2. The operand of a type conversion must not be (RM 4.6/2):

* the literal null;

@ an allocator;

* an aggregate;

4-93

!" ,~~~~~~~~~~~...,........,.-...-...-

4.6 Type Conversions Versior. -ec

* a string literal;
* any of the above enclosed in one or more sets of parentheses.

L3. If the target type is a numeric typf., a operand must have a numeric type (RM 4.6/7).

L4. If the target type is an array type, the type of the operand must satisfy the following
conditions (RM 4.6/11):

- the operand type must also be an array type;

* both types must have the same number of dimensions;

• for each index position, the Index types must either be the same or be
convertible to each other, i.e.,

" both index types must be integer types, or

" both index types must be enumeration types, and

• one type is derived from the other (directly or indirectly); or

* both types are derived (directly or indirectly) from a common
ancestor type;

* the index types are the same.

* the component base types must be the same; "

O if the component type is a type with discriminants or an access type, the
component subtypes must be both constrained or both unconstrained.

L5. If the target type is not an array type or a numeric type, then the operand base type must -" '

be (RM 4.6/9):
-p.

e the same as the target base type, or

* derived (directly or indirectly) from the target type (or vice versa), or

e there must exist a third type from . 'i both types are derived (directy or
indirectly).

Exception Conditions "

El. NUMERIC-ERROR (or CONSTRAINTERROR; see AI-00387) is raised when ccnve,::-
to an integer type if the value of the operand lies outside the range of the target base ty.
(RM 3.5.4/10 and RM 4.5/7).

E2. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised when converting
to a fixed or floating point type if MACHINEOVERFLOWS is true and the value of the
operand lies outside the range of the target base type (RM 4.5.7/7).

E3. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) may be raised when
converting to a fixed or floating point type if the value of the operand lies outside the range
of safe numbers for the target type and inside the range of the target base type (RM
4.5.7/7).

E4. CONSTRAINTERROR is raised for conversion to a numeric type or for conversion
between derived types (other than array types; for array types, see E5) if the result of the
conversion fails to satisfy a constraint imposed by the target type (RM 4.6/12). In
particular:

4-94

..6...

Version I (Dec 86) 4.6 Type Conversions

* if the target type is an enumeration type, CONSTRAINT._ERROR is raised if
the result of the conversion does not lie within the range of the target subtype.

% .." *if the target type is a numeric type, CONSTRAINTERROR is raised if
NUMERICERROR Is not raised and the result of the conversion does not lie
within the range of the target subtype.

e if the target type is a record type with discriminants or a private type with
discriminants, CONSTRAINTERROR is raised if the discriminant values for
the operand do not equal those for the target type (RM 3.3/4 and RM 3.7.2/6).

* if the target type is a constrained access type whose designated type is an
array type, CONSTRAINTERROR is raised if the operand value is not null
and the index bounds of the designated array do not equal those of the target
type (RM 3.3/4, RM 3.8/6, and RM 3.6.1/4).

* if the target type is a constrained access type whose designated type is a type
with discriminants (a record type or a private type), CONSTRAINT_ERROR is
raised if the operand value is not null and the discriminants of the designated
object do not equal those of the target subtype (RM 3.3/4, RM 3.816, and RM
3.7.2/6).

E5. CONSTRAINTERROR is raised for conversion to an array type if:

* any (range, floating point, fixed point, index, or discriminant) constraint
specified for the component subtype of the operand array type is not the same
as the constraint specified for the target array's component subtype (RM
4.6/13).

, the target type is an unconstrained array type and a non-null index bound of

the operand does not belong to the corresponding target type's index subtype
(RM 4.6/13 and AI-00313).

* the target type is a constrained array type and if the target or operand type is

non-null, corresponding dimensions do not have the same length (RM 4.6/13). ,,

Test Objectives and Design Guidelines

Conversion of In out and out parameters Is checked in IG 6.4.1/T3 and IG 6.4.1/T5.

Ti. Check that the type of the operand of an explicit conversion must be determined .
independently of the target type (see IG 8.7.b/T36).

T2. Check that the operand of a type conversion must not be the literal null, an allocator, an
aggregate, a string literal, or any of the preceding enclosed in one or more sets of
parentheses.
Implementation Guideline: Be sure that there is one access type declared and be sure to use an aggregate
that contains only character literals (i.e., that could have type STRING). "

T3. Check that when the target type is a numeric type, the operand type cannot be an
enumeration type, an array type with a numeric component type, a record type with
numeric components, an access type, or a private type whose full declaration declares a
numeric type.

T4. When the target type is an array type, check that:

* the operand type cannot be an enumeration type, a record type, an access
type, or a private type whose full declaration declares an array type. . ,.

4-95

-. , -. 'a ,"

-. F F F . .- . . a.-

4.6 Type Conversions or,

* the operand type cannot have fewer or more dimensions than the target type.
Implementation Guideline: Include a case where both types are null arrays.'-, ,',,

* for corresponding index pos' is of the operand and target type, one index
type cannot be an enumeratio, .ype and the other a numeric type; also, if both
are different enumeration typus, unless one is derived from the other or a
common ancestor, the conversion is Illegal.

* the component base type of an array operand type must be the same as the
component base type for the target type.
Implementation Guideline: Include cases where component types are derived from a common
ancestor and where both types are numeric.

e if the component subtype for the operand and target type is a record or private
type with discriminants, the component subtype of the target cannot be
constrained if the component subtype of the operand is unconstrained, and
vice versa.

a if the component subtype for the operand and target type is an access type
whose designated type is an array type or a type with discriminants, one
component subtype cannot be constrained if the other is unconstrained.

T5. Check that if the target type is an enumeration type, a record type, an access type, or a
private type, the operand type cannot be a different enumeration type, record type, access
type, or private type unrelated by derivation.

Integer Conversion

Ti 1. Check that integer conversions are performed correctly when the target and operand types
are both integer types.
Implementation Guideline: The operand type should be another integer type unrelated to the target type by
derivation, if possible.
Implementation Guideline: Include an identity conversion.

T12. Check that inteaer conversions are perfor-. ;, c'i-,rrectly when the opera.d type s a Ioc'
point type.
Implementation Guideline: Check for digits 5-29.
Implementation Guideline: Check that rounding is perr med correctly, and report whether ralf-integer values
are rounded up or down, using values such as -2.5, -1.5, 1.5, and 2.5.

T13. Check that integer conversions are performed correctly when the operand type is a fixed
point type.
Implementation Guideline: Check for a variety of fixec point mantissa lengths.

Implementation Guideline: Include, in separate tests, cases where T'SMALL of the operand type is not a power
of two.

Implementation Guidehne: Check that rounding is psrcrmed correctly, and report whether half-integer values
are rounded up or down, using values such as -2.5, -1.5, ! .5, and 2.5.

T14. Check that NUMERIC_ERROR (or CONSTRAINTERROR; see AI-00387) is raised if the
result of the conversion lies outside the range of the target type's base type.

Check that CONSTRAINTERROR is raised if the result of the conversion lies outside the
range of the target type's subtype but within tx range of the base type.
Implementation Guideline: Try a case such as NATURAL-0.4) and NATURAL(-0.6). CONSTRAINTERROR
need not be raised if the result of the conversion is zero.

4-96

* 4 * 4 4 . - 4.

Version 1 (Dec 86) 4.6 Type Conversions

Floating Point Conversion

T21. Check that floating point conversions are performed correctly when the operand type is an
integer value.
Implementation Guideline: Check for digits 5-29; use positive and negative values.

T22. Check that floating point conversions are performed correctly for large universal integer
literals, and neither NUMERICERROR nor CONSTRAINTERROR is raised by these
conversions.
Implementation Guideline: Use digits 5-29 and the integer literals denoting positive and negative values of
'LARGE.

T23. Check that floating point conversions are performed correctly when the operand type is a
floating point type.
Implementation Guideline: Include conversions where the operand type has greater accuracy and the result is,
or is not, a model number of the target type. ',,,,

When the conversion is to a subtype having less accuracy than its base type, check that
the result uses the model numbers of the base type (i.e., there must be no approximation .
using accuracy of the subtype, and the range check must be performed using the accuracy
of the base type (see IG 3.5.7/Ti 2)).

Check how floating point conversion discards excess bits: by rounding, by truncation
(toward or away from zero), by "round to even," or in some other manner. -

T2";. Check floating point conversions when the target type is a fixed point type.
Implementation Guideline: Include a set of tests where the fixed point model numbers are not powers of two.

T25. Check that NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised if the
result of a floating point conversion lies outside the range of the target type's base type and
MACHINEOVERFLOWS is true.
Implementation Guideline: Report whether NUMERICERROR is raised even if MACHINEOVERFLOWS is ?
not true.

Check whether NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised
when the result of a floating point conversion lies outside the range of safe numbers for the
target type, but within the range of the base type.

Check that CONSTRAINTERROR is raised if the result of the conversion lies outside the
range of the target subtype, but within the range of the base type.
Implementation Guideline: Include a case where the result lies outside the range of safe numbers, but within -.-.
the range of the base type. CONSTRAINT-ERROR should be raised if and only if NUMERIC_ERROR is not
raised.

Fixed Point Conversion

T31. Check conversions to fixed point types when the operand type Is an integer type.

T32. Check conversions to fixed point types when the operand type is a floating point type.
Implementation Guideline: Check for digits 5-29. ",

T33. Check conversions to fixed point types when the operand type is a fixed point type. ,

T34. Check that NUMERICERROR (or CONSTRAINT ERROR; see AI-00387) is raised if the
result of the conversion lies outside the range of the target type's base type.

Check that CONSTRAINT-ERROR Is raised if the result of the conversion lies outside the
range of the target subtype but within the range of the target base type.

4-97

% 'el

4.6 Type Conversions 3n

Array Conversions

T41. Check array conversions when the target type is an unconstrained array type and the
operand type requires conversion of i-dex bounds.
Implementation Guideline: The target and op-. and types should not necessarily be related by derivation.
Implementation Guideline: Include cases where the representation of the operand and target index types is %
different (e.g., because one is LONG-INTEGER and the other is INTEGER).

T42. Check array conversions when the target type is a constrained array type and the operand
type has bounds that do not belong to the target index type's base type.
Implementation Guideline: The bounds of the operand and target subtypes should be different.
Implementation Guideline: Include cases where the representation of the operand and the target types is rj.

different.

T43. Check that CONSTRAINTERROR is raised for conversion to an unconstrained array type
if:

* component subtypes do not have the same constraints;
Implementation Guideline: Check for range, accuracy, index, and discriminant constraints. For
index and discriminant constraints, check array, record, access, and private component types.

, for a non-null dimension of the operand type, one bound does not belong to
the corresponding index subtype of the target type.
Implementation Guideline: Include a case where the target and operand type are both null
arrays and corresponding dimensions do not have the same lengths.

T44. Check that CONSTRAINTERROR is raised for conversion to a constrained array type if:

* component subtypes do not have the same constraints;
Implementation Guideline: Check for range, accuracy, index, and discriminant constraints. For , .

index and discriminant constraints, check array, record, access, and private component types.

s if the target type is non-null, corresponding dimensions of the target and
operand do not have the same length. -.

* if the target type is null, the operand is non.null.

Derived Type Conversions

T51. Check that enumeration, record, access, pnvate, and task values can be converted if the
operand and target types are related by derivation.
Implementation Gudeline.- Include cases where the target and operand types are derived from a commor:
ancestor, and cases where one is derived indirectly from the other.
Implementation Guideline: In separate tests, check that the operand and target types can have ('ifferent
representations (if the implementation allows the necessary representation clauses), and that the conversion
produces the correct results.
Implementation Guideline: For record, access, and private types, include cases where the target subtype is
constrained.
Implementation Guideline: Include cases where a record or private type is limited.
Implementation Guideline. Include a case where a type is derived from a generic formal type, e.g.:

generi ic

type T ise private:
package GP is

type DT is new T:
end GP,

type ANCESTOR is4.
type DA is new ANCESTOR;
type DB is new ANCESTOR:

4-98
I

d. - -~ ,.P'~- J' ~. ~ %* *:.,.,,*:.. .

Version 1 (Dec 86) 4.7 Qualified Expressions

package P in now GP(DB);
X DA:...;
Y : P.DT :- P.DT(DA); -- legal

T52. Check that CONSTRAINTERROR is raised for conversion to an enumeration subtype if
the converted value does not belong to the range of enumeration values for the target S

subtype.

T53. Check that CONSTRAINTERROR is raised for conversion to a constrained record,
private, or limited private subtype if the the discriminants of the target subtype do not equal
those of the operand.

T54. Check that CONSTRAINTERROR is raised for conversion to an access subtype if the P.
operand value is not null, the designated subtype is an array type or a constrained type
with discriminants, and the discriminants or Index bounds of the designated object do not
match those of the target subtype.

Check that CONSTRAINTERROR is not raised for conversion to an access subtype when
the operand value is null.

4.7 Qualified Expressions
Semantic Ramifications

si. When the operand in a conversion has the same base type as the target type, a conversion
acts very much like a qualification. There are, however, a few differences. For arrays, the
difference is that the bounds of the operand of a qualification must equal those of the type mark,
whereas, in conversion, the operand's bounds can be different. In addition, for a conversion,
the operand's type must be determined independent of the target type, whereas in qualification,
the type mark determines the operand type If there is any ambiguity. Finally, the literal null, an
allocator, an aggregate, and a string literal are all disallowed as operands of conversions, but
are allowed as operands of qualified expressions.

S2. When the type mark in a qualification denotes a subtype that has less accuracy than its
base type, the required range check is nonetheless performed with the accuracy of the base
type. For example:

type T is digits 5;
subtype ST is T digits 3 range 12345.0 .. 15099.0;
... ST' (12345.0) = T(12345.0) -- mist evaluate to TRUE

For subtype ST, 12345.0 falls in the model interval 12344.0 .. 12352.0 (since 12345.0 =

16#3039.0# and ST'MANTISSA = 11). Although 12345.0 is not a model number for subtype 0
ST, the qualification, ST'(1 2345.0), is evaluated with 5-digit accuracy (AI-00407) and yields the
result 12345.0. In addition, the bounds in the subtype declaration are evaluated using
operations of the base type, and hence, are represented with the accuracy of the base type.
Consequently, no exception can be raised by the qualification. (See IG 3.5.7/S for further
discussion.)

Changes from July 1982

S3. There are no significant changes.

Changes from July 1980

s4. There are no significant changes. 1

.4p.-

4.99...,

.P-..,o-a

4.7 Qualified Expressions Ve. sion ; -

Legality Rules
L1. The base type of the operand and the base type of the type mark must be the same (RM "":..

4.7/3).

Exception Conditions
El. CONSTRAINTERROR is raised for a qualified expression if the value of the operand

does not satisfy a constraint imposed by the type mark (RM 4.7/3). In particular:

if the type mark is an enumeration or numeric type, CONSTRAINTERROR is
raised if the value of the operand does not lie within the range of the target
subtype.

* if the type mark is a constrained array type, CONSTRAINTERROR is raised
if the corresponding bounds of the type mark and the operand are not equal.
if the type mark is a record type with discriminants or a private type with
discriminants, CONSTRAINTERROR is raised if the discriminant values for
the operand do not equal those for the type mark.
if the type mark is a constrained access type whose designated type is an
array type, CONSTRAINTERROR is raised If the operand value is not null
and the index bounds of the designated array do not equal those of the type
mark.
if the type mark is a constrained access type whose designated type is a type
with discriminants (a record type or a private type), CONSTRAINTERROR is
raised if the operand value is not null and the discriminants of the designated
object do not equal those of the type mark.

Test Objectives and Design Guidelines

Ti. Check that the operand of a qualified expression must have the same base type as the
type mark.
Implementation Guideline: In particular, check that oPoer;-.'s that would be legal for conversi.. ns are I'egai f,-r
qualifications

T2. Check that values belonging to each class of type can be written as the operand of a
qualified expression.
Implementation Guideline: The type classes to oe checked are: enumeration, integer, floating, fixed, array.
record, access, private, limited private, task, and composite limited.

T3. When the type mark denotes an enumeration type, check that CONSTRAINTERROR is
raised when the value of the operand does not lie in the range of the type mark.
Implementation Guideline: Include a case where "s type mark is a generic formal type.

T4. When the type mark denotes an integer type, check that CONSTRAINTERROR is raised
when the value of the operand does not lie in the range of the type mark.

T5. When the type mark denotes a floating point type, check that CONSTRAINTERROR is
raised when the value of the operand does not lie in the range of the type mark.
Check that when the type mark is a subtype with less accuracy than the base type, the
range check is performed using the accuracy of the base type (see IG 3.5.7/T1 2).

T6. When the type mark denotes a fixed point type, check that CONSTRAINTERROR is
raised when the value of the operand does not lie in the range of the type mark.

Check that when the type mark is a subtype with less accuracy than the ba.3e type, the
range check is performed using the accuracy of the base type (see IG 3.5.7/T1 2).

4.100

4-100

_,3

.3 - - . % . . % % . . .". . , , ,,-.....--...- ,. ,....-..

3, ." ,',"3"3,.?. *.% "'", ,,. , "?... , ,". 3' . .*. .,*- .,. ,"-"- :.'-' .". ,"''. "*" ,', '"'. .". .'..-""'

IJ

Version 1 (Dec 86) 4.8 Allocators

,JW
T7. When the type mark denotes a constrained array type, check that CONSTRAINTERROR

is raised when the bounds of the operand are not the same as the bounds of the type
mark.
Implementation Guideline: Use both null and non-null arrays.

T8. When the type mark denotes a constrained record, private, or limited private type, check
that CONSTRAINTERROR is raised when the discriminants of the operand do not equal
those of the type mark.

T9. When the type mark denotes a constrained access type, check that CONSTRAINT-
_ERROR is raised when the value of the operand is not null and the designated object has
index bounds or discriminant values that do not equal those specified in the access type's
constraint.

Check that CONSTRAINTERROR is not raised when the operand value is null and the
type mark denotes an access type.

4.8 Allocators

Semantic Ramifications

S1. The type of an allocator is potentially ambiguous only if the type of the designated object
appears in more than one access type definition, e.g.,

type PEOPLE in access PERSON;
type HUMAN is access PERSON;

The allocator, new PERSON (...), can be either of type PEOPLE or HUMAN. Since in either
• 'case, an object of type PERSON is allocated, what are the implications of this type

determination? There are two possibilities:

" if a collection size has been specified for PEOPLE that is smaller than the
collection size for HUMAN (see RM 13.2), a PEOPLE allocation could raise
STORAGE ERROR when a HUMAN allocation would not;

" if PEOPLE values are represented with offset pointers (see IG 13.2.b/S) and
HUMAN values with full pointers, then the representation of the run-time valuedepends on the type of the allocator.

S2. Of course, knowing the possible types of new PERSON (...) is important in overloading
resolution. Suppose we have

procedure F(X: HUMAN); •
procedure F(X: DATA);

and DATA is not an access PERSON type. Then the call

F(new P3RSON(...))

is clearly a call of the first procedure. Similarly, if G is an overloaded function such that G.A is
either of type HUMAN or type INTEGER, then

.,4
G.A := new PERSON(M);

is resolved to invoke the first overloading of G and the access type is HUMAN. Finally, it should .
be noted that the expression:

• ~now PERSON(...) now PERSON (.. ,>

1-01 %.
I

Y-.- V

4.8 Allocators Version 1 (Dec 86)

would be illegal, since "=" is defined for operands of both type PEOPLE and type HUMAN.
Even though the two allocators cannot possibly have the same value, a compiler cannot give
the value FALSE for the above express;on. The expression must be rejected as illegal because
a unique ,,=,, operator cannot be Ident. (Of course, there is no ambiguity if there is only one
visible ',=,, for an access PERSON type.)

s3. The type matching requirements of the various contexts in which an allocator can be used
determine the type of the value returned by the allocator:

,'.

9 in assignment statements, the type must be the same as the type of the left-
hand side;

* in equality comparisons, the type must be the same as the type of the other .
operand;

e in component and object declarations, the type of the initial value must be the
type of the declared component or object, respectively.

* in an aggregate, the type must be the component type required by the
aggregate's type;

* as a default value in a parameter list, the type must be the type of the formal
parameter;

9 in qualifications, the type must be the same as the type used for qualification;

* as an expression in an allocator, e.g., new T'(new PERSON), the type of new
PERSON must be the same as the base type of T;

* in a return statement, the type must be the type of the value to be returned;

* as an actual In parameter, the type must be that of the corresponding formal
parameter;

e as an actual generic In parameter, the type must be that of the formal
parameter.

See also IG 8.7/S.

S4. The base type of an allocator's type mark determines the type of the designated object,
and hence, allocators need not use the samc .jpe mark as the one used in an access type
declaration. Moreover, only the base type of the type mark can be used to resolve any
ambiguity in the type of the allocator:

subtype MAN is PERSON(M);

subtype MALE is PERSON(M);
type ACC MAN is access MAN; -- MAN'BASE PERSON
type ACC MAU is access MALE; -- MALE'BASE = PERSON

... new MAN

The allocator, new MAN, is either of type ACCMAN or of type ACC_MALE; the fact that ACC-
_MAN was declared with the type mark MAN does not imply that new MAN has type ACC-
_MAN. All that is known is that an object of type PERSON has been allocated, and hence, new
MAN has some access PERSON type. For example, if we add the following declarations:

V MALE ACC MALE;
V MAN ACCMAN;

then

4-102

%7 V

* *.9 %

'Or

_Z,,

Version 1 (DeC 86) 4.8 Allocators

V MALE new MAN;
Sv-mAN - new MA,;

are legal and unambiguously assign an ACCMALE value to VMAN and an ACCMAN value
to V_MAN.

ss. Similarly, given

type ACC FEM is access PERSON(F);
OBJ F : ACCFEM;

then

if (new MAN) = OBJ F then

is legal. However, the allocator raises CONSTRAINTERROR (since the designated object
would have subtype PERSON(M), which does not satisfy the constraint imposed by the
allocator's base type, ACC_FEM; AI-00397). It is not specified whether CONSTRAINTERROR
is raised before or after creation of an object. in particular, default expressions for a created
object could be evaluated before the exception is raised (AI-00397).

S6. In checking whether an allocator raises CONSTRAINTERROR, there are four sources of
CONSTRAINTERROR to be considered:

1. a default initial value for a subcomponent of the designated object does not
satisfy the corresponding subcomponent constraint.

2. the discriminant constraint or index constraint specified in an allocator is not
compatible with the type mark given in the allocator, or the value specified as
the operand of the qualified expression does not belong to the subtype
denoted by the type mark.

3. the designated object does not belong to the designated subtype that is

specified for the allocator's base type.

4. an index or discriminant subcomponent constraint that depends on a
discriminant is not compatible with the subcomponent's type, and the
subcomponent is present in the designated object.

S7. To illustrate the first two sources of CONSTRAINTERROR, consider the following
declarations:

subtype INTI 10 is INTEGER range 1..10;
subtype FIVE is INTEGER range 5.5.5;

type AINT4_6 is access INTEGER range 4.. 6;

OBJ :A INT4 6 :- new ...; -- see allocators given below

The allocator new FIVE'(6) is legal and of type A_INT4_6. It raises CONSTRAINTERROR
because the qualified expression, FIVE'(6), raises CONSTRAINTERROR. The allocator new
INT1_10'(7) is also legal and of type AINT4_6, but it raises CONSTRAINTERROR because 7
is not compatible with the range constraint associated with the allocator's base type, AINT4_6
(AI-00397). Since none of the range constraints in the above example are required to be static
expressions, in general an implementation will have to make at least two checks for constraint
compatibility - one check for the qualified expression and the second for any constraint

..;" imposed in the allocator's base type definition.

-w 2
'p. . ~ o ~oo. . = , . . .- - - . . °,S.. . .,-....., .,.,% ., ,% ,...> .-.-....-. -,-,. ..,., -- ...,...... . .., ,..,. -

4.8 Allocators Version 1 (Dec 86)

ss. The following more complex example illustrates all four ways an allocator can raise
CONSTRAINT ERROR:

type GENDER is (X, F, T NOWN);
subtype GENDER TYPE is . DER range H..F;

type PERSON (GNDR: GENDER TYPE := F) is
record

A : INTEGER range 1..10 := FUNC;
B TASKTYPE;

end record;

type PEOPLE is access PERSON;

type S PERSON (GNDR: GENDER) is
record

X PERSON (GNDR);
Y : TASKTYPE;

end record;

type SPEOPLE is access SPERSON;

type APERSONK is access PERSON(M); -- case 1: access to cons-
-- trained type

subtype PEOPLE_M is PEOPLE(M); -- case 2: constrained access
- type

subtype PERSONF is PERSON(F); - -. ",.

The various ways of raising CONSTRAINTERROR are:

1. A default initial value for a subcomponent of the designated object does not
satisfy the subcomponent's constraint, e.g., new PERSON(M) when FUNC
returns 11. (Of course, the evaluation of FUNC could itself cause an
exception to be raised.)

2. The qualified expression or subtype indication with an explicit constraint raises
CONSTRAINTERROR, e.g., new FIVE'(6) or new PERSON (UNKNOWN).

3. The designated object does not satisfy a constraint specified for the access
base type, e.g., AINT4_6'(new INTEGER'(7)) or APERSONM'(new
PERSON (F)). Note that new PERSON (F) is equivalent to new PERSON,
i.e., APERSON M'(new PERSON) will also raise CONSTRAINTERROR,
because the default initial value for the discriminant is F.

4. A discriminant specified in the allocator Is compatible with the discriminant's
subtype, but Is not compatible with Its use in constraining a subcomponent,
e.g., new S_PERSON (GNDR -> UNKNOWN).

sg. In the first of the four examples, new PERSON(M), an object is created and then an
exception may be raised when FUNC is invoked. If no exception is raised by FUNC's
invocation, CONSTRAINTERROR will be raised if FUNC returns a value outside the range
1..10. After component A is initialized, activation of the task component is attempted (RM
9.3/6). This activation might raise an exception (PROGRAMERROR or TASKINGERROR).

sio. In case 4, the specified discriminant value (UNKNOWN) is compatible with SPERSON's :

discriminant specification but it is not compatible with the discriminant's use to constraint an

4-104

PM~~ ~ ~ ~ --n N-WI I tk -J L J L U1 L V -. W V WI V. . v r, V

Version 1 (Dec 86) 4.8 Allocators

S_PERSON's X component (see RM 4.8/6 and RM 3.7.2/5). CONSTRAINTERROR is raised
before (or after; AI-00397) the S_PERSON object is created, but before activation of the task
component is attempted.

sil. There is a subtle difference between the third case, APERSONM'(new PERSON(F))
and, PEOPLE M'(new PERSON(F)). RM 3.8/3 says values of an access type designate
objects whose subtype is that given in the access type definition. Hence

*type A PZRSONM is access PERSON(M);

is not equivalent to:

type %A PERSON is access PERSON;
subtype A PERSON M is %A_PERSON(M), -- not equivalent to type decl.

since %APERSON values can designate objects of any PERSON subtype, but APERSON_M
access values are only permitted to designate objects of type PERSON(M). In checking
A_PERSON M'(new PERSON(F)), the checks are performed as follows (the order is not
significant):

1. Check the compatibility of the discriminant with the type mark given in the
allocator. For this check PERSON(F) does not raise CONSTRAINT_ERROR,
since F is compatible with PERSON's discriminant specification.

2. Check whether the subtype specified in the allocator (i.e., PERSON(F)) is
consistent with the designated subtype specified in the declaration of the
allocator's base type (i.e., APERSONM). A_PERSON_M'(new ...) means
that the allocator Is required to produce an access value of type APERSON-

:' .- _M'BASE, I.e., an access value designating PERSON(M) objects. (An
implementer needs to know what type of access value is produced by an
allocator so the object can be allocated in the appropriate collection.)

Note that just as for the earlier INT_1 0 examples, the constraint checks for an allocator involve
both the checks imposed by the allocator's type mark and the checks imposed by the allocator's
type. Both sets of constraints must be checked before or after creating an object.

S12. Note that from an implementation viewpoint, it is known that every object allocated in the
A_PERSONM collection will be of the same size. Note also that new PERSON(UNKNOWN)
would raise CONSTRAINTERROR Independently of the type of access value delivered by the
allocator.
S13. In the fourth case, PEOPLEM'(new PERSON(F)), the type produced by the allocator is
PEOPLEM'BASE, i.e., PEOPLE. Hence, a delivered access value will not violate any
constraint of the access type, but it will violate the constraint imposed by the subtype PEOPLE-
_M. Since new PERSON(F) satisfies the constraint imposed by the access type PEOPLE-
_M'BASE, CONSTRAINT-ERROR is not raised prior to allocating the PERSON object in the
collection PEOPLE. Hence, the PERSON object Is allocated, and as a result of this allocation,
FUNC is to be Invoked and a task object is to be created and activated. If the value of FUNC
satisfies the range constraint and the activation of the task component does not raise an
exception, then an access value designating an object is delivered by the allocator. This value
is checked against the constraint imposed by PEOPLE M. Since the access value does not

designate a PERSON(M) object, CONSTRAINTERROR is raised. The allocated object
continues to exist at least as long as its task component is not terminated. Note that since
FUNC need not return the same value for each call, and since activation of a task is not the
same as invoking a function, RM 11.6 does not apply here: an object must be allocated, and

= % ,,the initializations attempted, even if a compiler can tell that an exception will be raised.

4--,05

,",",' ..,?...." ".." .".. - - .' " " -,; .-'. ,:- .-.-.--. -. .,..;'.:, -- ,...'-..........-,-:.. .,. .;

4.8 Allocators Version I (Dec 86)

S14. Similar examples exist for array types:

type ARR is array (NATUP(L range <>) of PERSON(M);
type ACC ARRI_5 is acce - RR(I..5);
type ACC ARR is access AR'."

, subtype 1=1_5 is i CCsuR(l..5);

They are:

I. new ARR(1..5) -- default initialization may raise an exception. Note that
FUNC is called five times and five tasks are created and activated if no
exceptions are raised;

2. new ARR(-5..-3) -- fails to satisfy NATURAL, the index subtype of ARR;

3. ACCARRI_5'(new ARR(2..6)) -- fails to satisfy the constraint on the
allocator's base type; default initializations can be performed before the
exception is raised (AI-00397).

s15. Ada is designed so that for a record or array type, an allocator need only allocate enough
space to hold the particular subtype being allocated; no subsequent assignments are permitted
to change the index or discriminant constraints associated with such an designated object.

S16. There is no requirement that the values of an allocator's index or discriminant constraint be
static. In particular, discriminants governing variant parts need not be static.

S1 7. Note that for an access subtype, e.g.,

subtype FELLOW is PEOPLE (M);

an allocator new FELLOW is equivalent to new PEOPLE(M) (see RM 3.3.2/6); moreover, new
FELLOW(M) is illegal, since a constrained type cannot be further constrained (RM 3.3.2/5).
SiB. If a type T contains no components except a single discriminant, A, then new T(5) would
be a legal allocator because the (5) is a discriminant constraint, new T'(5) would be illegal,
since one-component aggregates must use named notation (see RM 4.3/4). However, new
T'(A=>5) would be legal.

sig. Suppose a type contains two or more discrinnants but no other components, e.g.,

type REC(A, B, C: INTEGER) in
record

null:
end record;

subtype SREC is REC (3, 4, 5);

Now consider the following allocators:

new SREC (3, 4, 5); -- illegal %5
new SREC' (3, 4, 5): -- legal

.,'.

The first allocator is illegal because (3, 4, 5) is a discriminant constraint, and SREC is already
constrained. However, the second is a qualified expression, so the SREC allocator is legal.
Note that if REC is a private type, then outside the package containing the full declaration of
REC, new SREC'(3, 4. 5) will be illegal because there exist no aggregates for a pnvate type
(RM 7.4.2/4).

S20. Note that for arrays, an aggregate with the wrong number of components raises

4.106

'.

Version 1 (Dec 86) 4.8 Allocators

CONSTRAINT ERROR (see IG 4.3.2/S), but for records, a discriminant constraint or aggregate
with the wrong number of components is illegal (see RM 4.3/6).

S2i. Note that unconstrained access types may be constrained in allocators (see RM 3.8/6). _
Consider the following: 0

type ACC PERSON is access PERSON;
type ACCACC PERSON is access ACC PERSON;
type ACC MACC PERSON is access ACCPERSON(M);
X ACCACC PERSON : new ACCPERSON(F); -- (1)
XM ACCMACC PERSON := new ACCPERSON(F); -- (2)

X.ALL := new PERSON(M); -- legal

The constraint in (1) has no effect on the allocated value (see last sentence RM 4.8/5); X.all has
the value null until it is later assigned a different value. Note also that the first sentence of RM
4.8/5 does not apply to (1) since ACCPERSON is not a type with discnininants (see RM 3.3/3);
only record, private, and limited private types can have discriminants. The mere fact that a
discriminant constraint can be given for an access type does not mean an access type has
discriminants; the discriminant constraint is applied to the designated type (see RM 3.8/6). Note
also that for (2), CONSTRAINT-ERROR is not raised, even though the specified discriminant
value does not equal the value given in the declaration of ACCMACCPERSON. This is
because the allocated value, null, satisfies any constraint, so no exception need be raised.
CONSTRAINTERROR would be raised for the following allocator, however:

XM = new ACC PERSON' (new PERSON(F));

The value of the innermost allocator is checked against the designated subtype for the "-
outermost allocator. Since the outermost allocator has base type ACCMACCPERSON, the
designated subtype is ACCPERSON(M), and the subtype constraint is not satisfied by the
value delivered by new PERSON(F). Hence CONSTRAINTERROR is raised.

S22. Finally, consider the following declarations:

type ACC MPERSON is access PERSON(M):
type ACCACC IZRSON is access ACC MPERSON;
Z1 ACCACC 1ERSON new ACC MPERSON(M); -- illegal S
Z2 ACC MACC PERSON := new ACC PERSON(M); -- legal

The declaration of ACCMPERSON imposes a constraint (on its designated objects). RM
3.3.2/5 says that a dlscriminant (or Index) constraint cannot be imposed on a type mark that
already imposes a constraint. Hence, ACC_MPERSON(M) is an illegal subtype indication.
ACCPERSON(M), however, is legal since ACCPERSON does not impose a constraint on its S
designated objects.

S23. The RM requires that storage for a designated object not be reclaimed as long as the
object is accessible directly or indirectly. There are at least two cases in which an object can
become unnameable directly, but still be accessible in some sense:

1. storage for a task designated by an access value cannot be reclaimed before
the task is terminated;

2, if a component of a designated object is renamed or passed as a parameter,
storage for the designated object cannot be reclaimed as long as the
component is accessible.

Each of these cases is illustrated by an example:

•% ..7-
.! ,. .- , .. .I • - - . S . . • • .- . S . o • . • - ° . . . ,.

4.8 Allocators Version 1 (Dec 86)

Case 1:

declare
task type T is ... end T; , ,
type TACC ir zcess T: -

task body T is ... end T;
begin

declare
LOST : T ACC := new T;
-- task is activated

begin
null;

end;
-- LOST is inaccessible but active

An implementation cannot reclaim the storage for LOST.all before LOST.all is terminated. Note
also that LOST.all is not dependent on, the inner block, so execution can leave the inner block
before LOST.all terminates.• ,.

Case 2:
declare

type ARR is array (INTEGER range <>) of INTEGER;
type ACC ARR is access ARR;
V ARR ACC ARR := new ARR'(l..10 => 9);
ELEM 10 INTEGZR renames V ARR(10);

begin
V ARR := null: -- cannot reclaim ELEM_10 storage
ELEM 10 := ELEM 10 + 1; -- legal; no exceptions
if ELEM 10 /= 10 then

FAILED;
S..

end if; -'

end:

Note that the same effect occurs when a component is passed as a generic In out parameter
and may also occur for components passed (by reference) as subprogram parameters.

S24. Note that an implementer is not required to implement a garbage collector for access
types. If no garbage collector is provided, the. pragma CONTROLLED will have no possible
effect. It garbage collection is provided, then an implementation has the option of obeying the
pragma by turning off garbage collection for a specified type.

S25. Syntactically an allocator must conform to one of the following forms:

new T
new T X -- where X specifies a discriminant or range constraint.

new T'X -- where X specifies an aqqregate or a parenthesized
-- expression of type T.

The following table specifies various allocators and indicates their legality. The column
headings have the following meanings. (Note: A type is a limited type if it is a limited private
type, a task type, or a composite type with a component of a limited type.)

ST - scalar type
'...

UR - unconstrained record type (with at least one discriminant)

CR - constrained record type (with or without discnminants)

4.1o8

4.10

• 'o'... S "o S'p"% ., .. ".. * -. .. '- .. ' *. - '..- .. •.. .'..' ,.% ",' ...-.. ., % .%*,*-,% . , ,. ° .

Version 1 (Dec 86) 4.8 Allocators

UP - unconstrained private type (with at least one discriminant) A

CP - constrained private type (with or without discriminants)

UL - unconstrained limited type (with at least one discriminant)

CL - constrained limited type (with or without discriminants)

UA -- unconstrained array type (component type is not a limited type)

CA - constrained array type (component type is not a limited type)

AT - access type

The row headings have the following meanings:

(E,E) (E,E) has the form of a discriminant constraint

(L..U) specifies one or more range constraints, inc'uding a type mark for a
discrete type

'(E) (E) is an expression

'(A) (A) is an aggregate containing no others choice

'(others) an aggregate containing an others choice, e.g., (others => 0)

NULL X does not exist

The entries in the table refer to the notes following the table. An Xn indicates an illegal ..
construct; the reason is given after the table. The upper left entry represents an allocator
having the form new ST(E,E).

A; ST UR CR UP CP UL CL UA CA AT

(E,)E Xi Li X3 Li X3 Li X3 Xi Xi Li

(L..U) X2 X2 X2 X2 X2 X2 X2 L2 X3 L2

'() L3 L3 L3 L3 L3 X4 X4 L3 L3 L3

'(A) X5 L4 L4 X5 X5 X5 X5 L4 L4 X5

'(others) X5 L4 L4 X5 X5 X5 X5 X6 L4 X5

NULL L5 L6 L5 L6 L5 L6 L5 X7 L5 L5

NOTES:

L I legal when E is a valid discriminant constraint for the type; note that
CONSTRAINTERROR may be raised.

12 legal when (L..U) is a valid index constraint for the type.

L3 legal when the expression is a legal expression for that type.

L4 legal when the aggregate has the type expected.

L5 legal; no initial values are required.

L6 legal when a default value exists for the discriminant.

Xl illegal; discdminant constraints cannot be applied to this type.

I

If • W " 4" 4' 4 4" f = ' " -" - ='= ° ' -"........."......................... ""..................... o "° o
" ' 4 4" P " " = "_- • • -" - " " '. " . • "' . ,-- "

4.8 Allocators Version 1 (Dec 86)

X2 illegal; index constraints cannot be applied to this type.

X3 illegal; constrained types cannot be further constrained.

X4 illegal; no assignmc .or limited types (see RM 4.8/6 and RM 3.2.1/8).

X5 illegal; aggregates cannot be written for this type.

X6 illegal; an aggregate with others clause cannot be used with an
unconstrained array type.

X7 illegal; unconstrained arrays cannot be allocated.

Approved Interpretations

S26. CONSTRAINTERROR is raised if the object created by an allocator does not belong to
the designated subtype of the allocator. Ths check is performed when evaluating the allocator
but it is not further defined when the check is performed (AI-00397).
S27. Consider an allocator containing a discriminant constraint and whose type mark denotes
an access type. CONSTRAINTERROR is raised by the allocator if and only if two conditions
are met. First, each discriminant value belongs to the subtype of the corresponding discriminant
of the designated type. Second, if the subtype defined by imposing the constraint on the
designated type has components whose component subtype definitions depend on a
discriminant, the corresponding discriminant value may (but need not) be substituted for the
discriminant in each such component subtype definition; if this substitution is done, the
compatibility of the resulting subtype indication is checked (AI-00007).
When an allocator has the form new T and T denotes a type with default discriminants, the
initial values of the discriminants are given by the evaluation of the default expressions, and the -corresponding constraint is then checked for compatibility (see IG 3.7.2/Al) (AI-00007).

Changes from July 1982

S28. There are no significant changes.

Changes from July 1980

S29. An allocator can only have the form new .- btypoindication or new qualified-expression,
i.e., the syntax of an allocator determines whe-O ct an initial value is being specified.
S30. The subtype indication can be an unconstrained record type with default discriminant
values (e.g., new PERSON).
s31. The subtype indication can be an access type followed by a discriminant or index
constraint.
S32. Initializations are performed as for deciared objects. Qualified expressions provide explicit
initializations, and initializations due to a subtype indication are implicit.
Legality Rules

Li. An allocator of the form new T is permitted only if (RM 4.8/4):

* T is a scalar or access type; or

* T is a constrained private, limited, record, or array subtype; or

r r has no discriminants and is a private type (limited or not), a task type or a
record type; or

T " has discriminants with default values and Is an unconstrained private or :,.,;"

record type.

4-110

Version 1 (Dec 86) 4.8 Allocators
6

L2. An allocator of the form new T (E,E), where (E,E) has the form of a discriminant constraint
is permitted only if (RM 4.8/4):

X ' T has discriminants, is an unconstrained record type or a private type, and
(E,E) is a legal discriminant constraint for T; or 6

* T is an unconstrained access type whose designated type is unconstrained
and has discriminants, and (E,E) is a legal discriminant constraint for the
designated type. "-

L3. An allocator of the form new T(L..U), where (L..U) has the form of an index constraint, is
permitted only if T denotes an unconstrsned array type or an access type whose
designated type is an unconstrained array type, and the index constraint is legal for the
designated type (RM 4.8/4).

L4. An allocator of the form new T'(E), where E is an expression, is permitted only if E has T's "
base type (RM 4.7/3) and T is not a limited type (RM 4.8/6 and RM 3.2.1/8).

L5. An allocator of the form new T'(A), where (A) is an aggregate having no others choice, is
permitted only if T Is an array type (constrained or unconstrained) or a record type
(constrained or unconstrained) and (A) is a legal aggregate of type T (see RM 4.7/2 and ',
RM 4.3).

L6. An allocator of the form new T constraint is not permitted when the constraint has the form
of a range constraint, floating point constraint, or fixed point constraint (RM 4.8/4). 0

Exception Conditions

El. For an allocator of the form new T:

* CONSTRAINTERROR is raised if the designated type for the allocator's
base type is constrained:

* T is a constrained record, private, or limited private type, and at least
one of the dlscriminant values for T does not equal the corresponding
value specified for the allocator's base type (AI-00397).

" T is an unconstrained record, private, or limited private type with default
discrimlnant values, and at least one default value for T does not equal
the corresponding value specified for the allocator's base type
(AI-00397).

" T is a constrained array type, and at least one index bound in T does
not equal the corresponding bound specified for the allocator's base
type(A-00397).

* CONSTRAINTERROR is raised if the initial value for a subcomponent of T

does not satisfy the subcomponent's constraint (RM 4.8/6 and RM 3.2.1/16).

* TASKINGERROR Is raised if T has a subcomponent of a task type and if
elaboration of the task body's declarative part causes an exception to be 6
raised (RM 9.3/6-7).

* PROGRAMERROR Is raised if T has a subcomponent of a task type and if
the task body has not been elaborated when the allocator is evaluated (RM
3.9/6).

• - E2. For an allocator of the form new T X:

4-1'
mm m my - . m~m ,, m j b -

k %L

4.8 Allocators Version 1 (Dec 86)

. CONSTRAINT ERROR is raised if:

* T is an unconstrained record, private, or limited private type, X is a
discriminant constrair Rnd:

at least one of the values of X Is outside the range of the
corresponding discriminant (RM 3.3.2/9 and RM 3.7.2/5). ,

at least one of the values of X does not equal the corresponding
value specified for the allocators base type (AI-00397).

a subcomponent that exists for the subtype T X has a constraint
that depends on a discriminant and the constraint is not
compatible with the component's type (RM 3.7.2/5 and AI-00007;
see also IG 3.7.2/E).

e T is an unconstrained array type, X is a index constraint, and:

e at least one of the discrete ranges in X is not compatible with the
corresponding index subtype (RM 3.6.1/4).

e at least one Index bound of X does not equal the corresponding
bound specified for the allocator's base type (AI-00397).

e T is an unconstrained access type, X is a discriminant constraint, and at
least one of the values of X is outside the range of the corresponding
discriminant (RM 3.3.2/9 and RM 3.7.2/5). In addition, if the designated
subtype has a subcomponent whose constraint depends on a
discriminant, CONSTRAINTERROR may, but need not, be raised if the
constraint is incompatible with the subcomponent's type (AI-00007).

a T is an unconstrained access type, X is an index constraint, and at least
one of the discrete ranges in X is not compatible with the corresponding
index subtype (RM 3.3.2/9 and RM 3.6.1/4).

a default initialization of at least one component of the allocated object
does not satisfy the comporient's constraint (RM 4.8/6 and RM
3.2.1/16).

* TASKING ERROR is raised if T has a subcomponent of a task type and if
elaboration of the task body's declarative part causes an exception to be
raised (RM 9.3/6-7).

* PROGRAMERROR is raised if T has a subcomponent of a task type and if
the task body has not been elaborated when the allocator is evaluated (RM-
3.9/6).

E3. For an allocator of the form new T'(X), CONSTRAINT ERROR is raised if:

" T is a scalar type and

e X does not satisfy T's range constraint (RM 4.7/3).

e X does not satisfy the range constraint imposed by the allocator's base
type (AI-00397).
....

" T is a record or private type (constrained or unconstrained):

* T is constrained, and: ,,.',

4-112

.-: -, -.. . , , .' " ". .. -..1 .".. . ".... .. " "".. .".'.' - , " . _ _ , .._ ,,-. , ,- ._, - . -. -. '.'."?. ,'.',-, .. ,

Version 1 (Dec 86) 4.8 Allocators

* at least one of the discriminant values in X does not equal the
corresponding discriminant constraint for T (RM 4.7/3).

, at least one of the discriminant values does not equal the
corresponding value specified for the allocator's base type
(AI-00397).

* T is unconstrained with discriminants:

" at least one of the discriminant values in X does not satisfy the
range constraint for the corresponding discriminant of T (RM
4.7/3).

" the designated type for the allocator's base type is constrained
(e.g., A_PERSONM), and at least one of the discriminant values
in X does not equal the corresponding value specified for the
allocator's base type (AI-00397).

* T is an unconstrained array type, the designated type for the allocator's base
type is constrained and at least one index bound does not equal the
corresponding bound value specified for the allocator's base type (AI-00397).

" T is a constrained array type and

* if X is using named notation, at least one of its (null or non-null) index
bounds does not equal the corresponding bound specified for T (RM
4.7/3).

* the number of components for a given dimension does not satisfy the
index constraint for the corresponding index of T (RM 4.7/3)

@ the designated type for the allocator's base type is constrained and at
least one index bound does not equal the corresponding bound value
specified for the allocator's base type (AI-00397).

T is an access type and

" T Is constrained, X is not null, and the value designated by X does not
satisfy T's constraint (i.e., does not have the same bounds or
dlscrlminant values) (e.g., new FELLOW (new PERSON(F))) (RM
4.7/3).

" T is unconstrained, T's base type is constrained, and the value
designated by X does not satisfy the constraint specified for T's base
type (e.g., new APERSON M(new PERSON(F))) (AI-00397).

" T is unconstrained, the allocator's base type is constrained, and the
value designated by X does not satisfy the constraint specified for the
allocator's base type (e.g., XM = new ACCPERSON(new
PERSON(F))) (AI-00397).

E4. STORAGEERROR Is raised if Insufficient storage remains for allocating objects of the
specified type.

Test Objectives and Design Guidelines

Test objectives for allocators are distributed as follows, e.g., legal allocators having the
J.. form new T X are checked by objective 5.

4-113

ILI

4.8 Allocators Version 1 (Dec 86)

illegal legal exception
new T 1 4 7
new T X 2 9 8
nw T' (X) 3 9

Tt. Check that illegal forms of allocator:- are forbidden. In particular, for allocators of the form
new T, check that:

" T cannot be an unconstrained record, private, or limited private type having
discriminants without default values;
Implementation Guideline: Include a case where the allocator's base type specifies a
constrained designated type.

" T cannot be an unconstrained array type.
Implementation Guideline: Include a case where the allocator's base type specifies a
constrained designated type.

T2. Check that illegal forms of allocators are forbidden. In particular, for allocators of the form
new T X, where X is a discrlminant constraint or a value of type T enclosed in parentheses,
check that:

" T cannot be a scalar type, a constrained record type, a constrained private
type, a constrained limited type, or an array type (constrained or
unconstrained);
Implementation Guideline: Check that X cannot have the form of an aggregate or a value of
type T.

T cannot be an access type whose designated type is a scalar type, a
constrained record type, a constrained private type, a constrained limited type, ..--.
an array type, or an access type (constrained or unconstrained);
Implementation Guideline: X should be a legal discriminant constraint for T's designated base
type. -"

" T cannot be a constrained access subtype whose designated type has
discriminants (e.g., PEOPLEM);
Implementation Guideline: X should be a -. : ,s;crninant constriairit for 's designateo oase
type.

* if T is an unconstrained recorc, private, or limited private type with
discriminants or an unconstrained access type whose designated type is an
unconstrained record, private, or limited private type with aiscnrminants, then X
must be a legal discriminant constraint for T, namely:

the discdminant names given in the constraint cannot be different from
the names of the discriminants of the type being constrained;

the same name cannot appear twice as a discriminantname in a
particular discriminantassociation or in different discriminant
associations of the same discriminant constraint;
if a mixture of named and positional association is used, a named
discriminant association cannot give a value for a discriminant whose
value has already been specified positlonally;

* too many or too few discriminant values cannot be given.

* unnamed, (i.e., positional) discriminant values cannot be given after a
discriminant association using discriminant names;

5,.%

4-114

% % %

Version 1 (Dec 86) 4.8 Allocators

* the base type of the specified discriminant value cannot be different
from the base type of the corresponding discriminant;

-others cannot be used as a discriminant name.
Implementation Guideline: For the others case, be sure all discriminants have the
same type.

Check that for allocators of the form new T X, where X is an index constraint: I

* T cannot be a scalar, record, private, or limited private type, nor can T be a
consh-ained array type.

* T cannot be an access type whose designated type is a scalar, record, private,
limited private, or access type, nor can the designated type be a constrained
array type.

" T cannot be a constrained access subtype whose designated type is an array
type.)A

" if T is an unconstrained array type or an unconstrained access type whose
designated type is an unconstrained array type, then X must be a legal index
constraint for T, namely:

" the number of discrete ranges in the index constraint cannot be less
than or greater than the number of indexes in the array type being
constrained.

* the base type of each discrete range in X cannot be different from the
base type of the corresponding index.

T3. Check that illegal forms of allocators are forbidden. In particular, for allocators of the form
new T'(X), check that:

a. if T is a scalar, access, or private type, (X) cannot be an aggregate, with or
without others.

b. if T is a record type and (X) is an aggregate, check all illegal forms of record
aggregate.
Implementation Guideline: Check the following forms:

" choices with the same identifier;

" a choice given previously by a positional association;

" a choice that is not the name of a component;

" a named association with more than one choice when the corresponding components do
not have the same type (but do have the same tyre class);

" a vacuous others choice.

c. T cannot be a limited type (constrained or unconstrained);
Implementation Guideline: Check that:

* X cannot denote a value of a limited type;
Impenrentadon Guideoine: T Should be a 11n t:td private type, a limited array type, a limited record type, and a task"
twpe.

a X cannot have the form of a positional aggregate whose values equal the corresponding
discriminant values;

a X cannot have the form of a complete and valid aggregate for the underlying private type
definition, including the case where the private type only has discriminant components;

Implementation Guideline: Try both array and record underlying types, including null arrays and
null records.

7

4.8 Allocators Version 1 (Dec 86)

d. if T is an unconstrained array type, (X) cannot be an aggregate with an others
choice.

e. if T is an array type, check a '-tims of illegal array aggregate.
Implementation Guideline: The fori o be checked are:

. a positional component association preceding a named association that does not have the
choice others.

i a choice that is a nonstatic expression or a static null discrete range in an aggregate with
more than one component association or more than one choice.
Imrrlementation Guideline: Try choices of the form E. L.A. ST. ST range L..R, and ARANGE (where A is an array
object or a constrained array type with static bounds and a static index subtype.)
Implementoli Guideline: Include cases such as (F..G -, 0), othe.s -> 1) and (2.1 -> 0, others -. 1) ween the
index subtype in stic.

.' Inlemenaon Guideline: In some casee, the index subtype should be a generic formal discrete type, or a type
-derived directly or indirectly from a formal type.

i an aggregate having more than one choice or component association, one choice is
others, and the corresponding index subtype and discrete range (AI-0031 0) is riot static.
Irrlemenatn Guideline: Include a use of a null static range and a vacuous others choice.
ImplemenwtIaon Guideline: Check where the component associationa are both positional and named.
Implementation Guideline: Include a cese where the subtype and index bounds for an index are static, but another
dimension has either a nonststlc index subtype (with static index bounds) or nonstatic index bounds.

e for a non-null dimension of an aggregate, an index value between the lower and upper
bound of the aggregate is not covered by the set of choice values.
Implerentarion Guideline: Include a null multidimensional aggregate with one non-null climens,on, a g

- - 3 ,t
4..5 -> (2..1 -> 2))

e an index value is represented mote than once in the set of choices.
Implementation Guideline: Check for ranges that overlap, for duplicate choice values, and for an overlap rietween a
choice value and a range,

i the type of a choice is not the same as the corresponding index type.

e the type of the expression specifying an array component value is not the same as the type
of the array component.
Implementation Guideline: Include a cast where the express on associated with a vacuous others cnoice ,s not the
correct type.

the innermost subaggregate of a m,ii w. .,sional aggregate is enclosed in parentheses.

i an others choice is present when thi I po mark denotes an unconstrained array type.

T4. Check that the form new T is permitted if:

a T is a scalar subtype; or

a T is a constrained record, private, or limited private type; or
Implementation Guideline: Include a limited record type.

a T is an unconstrained record, private, or limited type whose discriminants have
default values; or
Implementation Guideline: Check that only the appropriate default values for discriminants and
other components are allocated; see IG 3.7.2/TS for examples.
Implementation Guideline: Include a limited record type.

e T Is a record, private, or limited type without discriminants; or
Implementation Guideline: Include a limited record type.

a T Is a constrained array type.
Implementation Guideline: Check that the allocated object has the appropriate bounds.
Implementation Guideline: Include a limited array type. .'

4-116 'S.

W j.~tV.V~.V...V

Version 1 (Dec 86) 4.8 Allocators

T is an access type.
Implementation Guideline: Check that CONSTRAINT ERROR is not raised even if the

.. %.' -:allocator's base type specifies a constrained access type for its designated type, and a
constraint imposed on T does not equal the constraint for the allocator's base type.
Implementation Guideline: Include a case where the designated type is an unconstrained array
type or a type whose discriminants do not have defaults.

T5. Check that an allocator of the form new T X allocates a new object each time it is
executed, and that:

" if T is an unconstrained record, private, or limited type, the allocated object
has the discriminant values specified by X;
Implementation Guideline: Check that default component values are properly set. P

Implementation Guideline: Try one case where a discriminant governs a variant part and is
nonstatic, including a case where a variant contains no components for one value of the
discriminant, so the record consists only of discriminants for one set of discriminant values. p,
Implementation Guideline: Try one case where T has a single discriminant and X invokes an p
overloaded function returning a value of the type of the discriminant and a value of type T.

" if X is an index constraint and T ar nconstrained array type, the allocated
object has the index bounds specified by X.

" if T is an access type, T's designated type is unconstrained, and X is an
appropriate index or discriminant constraint, check that the value null is p
allocated, and no CONSTRAINT ERROR is raised even if the constraint does
not satisfy a constraint specified for the allocator's base type (e.g., XM = new
ACCPERSON(F)).

•- T6. Check that an allocator of the form new T'(X) allocates a new object each time it is
executed, and that:

* if T is a scalar or access type, the allocated object has the value of X; .

" if T is a record, array, or private type (constrained or unconstrained), the
allocated object has the value of (X). ..

T7. For allocators of the form new T, check that CONSTRAINTERROR is raised if: p

" T is an unconstrained type with default discriminants (record, private, or
limited) and one default discriminant value does not equal the corresponding
value specified for the allocator's base type. ..

" T is an unconstrained type with default discriminants, a subcomponent
constraint depends on a discriminant, the subcomponent is present in the ,'
designated object, and either a default discriminant value is not compatible
with the subcomponent's type or a non-discriminant value in the
subcomponent's constraint is not compatible with the subcomponent's type
(see IG 3.7.2/TI 3, IG 3.7.2/Ti 5, and IG 3.7.21T1 6).

" T is a constrained type with discriminants (record, private, or limited) and at P
least one discriminant value specified for T does not equal the corresponding
value specified for the allocator's base type. .-.

" T is a constrained array type and at least one index bound for T does not .'-
equal the corresponding value specified for the allocator's base type.
Implementation Guideline: Include some null arrays and some multidimensional arrays. I

TS. For allocators of the form new TX, check that CONSTRAINTERROR is raised if:

M''2
4-1,? p

4.8 Allocators Version 1 (Dec 86)

a. T is an unconstrained record, private, or limited type, X is a discriminant
constraint, and

1. one of the values c is outside the range of the corresponding "
discriminant;

2. one of the discriminant values Is not compatible with a constraint of a
subcomponent in which it is used (see IG 3.7.2/1i 3, IG 3.7.21T15, and

IG 3.7.2/Ti 6).
Implementaton Guideline: If the subcomponent has an access type and is constrained
by a discriminant constraint, the discriminant value should not belong to the subtype of
the designated type's discriminant (AI-00007).

3. one of the discriminant values does not equal the corresponding value
of the allocator's base type;

4. a default initialization raises an exception. :

Implementation Guideline: Use the allocator as an actual parameter, in a qualification, and as
an assigned value.
Implementation Guideline: Check that no default expressions are evaluated (or tasks activated)
for cases 1,2, and 3.
Implementation Guideline: Use both static and dynamic constraints.

b. T is an unconstrained access type whose designated type is an unconstrained
record, private, or limited private type with discriminants; X is a discriminant
constraint; and one of the values of X is outside the range of the
corresponding discriminant for the designated type;

c. T is an unconstrained array type, X is an index constraint, and the bounds of X .- .
are not compatible with an index subtype of T;

d. T is an unconstrained access type whose designated type is an unconstrained
array type; X is an index constraint; and one of the non-null index bounds of X
is outside the range of the corresponding index subtype for the designated
type.

T9. For allocators of the form new T'(X), check tr; 3.i CONSTRAINT_ERROR is raised if:

a. T is a scalar subtype and X is outs..... range of T, or is within Ts range and
outside the range of values permitted for objects designated by values of the
allocator's base type (e.g., AINT4_6'(new INTEGER'(7))).

b. T is an unconstrained record or private type, (X) is an aggregate or a value of
type T, and one of the discriminant values in X:

* does not satisfy the range constraint for the corresponding discriminant
of T.

* does not equal the discriminant value specified in the declaration of the
allocator's base type (I.e., the designated type is constrained in the base
type's declaration).
Implementaton Guideline: The value should satisfy the discriminant's range constraint. .5

c. T is a constrained record or private type, (X) is an aggregate or a value of type
T, and one of the discriminant values in X:

* does not equal the corresponding discriminant value for T; _

* does not equal the corresponding discriminant value specified in the
declaration of the allocator's base type.

4-118

V % %p

-.% _V' * .

Version I (Dec 86) 4.8 Allocators
p

Implementation Guideline: The value should satisfy T's constraint.

Implementation Guideline: Include a case where the designated type of the allocator is ,
a constrained access type, e.g., access A UR(2). Then give an allocator such as new ",
A UR'(new UR'(3, ...)).

d. T is an unconstrained array type with index subtype(s) S,

*X has too many values for S;
Implementation Guideline: The required number of values should be both statically and -'
nonstatcally defined.

* a named non-null bound of X lies outside S's range;

* the bounds of X are not equal to the bounds specified for the allocator's
designated base type. (They are equal to the bounds specified for T.)
Implementation Guideline: Try both null and non-null bounds.

e. T is a constrained array type and:

e a bound for X does not equal the corresponding bound for T;

* a bound of T does not equal the corresponding value specified in the
declaration of the allocator's base type.
Implementation Guideline: Both static and nonstatic constraints should be tried.

* a positional aggregate does not have the number of components
required by T or by the allocator's base type.

f. T is a constrained or unconstrained multidimensional array type and all
components of X do not have the same length or bounds.
Implementation Guideline: Include a case where bounds of a null array disagree.

g. T is a constrained access type and the object designated by X does not have
discriminants or index bounds that equal the corresponding values for T.

Check that CONSTRAINTERROR is not raised if X is null.

h. T is an (unconstrained) access type, the designated type for T'BASE is a
constrained access type, and the object designated by X does not have
discriminants or index bounds that equal the corresponding values for T's
designated type. %
Implementation Guideline: For example, consider:

type UR (A :INTEGER) is ...
type A CR is access UR(2);
type AA_ - is access AKCR:

now A C'(new OR(3)): IV,

i. T is an (unconstrained) access type whose designated type is a constrained
access type, CA, and a discriminant or index value of X does not equal a
value specified for CA.
Implementation Guideline: For example, consider:

type OR (A : INTMG R) is ... ,
type AUR is access UR:
type A CA OR is access A UR(2);

... new A OR (new OR(3))

% j. T is an unconstrained access type, its designated type is also unconstrained,

4-119
p

+,",.,,'.--..,..". .. ' ,....,,',.,, ' ' V'' ''' ' - + -'' % % ,%. ,". V..x . ,
,i~ ~ ~ ~ ~~ n nLN• '1 i +S i LlN'7i_

4.9 Static Expressions and Static Subtypes Version 1 (Dec 86)

and a discriminant value for X lies outside the range of the corresponding
discriminant specification for the designated type, or a non-null index bound
lies outside the range of an index subtype of the designated type. .-"

TI0. Check that null arrays and null records can be allocated.
Implementation Guideline: Compare the allocated object for equality; for null discrete arrays, the ordering
opeitors can also be used.

T1 1. Check that overloaded allocators are determined to have the appropriate type.
Implementation Guideline: Check the use of equality testa, the assignment to a component of an overloaded
function, and the calling of an overloaded subprogram with an access value.
Implementation Guideline: Use at least one allocator in which the type mark used in the allocator appears to
resolve an ambiguity, but the base type is still ambiguous, e.g. new MAN.

T1 2. Check that discriminants governing variant parts need not be specified with static values in
an allocator of the form new T X.

4.9 Static Expressions and Static Subtypes
Semantic Ramifications

Si. Several ambiguities in the wording of RM 4.9 have been clarified by approved
interpretations. In particular, AI-00128 says that neither membership tests nor short-circuit
control forms are allowed in static expressions because neither of these are operators.

S2. AI-00219 says further that the catenation operator and the IMAGE attribute are not allowed
in static expressions because these operations yield nonscalar results:

'1' & '5' /= INTEGER' IMAGE(15) -- not static -. ,

The above expression is not static even though '1', '5', and 15 are allowed in static expressions,
INTEGER'IMAGE is an attribute of a static type, and /= produces a scalar result.

S3. AI-00251 says that a type derived (directly or indirectly) from a generic formal type is a
nonstatic type. In addition, Commentary AI-00190 says that no static expression can have a
generic formal type (or a type derived from a generic formal type). In particular, consider this
example:

generic
type T is range <>;

package PACK is
type ARR is array (T) of BOOLEAN;
X : ARR := (1 000 000 => FALSE,

1000001 => TRUE); -- illegal
end PACK; "

RM 4.3.2/3 requires that when more than one component association is present in an array
aggregate, all the choices must be static. The type of the choices in the above example is
T. Since T is a generic formal type, the choices are not static (by AI-00190), and so the
aggregate is illegal. On the other hand, the following aggregate is legal:

Y: ARR := (1_000_000..1000_001 -> TRUE),

When a single choice is used, it need not be static. Of course, the evaluation of the choice (at
run time) will raise an exception if the values 1_000_000 and I_000_001 do not both belong to
subtype T. (NUMERICERROR or CONSTRAINTERROR (see AI-00387) will be raised if
either value does not belong to T's base type.)

4-120

Version 1 (Dec 86) 4.9 Static Expressions and Static Subtypes
":-

s4. If PACK is instantiated with a static type, ARR will have a static index subtype in the
instance (AI-00409):

subtype SMALL is INTEGER range l. .3;

package I is new PACK(SMALL);
X : I.ARR := (I => FALSE, others => TRUE); -- legal

The aggregate is legal because I.ARR has a static ind.x subtype, SMALL.
S5. If the evaluation of an expression would raise an exception, then the expression is
considered as having no value, and is not static. Similarly, if an exception is raised while
evaluating a subtype indication, the subtype indication is not considered static:

subtype INT is INTEGER range l..5;
V INTEGER range ..6 3;

case V is
when INT range 3..6 => ... -- illegal

An evaluation of the subtype indication INT range 3..6 would raise CONSTRAINTERROR.
The choice, therefore, is not considered static, and since a choice in a case statement must be
static (RM 5.4/5), the case statement is illegal.
S6. An expression whose value lies outside the range of its base type can be considered static
,n if its run-time evaluation would raise NUMERIC ERROR. This can happen because a

predefined operation may have a range wider than that of the base type of the operands (RM
11.6/6), in which case NUMERICERROR need not be raised. So if the value of some
subexpression lies outside the range of the base type, the containing expression can still be
considered static as long as all the other rules are satisfied.

s7. If MACHINEOVERFLOWS is false, NUMERIC_ERROR (or CONSTRAINTERROR, see
AI-00387) need not be raised for real expressions even if overflow occurs. However, a static
expression must have a value, i.e., a value belonging to the expression's base type. If the
model interval enclosing the result of an expression is undefined, in particular, if the computed
value would lie outside the range of the base type, then the expression has no value. Hence,
the expression cannot be considered static. In short, the value of MACHINEOVERFLOWS is
irrelevant with respect to deciding whether a real expression is static.
S8. Explicit conversion is not allowed In a static expression, since conversion is not listed as a
permitted primary. Since syntctic criteria are used to define which expressions are static (i.e.,
since only certain forms of primary are allowed), and since implicit conversions do not change
the syntax of an expression, implicit conversions are allowed in static expressions. For %
example,

type NEW INT is range 1..10;
V : NEW INT 3;

case V is
when 5 => ... -- implicit conversion to NEWINT ,I

The existence of the implicit conversion does not make the choice illegal.

sq. If a renaming declaration declares a new name for a static constant (where a static
constant is a constant declared by an object declaration with a static subtype and initialized with
a static expression), then the new name can be used in a static expression (AI-00001), e.g.:

* ,, .%

4- 2. %

%.4"

4.9 Static Expressions and Static Subtypes Version 1 (Dec 86) -

CONS constant INTEGER 3;
RCONS INTEGER renames CONS: .-. ,

SCONS INTEGER renames RCONS;

Both ACONS and SCONS can be use. s a primary in a static expression, since both RCONS S
and SCONS denote CONS (see IG 8.5/S), and CONS is a constant that satisfies the rules for
use in a static expression.

.1%

S10. If an enumeration literal is renamed as a function, the new name cannot be used in a static
expression because the function name does not denote a predefined operator (RM 4.9/7).
(Note that an enumeration literal is a predefined operation, not a predefined operator; see RM
3.3.3/2.) Similarly, if an attribute is renamed as a function, the new name cannot be used in a
static expression.

Sit Certain attr:butes, PRED, SUCC, POS, and VAL, are considered functions. In particular.
an attnbute such as CHARACTER'POS('A') is, technically speaking, parsed as a function call,
since the s.,.'navi *or attributes (RM 4.1.4/2) requires an argument that is a static expression
having a universai type. Such an attribute is intended to be considered static, even though it is -
a function call titat does not denote a predefined operator.

S12. RM 4.9(61 only allows constants declared by object declarations to be used in static
expressions. Orier forms of constant are not allowed. The other forms of constant are: a loop
parameter, a forrnal parameter of mode in (of a subprogram, entry, or generic unit), and a
component o-f a constant array or record (AM 3.2.1/2). •

S13. !f the full declaration of a deferred constant declares a static ccnstant, then within the
scope of the hill declaration, the constant can be used in static expressions. However, within
the scope of the deferred constant declaration, the constant has a private type (not a scalar
type), and so i:;ot be used in static expressions. *,*- ,

S14. The foliowng contexts require static expressions: 0 •

" trie initial value in a number declaration (RM 3.2/1);

* t:he bo: nds of an integer type definition (RM 3.5.4/3);

, thn-V;'r value in a floating point c:.)nstraint (RM 3.5.7/3); t.. -.•
ft a flcating point constraint when the constraint is given in a type

defiirIton (RM 3.5.7/3); - .,

We .al.ie .f DELTA given in a fixed point constraint (RM 3.5.9/3);

* the -,,nds of a fixed point constraint when the constraint is given in a type 4

defit oc (RM 3.5.9/3);

" the arqiment given for the array attributes 'FIRST, 'LAST, 'RANGE, and .v

' G'- kRM 3.6.2/2);

* the in'oic. ii a vadant part (RM 3.7.3/4); .4,.,

* in an aggregate, the value specified for a discriminant that governs a variant
part (K.M 4.3.1/2);

* the choice in a case statement (AM 5.4/5);

" he -ect',aton of 'SIZE in a length clause (RM 13.2/5);

* the sorec fication of 'SMALL in a length clause (AM 13.2/1 2);"

" tq :-noicas and values specified in an enumeration representation clause (RM

4-122

..'..'.-,.-.,:- [..:.?. -.-.-. ..- .. . -....: -. . . - -. -.- -. -.- -.-,_,. -. -.-'..

Version 1 (Dec 86) 4.9 Static Expressions and Static Subtypes
p

* the values specified in a record representation clause (RM 13.4/3).

In addition, the argument of the pragma PRIORITY is required to be static (RM 9.8/1); if the
argument is not static, the pragma is not illegal, but is. instead, ignored (RM 2.8/11).

S 5. Generally speaking, a compiler is required to evaluate a static expression at compile time
when the context requires a static expression, since the value of the expression can affect the .- J
legality of a program. The compile-time evaluation of a floating point expression can produce a
value different from what would be produced at run time if the evaluation is performed with
different precision at compile and run time. In either case, of course, the value must fall within
the required model interval.

S16. A renamed operator is allowed in a static expression if the new name is also an operator
symbol (RM 4.9/7):

package P is
type NEW INT is range 1 100;

end P;

with P;
package RESTRICTED P is

subtype NEW INT is P.NEW INT;
function "+-- (L, R NEW INT) return NEW INT renames P."+";
function PLUS(L, R NEWINT) return NEW_INT renames P."+";

end RESTRICTEDP; 4.

The package RESTRICTED P declares a subset of the operators implicitly declared in package
P. The newly declared "+" operator symbol can be used in a static expression having type
NEWINT since RESTRICTEDP."+" denotes the predefined operator P."+":

with RESTRICTED P; use RESTRICTED P;
procedure EX is

X : NEW INT := 3 + 5; --- uses RESTRICTED P. "+"

The function PLUS also denotes P."+", but since PLUS is not an operator symbol. it cannot be
used in a static expression:

RESTRICTED P.PLUS(3, 5) -- not static
RESTRICTED P. 1+" (3, 5) -- static

S17. The prefix of an array attribute must be either an object, a value, or an arrav s0Lt ,W ;4%1
3.6.2/2 and RM 3.8.2/2). None of these prefixes are allowed for attributts ws, , -.4,
expressions. In particular, an array subtype prefix is not allowed because onv S t:ai -A"
can be static.

s18. The 'VALUE attribute cannot be used in a static expression beau,.- • .
cannot have a scalar type (RM 3.5.5/12). The 'MAGE attr'b. e .

expression because it returns a nonscalar va'ue (ano DeC LsE ,, A

$19. The notion of a static index constraint is , i ' .
aggregate that has an others choice (RM 4 32? *a, ,..
specification (RM 13.26) or a comporen, - Zv A

discriminant constraint is only relevant ir j ,etr- , . ..

component clause.

Approved Interpretations

S20. The use of a membership est
(A1-00128).

7 D fl 64 ? THE AN (TRA DE NE) COM P ILER V A LID A TION C P S IL IT Y

UNLSSFE 3 GOODENOUGH DECIUEEER GUD SON)SfTEHICMLHH

Mi iEoLSFE
FIG 12 5 ML

Igo.112.

.1.

MICROCOPY RESOLUTION TEST CHART

RAT ON&L SuREAU OF STADADS 96-

3ILI

'S.'

4.9 Static Expressions and Static Subtypes Version 1 (Dec 86)

S21. In a static expression, every factor, term, simple expression, and relation must have a
scalar type. (This implies that neither the catenation operator nor the predefined attribute-.;*
IMAGE can be used in static expressions.) (Al-00219)

S22. Types derived from generic forma. Jes (directly or indirectly) are not static (AI-00251).

S23. A static expression is not allowed to have a generic formal type (including a type derived
from a generic formal type, directly or indirectly) (AI-00190).

S24. If the name declared by a renaming declaration denotes a constant explicitly declared by a
constant declaration having the form specified In RM 4.9/6, then the name can be used as a
primary in a static expression (AI-00001).

S25. For a generic instantiation, if an actual generic parameter is a static subtype, then every
use of the corresponding formal parameter within the instance is considered to denote a static
subtype, even though the formal parameter does not denote a static subtype in the generic
template (AI-00409).

Changes from July 1982

S26. Static function calls are required to have static actual parameters.

S27. Implementation-defined attributes of static subtypes are not considered static.
S28. Explicit type conversions are not allowed in static expressions.

S29. The definition of a static subtype is extended to include floating and fixed point constraints.

Changes from July 1980
.1=

S30. Expressions having composite types are not allowed in static expressions.

S31. Membership tests and short-circuit control forms are not allowed in static expressions.

S32. Components of arrays or records are not allowed in static expressions.

S33. A function call is allowed in a static expression if the function name is an operator symbol
or an expanded name whose selector is an operator symbol (if the arguments of the function
are also static expressions).

S34. A static expression enclosed in parentheses s allowed in a static expression.

S35. An expression is not static if its evaluation would raise an exception.

Legality Rules

L1. Every primary, factor, term, simple expression, and relation in a static expression must
have a scalar type (RM 4.9/2). The type must not denote a generic formal type or a type
derived (directly or indirectly) from a generic formal type (see IG 4.9/S).

L2. A static expression must not contain a membership test or a short circuit control form (RM
4.9/2 and AI-001 28).

- L3. The evaluation of a static expression must produce a value (i.e., an exception must not be
raised) (RM 4.9/2). In particular,

" for static expressions having an integer type, the value must not lie outside the
range of the base type, and the second operand of /, mod, or rem must not be
zero.

" for static expressions having a fixed or floating point type, the value must not
lie outside the range of the base type (whether or not MACHINE- -

_OVERFLOWS is true), and the second operand of / must not equal 0.0.

4-124

Version 1 (Dec 86) 4.9 Static Expressions and Static Subtypes

" for the evaluation of T'VAL, the argument must be in the range T'POS
(T'BASE'FIRST) .. T'POS (T'BASE'LAST) (RM 3.5.5/7).

* for the evaluation of T'SUCC, the argument must not equal T'BASE'LAST.
" for the evaluation of T'PRED, the argument must not equal T'BASE'FIRST.
" for the evaluation of a qualified expression, the operand value must belong to 'I,

the range of the type mark (RM 4.7/3).

L3. A static expression must not contain a name denoting a variable or a component of an
array or record (RM 4.9/2-10).

L4. A static expression must not contain an explicit type conversion (RM 4.9/2-10).
L5. If a static expression contains the name of a constant, the name must denote a constant

declared by a constant declaration with a static subtype, and initialized with a static
expression (AI-00001).

L6. A static expression must not call a user-defined function (RM 4.9/7).

L7. If a static expression invokes a predefined operator, the function name must be an
operator symbol or an expanded name whose selector is an operator symbol, and the
actual parameters must all be static expressions (RM 4.9/7).

L8. If a static expression contains an attribute, the attribute must not be 'ADDRESS, 'BASE,
'CALLABLE, 'CONSTRAINED, 'COUNT, 'FIRST (for arrays), 'FIRST(N), 'FIRSTBIT,
'IMAGE, 'LAST (for arrays), 'LAST(N), 'LASTBIT, 'LENGTH, 'LENGTH(N), 'POSITION,
'RANGE, 'RANGE(N), 'SIZE (when the prefix denotes an object or a nonscalar type),
'STORAGESIZE, 'TERMINATED, or 'VALUE (RM 4.9/8).

L9. If the attribute 'POS, 'VAL, 'SUCC, or 'PRED is used in a static expression, the attribute's
prefix must be a static subtype and its argument must be a static expression (RM 4.9/8).

110. The following attributes can be used in a static expression if the attribute's prefix denotes a
(scalar) static subtype: 'AFT, 'DELTA, 'DIGITS, 'EMAX, 'EPSILON, 'FIRST, 'FORE,
'LARGE, 'LAST, 'MACHINEEMAX, 'MACHINEEMIN, 'MACHINEMANTISSA,
'MACHINE OVERFLOWS, 'MACHINERADIX, 'MACHINEROUNDS, 'MANTISSA,
'SAFEEMAX, 'SAFELARGE, 'SAFESMALL, 'SIZE, 'SMALL, 'WIDTH (RM 4.9/8).

Li 1. An implementation-defined attribute cannot be used in a static expression (RM 4.9/8).
L12. If a static expression contains a qualified expression, the type mark must denote a static

subtype and the operand must be a static expression (RM 4.9/9).
L13. A static subtype (RM 4.9/11):

" must denote a scalar type;

" must not denote a generic formal type or a type derived (directly or indirectly)
from a generic formal type, nor may it denote a subtype of such a type.

" must denote either a base type or a subtype defined by a subtype indication
whose type mark, S, Is a static scalar subtype and whose constraint is either a
static range constraint or a floating or fixed point constraint whose range
constraint, if any, Is static. The constraint must be such that no exception
would be raised, i.e., if the range constraint is non-null, both bounds must
belong to S'FIRST .. S'LAST. In addition, for a floating point constraint, the
specified digits value must not be greater than S'DIGITS; for a fixed point
constraint, the specified value for delta must not be less than S'DELTA.

4-125

4.9 Static Expressions and Static Subtypes Version 1 (Dec 86)

Test Objectives and Design Guidelines

T1. Check that an expression having an array or record type is not considered static.
Implementation Guideline: Include an e ission that contains a catenation operator with scalar operands and
a use of the IMAGE attribute for a static .ar type.

T2. Check that no expression having a scalar generic formal type (or type derived indirectly
from a generic formal type) is considered static.
Implementation Guideline: Use an array aggregate with an index type related to a generic formal type.

T3. Check that a static expression is not allowed to contain a membership test or a short-circuit
control form.

T4. Check that a static expression must not raise an exception.
Implementation Guideline: Check for overflow, division by zero (for /, mod, and rem), a qualified expression,
and the attributes VAL, 'SUCC, and 'PRED.

Check that the value of the argument to T'POS must lie within the range of T's base type
(see IG 3.5.5/T4).

T5. Check that a static expression must not contain a name denoting a variable or a
component of an array or record.
Implementation Guideline: The array and record should be constants initialized with static values.

T6. Check that a static expression must not contain an explicit type conversion.

T7. Check that a static expression must not contain a name denoting a loop parameter, a
subprogram in parameter, an entry In parameter, a generic formal in parameter, or a
deferred constant (outside the scope of the deferred constant's full declaration).
Implementation Guideline: Include a name declared by a renaming declaration.
Implementation Guideline: The subtype of the objects should be static.
Implementation Guideline: Include the use of attributes of the object in an expression.

Check that a constant declared by an object declaration cannot be used in a static
expression if the subtype used in the declaration was nonstatic, or if the constant was
initialized with a nonstatic expression.

T8. Check that a static expression cannot cont: i a call to a user-defined operator, nor can the
name in the function call be an identifier, even if the identifier denotes a predefined
operator.

Check that if an enumeration literal or static attribute is renamed as a function, the new
name cannot be used In a static expression.

Check that the arguments of a function call cannot be nonstatic expressions if the function
name is an operator symbol that denotes a predefined operator.

T9. Check that the following attributes are not allowed in static expressions: 'ADDRESS,
'CALLABLE, 'CONSTRAINED, 'COUNT, 'FIRST (for an array prefix), 'FIRST(N), 'FIRST- ,S

_BIT, 'IMAGE (see T1), 'LAST (for arrays), 'LAST(N), 'LAST BIT, 'LENGTH, 'LENGTH(N),
'POSITION, 'RANGE, 'RANGE(N), 'SIZE (when the prefix denotes an object or a non-
scalar type), 'STORAGE_SIZE, 'TERMINATED, and 'VALUE.
Implementation Guideline: Use thoe attributes that do not deliver scalar values in an equaiity operation, if
posaible.

Check that a static expression cannot contain the attributes 'POS, 'VAL, 'SUCC, or 'PRED
if the prefix of these attributes denotes a nonstatic subtype, or if the argument is a
nonstatic expression.

Check that a static expression cannot contain one of the following attributes if its prefix

4-12", ,

'p 4-1t26

,,)

,_-. ,., -. ., , , ,,, a

Version 1 (Dec 86) 4.9 Static Expressions and Static Subtypes

denotes a nonstatic subtype: 'AFT, 'DELTA, 'DIGITS, 'EMAX, 'EPSILON, 'FIRST, 'FORE,
'LARGE, 'LAST, 'MACHINE_ EMAX, 'MACHINE_ EMIN, 'MACHINE_ MANTISSA,
'MACHINEOVERFLOWS, 'MACHINE RADIX, 'MACHINE ROUNDS, 'MANTISSA,
'SAFE -EMAX, 'SAFELARGE, 'SAFE_SMALL, 'SIZE, 'SMALL, 'WIDTH.
Implementation Guideline: Include a prefix that denotes a generic formal integer or discrete type, or a type
derived directly or indirectly from such a type.

TIO. Check that a static expression cannot contain a qualified expression if the type mark
denotes a nonstatic type (scalar or not), or the argument is a nonstatic scalar expression.

TI 1. Check that a static subtype cannot be a generic formal type, a subtype of a generic formal
type, or a type derived Indirectly from a generic formal type.
Implementation Guideline: Include the use of a generic formal type and a type indirectly derived from a generic
formal type. Use the type in a qualified expression, a prefix of an attribute, and in a constant declaration.

Check that a subtype Indication is nonstatic if the type mark is nonstatic.
Implementation Guideline: The range should be specified with static expressions.

Check that a subtype indication is nonstatic if its evaluation would raise an exception. .
Implementation Guideline: Include exceptions raised for range checks, for incorrect digits values, and for
incorrect values of delta.

T20. Check that enumeration literals (including character literals) can be used in static
expressions together with relational and equality operators.

T21. Check that boolean literals can be used in static expressions together with the logical
operators, the operator not, and the relational and equality operators.

T22. Check that numeric Iterals and named numbers can be used in static expressions together "A. %

with the unary operators + and -, the abs operator, the binary + and - operators, the ,ro ia-mod, and rem operators, and the relational and equality operators.

Jmp/emenktiAon Guideline: Include parenthesized static expressions.

T23. Check that a constant declared by an object declaration can be used in a static expression
If the constant was declared with a static subtype and initialized with a static expression.
Implementation Guideline: Check constants having an enumeration, integer, floating point, and fixed point
type.
Implementatin Guideline: Include a constant declaration that is the full declaration of a deferred constant.

Check that a renamed static constant can be used in a static expression. K
T24. Check that a function call can appear In a static expression if the function name denotes a .-

predefined operator and has the form of an operator symbol or an expanded name whose
selector is an operator symbol.
Implementation Guideline: Include the use of a renamed predefined operator. -

T25. Check that the following attributes can be used In a static expression: 'SUCC, 'PRED,
'POS, 'VAL, 'AFT, 'DELTA, 'DIGITS, 'EMAX, 'EPSILON, 'FIRST, 'FORE, 'LARGE, 'LAST,
'MACHINEEMAX, 'MACHINE EMIN, 'MACHINE MANTISSA, 'MACHINE-
_OVERFLOWS, 'MACHINE RADIX, 'MACHINEROUNDS, 'MANTISSA, 'SAFEEMAX,
'SAFELARGE, 'SAFESMALL, 'SIZE, 'SMALL, 'WIDTH.
Check that T'BASE Is a static subtype if T denotes a scalar type other than a generic
formal type or a type derived (directly or indirectly) from a generic formal type.
Impb/ementa ion Guideline: T should denote a nonstatic subtype. Use TBASE as the prefix for each allowable
static attribute.
Check that T'BASE denotes a nonstatic subtype type if T is a scalar generic formal type or
is derived (directly or indirectly) from a scalar generic formal type.

4-127
I

- f ' t~ " , WV '. . -

4.10 Universal Expressions Version i (Dec 86)

T26. Check that a qualified expression can appear in a static expression.
Implementaion Guideline. Check for enumeration, integer, floating point, and fixed point types.

4.10 Universal Expressions
Semantic Ramifications

s1. To correctly evaluate static universalreal expressions, an implementation in general must
use rational arithmetic. For example, consider:

case B is
when (0.1 * 0.1 - 0.01) =>
when FALS ,> ...

end case;

This statement is legal only if the first choice evaluates to TRUE. if a binary approximation to
0.1 is used, then it is unlikely that 0.1 * 0.1 will evaluate as being equal to 0.01. However, it is
required that every implementation evaluate 0.1 * 0.1 exactly (RM 4.10/4), producing TRUE as
the result of the equality operation.

S2. Similarly, consider whether the following declarations conform:

procedure P (X FLOAT 3#0.1#);
procedure P (X FLOAT := 0.33333333333333333) is ...

Since there is no exact decimal representation for the value 1/3, the literals do not have the
same value, and so these two specifications do not conform (RM 6.3.1/2).

S3. Relational and membership operations for static universal real operands must be
evaluated exactly. The RM defines the accuracy of relational and membership operations in
terms of model numbers of the type (see RM 4.5.7/10, /11). According to RM 3.5.6/3, a set of
model numbers is associated with every real type, and RM 3.5.6/5 says universalreal is a real P
type, so there are model numbers for the type universal real. The RM does not specify the 4r
form of the model numbers (e.g., do they have the form specified in RM 3.5.7/4 with infinite
mantissa, or the form given RM by 3.5.9/4 with an appropriate 'SMALL?), but regardless of the
form that is considered to be used, it is clear from RM 4.10/4 that the model interval for a static
universal real expression is a point, and so relational and membership operations for static
universalreal operands are to be evaluated exactly, as required by RM 4.5.7/10 when
comparing model numbers of a type.

s4. Suppose the operands of a relational operator or membership test have the type
universalreal and one or more of the operands Is nonstatic. The static operands must be
evaluated exactly, since RM 4.10/4 says that "if a universal expression is a static expression,
then the evaluation must be exact." Consider a relational expression

NS relation S

where NS is a nonstatic universal_real expression and S is a static universalreal expression.
Since the values of S and NS, being of type universal_real are both model numbers, the relation
itself must be evaluated exactly using the computed values of S and NS. It might at first seem
that the expression S must be carded to full precision (i.e., as a ratio of arbitrarily large integers)
at run time. But this is not, in fact, the case.

S5. Let LONG be the base type for the highest precision floating point numbers used by a
given implementation. By abuse of notation, we shall also use it to denote the set of all values
of type LONG. Let CEIL(x, LONG) be the least upper bound of the subset of LONG greater

4-128

01 iI.i I I %

Version 1 (Dec 86) 4.10 Universal Expressions

than or equal to x. Let FLOOR(x, LONG) be the greatest lower bound of the subset of LONG
less than or equal to x. These may be undefined beyond the extrema of LONG. There are two
cases, and the one that applies can be determined at compilation time.

1. The value of S is a member of LONG. In this case, the implementation is 0
obvious.

2. S is not a member of LONG. Convert the relational expression according to
the following table:-,
Expression Transformed expression

NS > S, NS >- S, NS > FLOOR(S,LONG), if the latter is defined '.>
S < NS, S <= NS or TRUE otherwise

NS < S, NS <= S NS < CEIL(S,LONG), if the latter is defined
S > NS, S >- NS or TRUE otherwise

NS= S, S - NS FALSE
s/ s, S /-M S TRUE %

We thus reduce everything to at worst the case of comparing a static member of LONG to a
nonstatic member of LONG. As a consequence, it is possible to maintain the convenient
"semantic fiction" that S is carded to infinite precision in the comparison without run time cost.
so. The above arguments apply equally well when the relation is a membership test, since X In
L..R is evaluated as X >- L and X <- R.
S7. Nonstatic expressions having a universal type can be created in several ways, and, in fact,
any nonstatic integer value can be converted to a nonstatic universalinteger or universalreal
value, and vice versa:

procedure P (V : STRING) is
begin '

V'LGT - - nonstatic universalinteger
... 3**N -- nonstatic universal-integer

... T'POS (INTEGER (F) -- conversion to universalinteger .

3.0**N -- nonstatic universalreal
... 1.0*T' PO (N) -- conversion to universalreal

end;

so. RM 4.10/5 says, in essence, that nonstatIc universal integer expressions can be evaluated
with the largest predefined integer type. RM 4.10/4 allows nonstatic universalreal expressions
to be evaluated using the most accurate predefined floating point type. With respect to
universaLreal expressions, this means results computed at run time can be significantly
different from those that would be computed for a static expression having the same operand
values.

sq. Since a static expression cannot raise an exception (RM 4.9/2), division by zero, for
example, does not make a universal expression illegal, but instead, makes it nonstatic.
NUMERIC-ERROR (or CONSTRAINTERROR; see AI-00387) must then be raised at run time:

X : SOOLZAN :- 1 < 1/0; -- NUEMRIC ERROR is raised ,,

S10. When evaluating nonstatic expressions having a universal type, NUMERICERROR (or N
CONSTRAINTERROR; see AI-00387) can be raised not merely when the result lies outside a %.%
certain range, bu also If an operand has a value outside that range (AI-00181). Forexample,
consider

4-129

IN All

4.10 Universal Expressions Version 1 (Dec 86)

1031000 mod SYSTEM.MAX INT

The left operand can readily be made to exceed SYSTEM.MAXINT, but the result will always .-%,V
be less than SYSTEM.MAXINT. Sinr he right operand value can be a nonstatic expression,
run-time evaluation of the left opera,. must be allowed to raise NUMERICERROR (or
CONSTRAINTERROR; see AI-00387). Similar examples can be constructed for nonstatic
universalreal expressions. The effect of AI-00181 is to ensure that it is always possible to use
a predefined type when computing nonstatic universal values.

Approved Interpretations

s1. For the evaluation of an operation of a nonstatic universal expression, an implementation
is allowed to raise the exception NUMERICERROR if any operand or the result is a real value
whose absolute value exceeds the largest safe number of the most accurate predefined floating
point type (excluding universalreal), or an integer value greater than SYSTEM.MAXINT or
less than SYSTEM.MININT (AI-00406).

S12. When the RM requires that NUMERICERROR be raised (other than by a raise
statement), CONSTRAINTERROR should be raised instead (AI-00387).

Changes from July 1982

S13. It is allowed to raise NUMERICERROR only when evaluating a nonstatic
universal integer expression.

S14. It has been clarified that evaluation of nonstatIc universal real expressions should use the
most accurate predefined floating point type.

S15. The condition for raising NUMERICERROR for universalreal is restated to use the mostaccurate predefined floating point type (instead of any predefined floating point type).

Changes from July 1980

s1 6. Nonstatic universalinteger and universaLreal expressions are now possible.

Legality Rules

I1. If one operand of a relational or equality operator has the type universalinteger, the type
of the other operand must not be universalreal, and vice versa (8M 4.10/2 and RM

- 4.5.2/1).
%-'

1-2. For a membership test of the form E in L..R or E not In L..R, if two of the expressions E, L,
and R have the type universalinteger, the third must not have type universalreal, and
vice versa (RM 4.10/2 and RM 4.5.2/10).

13. If one operand of binary "+" or binary "-" has the type universalinteger, the other operand
must not have type universalreal, and vice versa (RM 4.10/2 and RM 4.5.3/2).

14. Neither operand of rem and mod is allowed to have type universalreal (RM 4.10/2 and
RM 4.5.5/1).

L5. If the first operand of the division operator has type universaLinteger, the second operand
must not have type universalreal (RM 4.10/3, RM 4.10/2, and RM 4.5.5/1).

L6. If the first operand of the exponentiation operator has type universal integer or
universalreal, the second operand must have type predefined INTEGER (RM 4.10/2 and
RM 4.5.6/4).

Exception Conditions

El. NUMERIC-ERROR (or CONSTRAINTERROR; see AI-00387) is raised when evaluating

4-130

Verlon I (Dec 86) 4.10 Universal Expressions

a nonstatic expression having type universaLinteger if the value of an operand or the
result of the expression lies outside the range SYSTEM.MINJtNT .. SYSTEM.MAXINT
(RM 4.10/5 and AI-00181).

E2. NUMERICERROR (or CONSTRAINT-ERROR; see AI-00387) Is raised for the /, mod,
and rem operators If the type of both operands is universalinteger, the value of the divisor
is zero, and the expression is not required to be static (RM 4.10/5).

E3. CONSTRAINT ERROR is raised for an exponentiation operator if the first operand has
type universal_integer, if the value of the second operand is negative, and if the expression
containing the operator is not required to be static (RM 4.10/5 and RM 4.5.6/6).

E4. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised when evaluating
a nonstatic expression having type universaLreal if the value of the expression lies outside
the range of the base type of the most accurate predefined floating point type and
MACHINEOVERFLOWS is true for this type (RM 4.10/5 and RM 4.5.7/7).

E5. NUMERIC_ERROR (or CONSTRAINTERROR; see AI-00387) may be raised when
evaluating a nonstatic expression having type universaLreal if the value of the expression
is within the range of the base type of the most accurate predefined floating point type but -'

is outside the range of the type's safe numbers (RM 4.10/5 and RM 4.5.7/7).
E6. NUMERICERROR (or CONSTRAINTERROR; see AI-00387) is raised for the division

operator if the first operand has type universalreal, the value of the divisor is zero, the
type of the divisor Is universalinteger or universalreal, and the expression is not required
to be static (RM 4.10/5 and RM 4.5.7/7).

Test Objectives and Design Guidelines

T2. Check that static universal integer expressions are evaluated correctly when large literal
values are used, but the result is a small integer value.

T4. Check that static universaLnteger expressions are evaluated correctly when large literal .1

values are used and the result is a large value.
TS. For universalinteger expressions, check that NUMERICERROR (or CONSTRAINT-

.-ERROR; see AI-00387) is raised:

* if division by zero is attempted.
" if the second operand of rem or mod is zero.

" for nonstatic expressions, if an operand value or the result lies outside the
range SYSTEM.MININT.. SYSTEM.MAXINT.

T6. Check that CONSTRAINTERROR Is raised for a universal integer expression containing
an exponentlation operator if the exponent has a negative value.

T7. Check that the value of SYSTEM.MAX-INT or SYSTEM.MIN INT can be used
successfully In universalinteger static expressions.

TI0. Check that static universaLreal expressions are evaluated exactly. In particular, check
that:

* sums, differences, products, quotients, and exponentiations of small rational
numbers are performed correctly.
Implementeton GuiM/ene: Use numbers such as 2.0/7.0. and check that equivalent values are

* t,considered equal, i.e., that if a rational arithmetic package is used, numbers are reduced I
correctly to lowest terms. In addition, check that expressions such as 0.1/0.2 - 0.5 evaluate as
true.

4-131 '
I

i N i ill
a

- " i l ;l

4.10 Universal Expressions Version 1 (Dec 86)

Implementation Guideline: Check that an integer literal can be multiplied by a real literal (two N

cases) and that a real literal can be divided by an integer literal.

*cascading use of fractional vlues does not lose precision, e.g., compute the
terms in a series approximacci:; compute various constants based on Pl.

* illegal constructs dependent on exact evaluation of a static universalreal
expression are detected correctly.

* values of 'SMALL and 'LARGE can be computed correctly as static
expressions.

T1 1. Check that nonstatic universal_real expressions are evaluated with the accuracy of the
most piecise predefined floating point type (I.e., the type for which DIGITS equals
SYSTEM.MAXDIGITS).

T12. Check that NUMERIC ERROR (or CONSTRAINTERROR; see AI-00387) is raised for a
universalreal expression if division by zero Is attempted.
Implementation Guideline: At least one case should use all static operands.

Implementation Guideline: The divisor should have type uriversa integer as well as type universalreal.

Check that CONSTRAINTERROR Is raised for 0.0"*(-1) (or any other negative exponent
value).

T13. Check that NUMERIC ERROR (or CONSTRAINTERROR; see AI-00387) is raised for a
nonstatic universalreal expression if the value would lie outside the range of the base type
of the most accurate predefined floating point type and MACHINEOVERFLOWS is true
for that type.
Implementation Guideline: Report whether or not the exception is raised even if MACHINEOVERFLOWS is
not true. .,\.

Check that if MACHINEOVERFLOWS Is true, NUMERICERROR (or CONSTRAINT- S

_ERROR; see AI-00387) Is raised for a nonstatlc universalreal expression if a static
operand has a value outside the range of the most accurate floating point base type, even
if the result lies within the range of the base type. "'4

T1 4. Check that when rounding static universalreal values to an integer type, the rounding is
performed correctly.
Implementation Guideline: Use both positive and negative values.

Check how rounding is performed when the universalreal value is halfway between
adjacent integer values.
Implementation Guideline: Among the possible rounding modes are! round to +infinity, round to -infinity, round
to zero, round away from zero, round to even, and round to odd.

T1 6. Check that for the relational and equality operators, one operand cannot have type
universalinteger if the other has type universalreal,

Check that for membership tests of the form E In L..R and E not In L..R, two of the
expressions E, L, and R cannot have the type universal_integer if the third has type
universal real, and vice versa.

Check that for the binary + and operators, one operand cannot have type
universal integer if the other has type universal_real.

Check that neither operand of the rem and mod operators can have type universal real.

Check that if the first operand of the division operator has type universaljinteger, the
second operand cannot have type universaLreal. 4V

Check that the second operand of the exponentiation operator cannot have the type "-%.,' S
universal real.

4-132
4-132 '.

3

Version I (Dec 86) 4.10 Universal Expressions

T17. Check that relational expressions and membership tests are evaluated exactly when all
operands have type universaLreal and at least one operand is static.

.

4-.

*4-133

• m p

Version I (Dec 86) 5.1 Simple and Compound Statements

Chapter 5
Statements

5.1 Simple and Compound Statements
Semantic Ramifications
si. A sequence of statements must contain at least one statement, even if it is only a null-
_statement.
S2. The occurrence of a label, e.g., <<I>>, should not be confused with the declaration of a
label. <<I>> refers to the implicit declaration of I as a label; the context in which <<I>> occurs
determines where this implicit declaration occurs. Consider the following example:

for I in 1..10
loop
<<I>> null; -- illegal
end loop;

The occurrence of label I is illegal because the only visible declaration of I is the loop
,arameter's declaration, and a loop parameter is not a label. Label I is implicitly declared in an
enclosing declarative part. Normal visibility rules then apply to explicit occurrences of this
implicitly declared Identifier. In particular, <<I>> is only legal when the implicit declaration of I
as a label is visible.

S3. The scope of a label, a block name, or a loop name begins in the declarative part of the
body or the block where Its Implicit declaration appears. in particular, the scope begins before
the occurrence of the name in the statements of the body or block:

declare

LAB : INTEGER; -- object named LAB

procedure P is
-- label LAB declared here

begin
LAB:= 1; -- illegal; LAB denotes the following label,

<<LAB>> return; -- not the preceding object
end;

begin ... end;

The assignment to LAB Is Illegal because the object LAB Is not directly visible anywhere within
the statements of the body of P.
s4. Because label, block, and loop names are declared at the end of a declarative part, the
identifier can be used earlier in the declarative part:

declare
L : INTEGER 0:

begin
-mdeclare

X : INTGER :L -; -- legal

5-1 ',

;&L -

5.1 Simple and Compound Statements Version 1 (Dec 8A)

begin
<<L>>

end; r":,"* ?

end;

There is no testable semantic effect associated with the requirement that such names be
declared in the order of their occurrence in the text.

ss. The place where labels, block names, and loop names are declared also affects the use of
these names in expanded names:

B0: declare
- - Li and R2 are declared here .. j.

begin
Li: for I in 1.-.10

loop
B2: declare

X INTEGER;
begin

X BO.L1.I; -- legal
X B0.LI.B2.X; illegal "
X : B0.B2.X; legal

end B2;
end loop Li; ,

end B0;

Both Li and B2 are declared immediately within block BO. Since B2's declaration as a name
does not occur within the loop, it is illegal to write LI .B2.X. Instead, BO.B2.X must be written.
Note that since the loop parameter is declared immediately within the loop (RM 5.5/6), the
notation L1 .1 is allowed. P 3

S6. The requirement that labels, block names, and loop names be distinct within a program unit
still allows such a name to be Identical to the name of a variable, exception, etc. declared within
the program unit:

procedure P is
X : INTEGER; 3

begin
begin -- block

<<X>> ...-- legal (1)
<Y>.... ::

end;
begin

<<>> ...-- illegal (2)
end;

end P;

The label at (1) is legal because its Identifier is declared within the enclosing block rather than
within the enclosing procedure. The label at (2) Is Illegal because even though it is declared .,
within its enclosing block, RM 5.1/4 requires that label names be distinct within subprogram P.

Changes from July 1982

S7. There are no significant changes.

5-2 s.2 "

Version 1 (Dec 86) 5.1 Simple and Compound Statements

Changes from July 1980

Se. Statement labels and loop or block identifiers are now declared within the innermost
enclosing block instead of within the Innermost enclosing program unit.

sq. The rules for transfer of control are expanded to include the semantics of a terminate
alternative and the effect of an abort statement.

Legality Rules

L1. Within the sequenceof_statements and the (optional) exception handling part of a
subprogram body, package body, task body, or generic unit (and excluding any nested
subprograms, packages, tasks, or generic units), no Identifiers used for statement labels,
block identifiers, or loop identifiers are allowed to be the same (RM 5.1/4).

Test Objectives and Design Guidelines

T1. Check that declarations cannot be interleaved with statements in a sequenceof-
-statements.
Implementation Gudeline: Try them in a subprogrambody, packagebody, block, ifstatement, case-
_statement, and loop-statement. In some cases, all declarations should precede all statements.

T2. Check that the statements in a sequence_of statements are executed in succession.
Implementation Guideline: Avoid raising exceptions and avoid using exit, goto, and return statements.
Check that the existence of labels on some of the statements in the sequence have no effect.
Check that multiple labels are permitted on a statement.
Check that a statement labe may precede a named block or loop.
Check that labels are permitted at the beginning of a sequence.of_.statements in every context that permits a

V. sequenceofstatements, namely, in accept statements, blocks, loops, case statement alternatives, exceptionor ".I handlers, if statement alternatives, package, task, and subprogram bodies, select statements, and select
1." alternatives.

Implementation Guideline: Use unique labels throughout these tests. (Checks for nonunique labels are
performed in IG 8.3.aiT1.)

T3. Check that an empty sequence -ofstatements is not allowed in an accept alternative,
accept statement, block statement, case statement alternative, conditional entry call, delay
alternative, exception handler, if statement, loop statement, package body, selective wait,
subprogram body, task body, and timed entry call.

T4. Check that labels, loop Identifiers, and block identifiers are implicitly declared at the end of
the declarative part of the innermost block statement, subprogram body, package body,
generic package or subprogram body, or task body that enclose them, and therefore:

* cannot be the same as other identifiers declared In the same declarative part
(see IG 8.3.a/T6);

* can be the same as Identifiers declared in an enclosing program unit or block
(see IG 8.3.a'T2, IG 8.3.a/T6);

9 cannot be written in a goto statement or in <<> brackets within a for loop if
the label's Identifier (or block or loop identifier) is the same as the loop
parameter Identifier (see IG 8.3.a/T5);

e the label, loop, or block identifier can be used earlier in the declarative part to
refer to an entity declared in an enclosing unit or block;

e if a named block is nested In a named loop, the loop name cannot be used in

the prefix of an expanded name denoting an entity declared in the block;

5-3

5.2 Assignment Statements Version 1 (Dec 86)

* hide other declarations given in outer blocks or bodies;
Implementation Guideline: Check the case where an identifier is used as a label, a block name, -.. * ..-
and a loop name after its first use as a variable. .'. . " %.

T5. Check that labels, loop identi6f0 , and block identifiers must be distinct within a
subprogram body, package body, task body, generic package body, or generic
subprogram body even if the same identifier occurs In different blocks (see IG 8.3.a/Tl).

5.2 Assignment Statements
Semantic Ramifications

Sl. Although the target variable and the source expression must have the same type (i.e., the
same base type), the expression may yield any value of that type. The value is then checked to
see if it satisfies any subtype constraint imposed on the target variable. If the check fails, an "
exception is raised. Such an exception must be raised before any portion of the target variable
is updated. r

S2. The evaluation of an assignment statement proceeds as follows: ,.

1. In any order:

a. evaluate the source expression (and hold the entire value in a
nonoverlapping temporary variable);

b. evaluate any expressions appearing in the target variable and check
that the target variable names an existing object (e.g., check that

subscript values are within the bounds of the array object being •.
subscripted, etc.).

2. Check that the expression value satisfies any subtype constraints imposed on
the target variable.

3. Update the target variable with the evaluated expression value. (This step is
only performed if none of the preceding steps raises an exception.)

S3. When performing the checks In step 2, no exception can be raised by the actions taken to
perform the check itself. For example, NUMERIC-ERROR must not be raised when checking

assignments to INTEGER variables.

s4. The order of evaluating the identity of the target variable and the primaries of the
expression is not defined by the language. This means that the identity of the target variable
can be changed as a result of evaluating the expression:

A array (1.4) of INTEGER;
I INTEGER :- 4; '4
function FI return INTEGER is
begin

I 5;
return 3;

end FI
.

A(I) := Fl:

This program is not erroneous, although its effect depends on whether FI is evaluated before or
after A(I). If evaluated before, then A(l) will raise CONSTRAINT ERROR. If FI is evaluated
after A(I) (or after the value of I Is determined), then Fl's value will be assigned to A(4).

5-4

....-,_.,

Version I (Dec 86) 5.2 Assignment Statements

Regardless of the evaluation order, it is not acceptable to assign a value to a nonexistent
component of A, namely A(5).

S5. Although dependence on the order of evaluation does not, in general, make a program
erroneous, the RM explicitly specifies one circumstance under which evaluation order can make
a program's execution erroneous; namely, a program is erroneous if the evaluation of an
assignment expression changes the dIscrdminant of a target variable:

type DISCRIM is (INT, FLT); ,
type VR M : DISCRIM :- INT) is IN,

record 4
case D is

when INT => or
I : INTEGER;

when FLT =>
F : FLOAT:

end case;

end record;

R VR;

function F return INTEGER is
begin

R := (D => FLT, F => 2.0);--
return 1;

end F;

R := (D => INT, I => 0);

R.1 := F; -- erroneous

Since the evaluation of F changes the discriminant of R, the assignment is erroneous. Because
the RM defines this situation as erroneous, an implementation is allowed to assume that the
expression does not change the discriminant of the target variable. Consequently, an
implementation can evaluate R.1 (checking that I exists for the R's current discriminant value),,-"
can evaluate F, and can then assign F's value to the location normally occupied by R.1, even
though this assignment may produce an invalid floating point value for R.F. Note that if F is
evaluated first, then the evaluation of R.1 will raise CONSTRAINT-ERROR, since I is not a valid
selector when R.D = FLT (RM 4.1.3/8).

S6. Although the RM says that the value of the expression is checked against the subtype of
the variable after the expression is evaluated, an optimizer can perform the subtype check
earlier. RM 11.6/4 allows predefined operations in assignment statements to be evaluated as
soon as possible, and the act of checking a discriminant constraint or array length involves the ,.
use of predefined equality operations. For example:

type ARR is array (INTEGER range <>) of INTEGER;

type REC (D : INTEGER) is 0
record

X : INTEGER;
end record;

ARR V: ARR (1..3);
6- RZC V : C(3);

V... GLOBAL : INTEGER := 1;

A &

IF- W1J-n rWWVM '

5.2 Assignment Statements Version 1 (Dec 86)

function F return INTZGER is
begin

GLOBAL := GLOBAL + 1; %

Ir .,ARR V :=(1-.4 => 10; .

RC--V (D => 4, X => F);

F need not be invoked in either of these assignments since In the first assignment, the length of
the array value can be determined to exceed the length of ARRV prior to evaluating
F. Similarly, in the second assignment, the discdminant of the aggregate can be determined to
be unequal to the discrminant of RECV before F is invoked. In both cases, CONSTRAINT- .
_ERROR can be raised before F is evaluated. Consequently, GLOBAL can have the value 1
when an exception handler is entered.

Changes from July 1982

s7. There are no significant changes.

Changes from July 1980

ss. It is now explicitly stated that the value of an object remains unchanged when the
assignment operation raises CONSTRAINT-ERROR.

s9. Assignment to a subcomponent of an object of an unconstrained record type is erroneous if
evaluation of the expression changes the value of the discdmlnant.
sio. For array variables, a subtype conversion is applied to the expression before checking that
the subtype of th6 expression belongs to the subtype of the variable.

Legality Rules / *,.

L. The base types (not necessarily the subtypes) of the target variable and the source
expression must be the same.

L2. The object being assigned to must not have been declared as a constant in an object
declaration, as an in formal parameter of a subprogram or generic unit, or as a
subcomponent of such an object. It must not be a literal, an expression, a loop parameter,
a discriminant component of a record or private type, nor can it be a functioncall, or an
attribute.

L3. If the name being assigned to has the form of an identifier, the identifier cannot be the
name of an enumeration literal, subprogram, entry, block, loop, statement label, package,
pragma, task, type, or subtype.

L4. The type of the variable must be a type for which assignment is declared, ie., it cannot be
a task type or a limited pdvate type, nor can it be a composite type having a component of
a type for which assignment is not declared.

Exception Conditiona

Exceptions raised during the evaluation of the variable and expression are covered in
Chapter 4.

El. CONSTRAINTERROR Is raised if an assignment to a scalar variable would violate the
variable's range constraint.

E2. CONSTRAINTERROR is raised for the assignment of array types: see IG 5,2.1/E.
E3. CONSTRAINTERROR is raised If a value of a discriminant of the expression does not " . -.

5-6

* **% r-' , **

Version I (Dec 86) 5.2 Assignment Statements
9r,

equal a corresponding discriminant value of the variable, and if the variable has a 'p

constrained record or private type or is an object designated by an access value.

E4. CONSTRAINTERROR is raised If the variable has a constrained access type, the value
being assigned is not null, and: •

" any index bound of the designated object does not equal the corresponding
bound specified for the access type's constraint. "'

" any discriminant of the designated object does not equal the corresponding
value specified for the access type's constraint.

Test Objectives and Design Guidelines

Ti. Check that an assignment statement replaces the current value of the target variable with
the value of the source expression. Check this for INTEGER, BOOLEAN, CHARACTER,-.
FLOAT (separately), a fixed type (separately), another enumeration type, STRING, another
array type, a record type (with and without discriminant,), and an access type. 0
Implementation Guideline: Include components with a constraint that depends on a discriminant.

T2. Check that the left side (target) o an assignmentstatement must be a variable.
Implementation Guideline: Try the following kinds of entities as the target: a declared constant (including
components of a constant); a generic in parameter; a subprogram In parameter; a loop parameter; a named
number; a function call returning a result of a scalar, array, record, access, and private type; a sliced function
result; a component of a composite function result; and a record discriminant.

T3. Check that multiple assignments are not permitted within a single assignmentstatement;
in particular, check that the following forms are prohibited:

variable, variable := expression;
variable := variable := expression:

variable := expression operator (variable := expression);

T4. Check that the types of the target variable and source expression must match at compile
time.
Implementation Guideline: Try combinations such as:

INTEGER vs. FLOAT
I TEGZR vs. LONG INTEGER
INTEGER Va. aMU&ATER p
array of INTEGER vs. array of FLOAT
arrays and slices
access record vs. record

T5. Check that, for scalar types (INTEGER, BOOLEAN, CHARACTER, FLOAT, a fixed type,
and a user-defined enumeration type), CONSTRAINTERROR is raised when the
expression's value is outside the target variable's range; check that the value of the target
variable is not altered. -.

Implementation Guideline: Try some subtests with ranges that can be checked at compile time and others with
ranges that must be checked at run time.
Implementation Guideline: Use values just inside and just outside the target range (at both ends).

T6. Check that the equality operator (=) cannot be used as an assignment symbol.

17. Check that NUMERICERROR, CONSTRAINT ERROR, or any other exceptions are not
raised for INTEGER assignments when the expression's value is actually in the target
variable's range, and when the target variable's range and/or the expression's value are 'V
near INTEGER'FIRST or INTEGER'LAST. S

T8. Check that a record variable constrained by a specified discriminant value cannot have its

5.7.

5.2 Assignment Statements Version 1 (Dec 86)

discrnminant value altered by an assignment. Assigning an entire record value with a
different discriminant value should raise CONSTRAINT-ERROR and should leave the
target variable unaltered.
Implementaion Guideline: Try both static -onstatic discriminant values.

T9. Check that a record variable designated by an access value cannot have its discriminant
altered, even by a complete record assignment, and even though the target access
variable is not constrained to designate an object with a specific discriminant value. In
other words, check that the attempt to change the target's discrminant raises
CONSTRAINTERROR and leaves the target record unaltered.
Implementation Guideline: Try both static and nonstatic discriminant values.
Implementation Guideline: The discriminants of the designated type should have default values in the nonstatic
case.

T 0. Check that record assignments use *copy semantics," i.e., that values of the target variable
can be used in the expression being assigned (see IG 5.2.1/T2 for the equivalent array
variable test).
Implementation Guideline: In particular. try the following:

type REC is record
X, Y : INMGR:

and record;

R : (0, 0):
R .- (X -> 1, Y -> R.X): -- (1,0)

R:= (X => R.Y, -> 2); -- (0,2)

T1 1. Check that index and discriminant constraints for assignment of access subtypes are
checked, as in:

type T is access an unconstrained type;
subtype S1 is T constraintl; "
subtype S2 is T constraint2;

X1, X2 : Sl;
Y1, Y2 : S2;

Check that:

. any of the above variables can be assigned to each other if the value being
assigned is null.

* X1 or X2 can be assigned to each other or to W.

* CONSTRAINTERROR Is raised if Xl Is assigned to Y1 and X1 is not null.

* CONSTRAINTERROR Is raised if W Is assigned to Xl, W is not null, and the
constraints of the object designated by W do not equal the constraints
imposed on Si.

e null can be assigned to any of these variables.
T12. Check that if the evaluation of the expression in an assignment statement raises an

exception, the value of the target variable is not changed.
Implementation Guideline: Use a case where a record or array aggregate raises an exception after the first
component is evaluated, when the first component is a literal.
Implementafion Guidelin.: Also try catenation:

s :- (2 .. s) A T (7 .. z+), ..

where I + J raises NUMERICERROR or the slice raises CONSTRAINTERROR.

5-8

N "
%,'

°
f •

0
m
m

4 "P " N a"z ". w " • w . •. .. , .. .". . • . . .•

Version 1 (Dec 86) 5.2.1 Array Assignments

T1 3. Check whether the entire expression is evaluated before checking that a variable's "
discriminant constraint is satisfied, or that an array value has the correct number of

components for each dimension. '0'

5.2.1 Array Assignments
Semantic Ramifications

si. The base type of a slice is the base type of the array denoted by the prefix, but the subtype
(i.e., the index constraint) is determined by the upper and lower bounds of the slice.

S2. When checking that the lengths of corresponding dimensions match, if the lengths do
match but happen to exceed INTEGER'LAST or SYSTEM.MAXINT, then the length checking
must succeed and must not raise NUMERICERROR or CONSTRAINTERROR. For
example, if an implementation does not raise STORAGEERROR or NUMERICERROR for
the following declarations: I

type A is array INTEGEr range <> of BOOLEAN;
pragma I?ACKED (A);
X : A (-1..INTZGER'LAST);
Y A (-2..INTZGER'LAST-1);

Z.-1

Then it must not raise NUMERICERROR when executing: •

X Y; ..

or
X (-2. .INTGUR'LAST-1 => T UE); ""

s3. The semantics of assigning overlapping slices is equivalent to first assigning the
expression value to a nonoverlapping temporary variable and then assigning the temporary to
the target. "" "

S4. Only the index constraints may differ for different objects of a given array type since only
index constraints can be applied to an array type. Thus, since the component type constraints
must be the same for all objects of the array type, It is not necessary to check the component
constraints in an array assignment. Any component constraint checking of the source
expression value will already have been performed as part of expression evaluation semantics,
which must yield a value of the target array type. In particular, if the source expression is an
array aggregate, then the individual component values are constraint checked as the
(temporary) array value Is formed (see RM 4.3.2/11 1), after which the array value is assigned to
the array target variable.
ss. An implementation may directly assign the components of an array aggregate to the
components of an array target (without constructing a temporary array value) if all of the
component values are constraint checked (and exceptions raised) before any component of the
target variable is updated (see IG 5.2/S).
s6. If given these declarations,

type DAY is (MO, TUE, ..., SUN);

type ARR is array (1ON. .RI) of ZNTZGKR.
type ARR DAY is array (DAY range <>) of INTIG1R;
NORM ARR;

ZI.-. NORM DAY ARR-DAY(HON.-.rRI);

5-9

/ --..' .

5.2.1 Array Assignments Version 1 (Dec 86)

then NORMDAY:= (WED..FRI => 0, SAT..SUN => 1) does not raise CONSTRAINTERROR;
the aggregate has the correct length and the implied subtype conversion provides the bounds
MON..FRI. (Note that after the assigrment, NORM DAY(FRI) = 1 because of the subtype , .,
conversion.) On the other hand,

NORM := (WED .. SUN-> 0);

raises CONSTRAINTERROR since the bounds of the aggregate, WED..SUN, do not all belong
to the index subtype of ARR. (The index subtype is MON..FRI, not DAY, (see RM 3.6/7) and
the bounds of the aggregate are checked against this subtype prior to the assignment
statement's subtype conversion (RM 4.3.2/11)).
S7. The required subtype conversion checks that if the subtype of the variable has a null range
for at least one dimension, the expression must denote a null array value (and vice versa), but
corresponding dimensions need not have the same index values. The RM only requires that
there be matching components. Since a null array has no component for any dimension, the
rule does not imply corresponding dimensions must have the same bounds. ",-

Changes from July 1982

Se. There are no significant changes.

Changes from July 1980

Sq. The value of the expression is implicitly converted to the subtype of the array vanable.

Exception Conditions

El. CONSTRAINTERROR is raised for the assignment of a non-null array value to a non-null
array variable if the number of components for corresponding dimensions is not equal.. - ."

E2. CONSTRAINTERROR is raised if a non-null array value is assigned to an array vanable
having a null index range for one of its dimensions, or if a null array value is assigned to a
non-null array variable.

Test Objectives and Design Guidelines

Ti. Check that array subtype conversion is applkd after an array value is determined.
Implementation Guideline: Use the NORM :- (WED..SUN -> 0) example.

T2. Check that the assignment of overlapping source and target variables (including arrays and , -

slices in various combinations) satisfies the semantics of "copy" assignment, ie.. it is
equivalent to first copying to a nonoverlapping temporary variable.
Implementation Guideline: Try both static and dynamic bounds so as to allow anid prevent compile-time
detection of the overlap. Also try the following "overlapping" aggregate assignment:

A array (1..4) of IUTZTR :- (1..4 -> 0).
A = (1. A(1). A(1), A(1)),

Also try the following "overlappinig catenation of slices:

S : STRING (1. .10) : "A5KDMIJ";
S .= 'K' A S(1..2) & 8(1..2) & S(I..5):

Also try the above for an array of integers. Each kind of overlap should be tested in both directiors. e .target
bounds les than source bounds and target bounds greater than source bounds.

T3. Check that array assignments with matching lengths do not raise CONSTRAINT ERROR "

and are performed correctly. Try all meaningful combinations of the following:

a. Static vs. nonstatic. , 1

5-10

% - - t ' n " - l " "t ' " " "-

Version I (Doc 8) 5.2.1 Array Assignments
I

1. Static -- Use static bounds and indices so that the length check can be
done at compile time.

2. Nonstatc -- Use nonstatic bounds and indices whose values can only
be known at run time so as to force a run-time length check. 0

b. Arrays and slices.
'-F

1. Array -- Use an entire array, i.e., don't subscript or slice it. Try both
non-null and null arrays. For the source expression, try both array
objects and array aggregate. Ik

2. Slice -- Try both non-null and null slices. ',

Also try to mix these within single assignment statements (as to kind of target and/or
source) whenever the types match. For example:

S1 : STRING(1..10);
S2 : STRING(..20);

S : S2W . .15);

Implementation Guideline: Check that all components are correctly reigned to the proper positions. For
lengths that exceed INTEGERLAST, check that the length checking does not raise an exception, such as
NUMERICERROR or CONSTRAINT_ERROR.

T4. Check that array assignments with nonmatching lengths raise CONSTRAINTERROR. .U
Try all meaningful combinations of the following:

a. Static vs. nonstatic.

1. Static -- Use static bounds and indices so that the length check can be
done at compile time.

2. Nonstaic -- Use nonstatic bounds and indices whose values can only .'
be known at run time so as to force a runtime length check. '

b. Arrays and sices.

1. Array -- Use an entire array, i.e., don't subscript or slice it. Try both--6
non-null and null arrays. For the source expression, try both array
objects and array aggregate. "1

2. Slice -- Try both non-null and null slices.

Also try to mix these within single assignment statements (as to kind of target and/or
source) whenever the types match. For example:

S1 STRING(l..10);
82 : STRING(1..20);

51 : S2(5..15); -- CONSTRAINTERROR
Implementation Guideline: Check that when an excepton (CONSTRAINTERROR) is raised, the target
vanable i not altered.

..'.

5-11
%

- "' - ' - ~ -. W~IN '* .Z~ '~W ~ ~ IPW r w w- .- ~ .. ' .~ ~ .-. - .~W~wr-~j. pj-9j

p5.3 If Statements Version I (Dec 86)

5.3 If Statements
Semantic Ramifications

si. Because RM 5.3/3 uses lower .,e in specifying the type of condition expressions,
conditions may have a type derived from STANDARD. BOOLEAN as well as the predefined
BOOLEAN type (see RM 3.5.3/1). Since conditions occur in loop statements, exit statements,
and select statements, expressions of a derived boolean type are allowed in these contexts as
well as in it statements.
Changes from July 1982

S2. There are no significant changes.

Changes from July 1980

S3. Condition expressions can have any boolean type, including types derived from
BOOLEAN.

-: Test Objectives and Design Guidelines
Short-circuit evaluation of conditions is tested in IG 4.5.1 .c/T22.

*TI. Check that every if~statement must end with end If.
T2. Check that else cannot precede elsif in an If-.statement.
T3. Check that elsif cannot be spelled as elseif, elaf, elif, or else-if.
T4. Check that condition expressions must have a boolean type.

lmp'imentation Guideline: In particular, ensure that fth integer literal zero (0) is illegal and that a type derived
from BOOLEAN is legal. ~''

T5. Check that control flows correctly in basic non-nested if-statements that have no elsif or
else parts.
Implementation Guideline: Since this form of if statement is heavily used in the other executable tests to
conditionally invoke the routine FAILED, it must be carefully tested here. Thus, the order of the following
subtests is critical.
First do all of the following subtests where the condition has the value false. Each subtest has the form:

i.f false condition then a

FAILED ("message"),
end if

:+ 1
This checks that the then action is correctly skipped. Th. variable I should be initialized to zero before the first
subtest Its purpose here is to verify that control skips to whatever follows the then action.
Use the following increasingly cornplex forms for the conditions: a boolean literal (e.g., FALSE), a namned

'%boolean constant or variable (eg.) a simple relation (e.g., A >0), a logical expression (e.g., 8 and A > 0).
and a condirtion with and then or or *lse. Do not use conditions that depend on short-circuit evaluation.

SAli oftrhe above subteists must be done twice first with static conditions, and second with nonstatic conditions.
A Next. all of the subtests (for all ths above forms of conditions and for both static and nonstatic conditions) must

be repeated, but with the conditions having the value true. Each of these subtests has the form:
if true condition than

I :- I + 1
got* Ln:

end if,
FAILED (msae
>'n- null:

Thirs :'ecks that the then action is corrcl initiated.Z.'

5-12

% %

Version 1 (DeC 86) 5.3 If Statements

Next, do the following subtest:

if static true condition then
I : - I + T;

end if:;

if dynamic true condition then
I :- + 1;o
end if;

if I /- n then
FAILED ("Meaeq):

end if;

where n is an integer literal whose value is the number of false -condition subtests plus the number of
true-condition subtests and I is initially 0. This, combined with the previous false-condition and true-condition
subtests. checks that the then action is either skped correctly or is initiated and completed correctly (for
non-null actions).
Last. try four subtests where the sequence-of-statemeints is the null-statement, namely, with a staticjrue-
_condition, with a dynanio true,.condltion, with a staticjfals..oondtlon, and with a dynamicjfals_ondition.

T6. Check that control flows to the correct alternative sequence of statements in complex
non-nested if-statements. Try at least the following forms:

a. if .

else ...

and if;

b. if..
elsif..
elsif ... A
end it;

C. if..
eleif..

elsef ...

end if;
lmplemontabor? Guideline: Each of the above form. must be tried repeatedly for each possible control flow
choice. Thus (b) above needs four subtests, one for each of the four choices: (1) If selected. (2) first elsif
selected. (3) second elelf selected, and (4) none selected. Occasionally, an alternative sequence-of-
-statements, whether selected or not. should consist of a null -statement.
For thes conditional expressions (conditions). stan Out with simple boolean variables (e.g.. B) or constants (e.g..
TRUE). Then try simple relational exproeslons (relatione, e.g.. A > 0). Then, try logical expressions (e.g.. A > 0
and 8). Last, try conditions involving and then and or else, but don't use conditions that depend on short
circuit evaluation. However, it is not necessary to try each of these, condition forms with each of the if-
_statement forms.
All of the above subtet must be done twice: once with static conditions and once with dynamic conditions.
It can be assumed that the basic non-nested ifstaternont with no elsit or else parts, and with the condition
forms described above. works correctly (see 10 5.3/T5). Thus, this basic form can be used to verify whether
the above forms work, and to invoke the routine FAILED when they have failed.

T7. Check that control flows correctly in simple ntested Ifstatemnents.
Implentiation Gueidorne: Try about four subteets involving doubly or triply nested ifT statements. UOe
mixtures of t forms of if statemeonts and of static and dynamic conditions mentioned in I0 5.3/T5S and 10
5.3/T6. Also try some null alternatives. i.e.. where the sequenoe-o-tatements is a single null-statement.
sometimes selete and sometimes not. It can be assumed that non-nested it-statements work correctly (see
10 5.3/T5 and 10 5.3/T6).

5-13

5.4.a Basic Case Statement Properties Version I (Dec 86)

T8. Check that control flows correctly in complex nested ifstatements.
Implementation Guideline: This is intended to be a worst-case test in terms of probable actual user programs.
Try a nesting of it statements that is at least ton deep along the selected path and at leas, f e 3 ap along a
few of the nonseleted paths. Along the s '-Ied path, use a mixture of all of the forms of if statements and
static and dynamic conditions mentioned i,, ',. 5.3/T5 and IG 5.3/1T6. Likewise, use mixtures of these forms in
the nonselected paths. The alternative sequences_of_statements should include the following forms:

a. a nullstatement only,

b. an assignment-statement only,

c. an if statement only,

d. at least one assignment-statement and at least one if statement in various orders.

It can be assumed that non-nested if.statements work correctly (see IG 5.3/T5 and IG 5.3,1"6).

T9. Check that neither an ifstatement nor any of its alternative sequences-of statements
implicitly introduces a new declarative region. In particular, check that an alternative
cannot begin with a declaratvepart; that names declared just outside an ifstatement
cannot also be declared as labels inside the if_statement; and that labels declared in one
alternative of an ifstatement cannot be declared as labels in another alternative of the
ifstatement (see also IG 8.3.a).

5.4 Case Statements
Basic properties of case statements are treated in IG 5.4.a. Interactions between the

subtype of a case expression and the set of values covered by the alternatives are checked in
IG 5.4.b.

Note that the vertical bar in the syntax production is a terminal symbol, not a meta-
syntactic symbol (RM 1.5/(e)).

I

5.4.a Basic Case Statement Properties

Semantic Ramifications

St. The scope of statement labels inside case t o ments :s discussed in IG 8. Restnctions on
the use of goto statements are discussed in IG 5.9/S and IG 8.

S2. Case expressions must have a discrete type, i.e., an integer, a predefined-enumeration
type, a user-defined enumeration type, or a user-defined type derived from a aiscrete type. In
particular, a pnvate type whose corresponding full type declaration is a discrete type cannot be
used in case expressions outside the scope of the declaration implementing the type. (Since
case expressions must have a discrete type, strings (even strings of length one) and fixed point
types with integral DELTAs, are not permitted.)

S3. Choices of the form

ST range L .. R

ST
A' RANGI (n)

are permitted in case statements (RM 3.7.3/2 and RM 3.6/2) (when ST denotes a discrete
subtype).

S4. Choices must be simple expressions, hence, relational and logical operators cannot be
used in choices unless the expression containing these operators is parenthesized.

S5. If a programmer wishes to obtain the effect of executing several alternatives for a single
case expression value, he will have to write a statement of the form:

3",4

5-14

?4
~~44

d ,%YN2 , J.'.%,. : ","-".-',-g '.-"., .. '",-

Version 1 (Dec 86) 5.4.a Basic Case Statement Properties

IK

case I is
when 1 => goto FIRST;
when 2 => goto SECOND;
when 3 -> goto THIRD;
when others -> goto REST;

end case; 14,

<<FIRST>> ... ; goto REST;

<<SECOND>> ... ; -- fall through to THIRD
<<THIRD>> ... ; gato DONE;

<<REST>> ...

<<DONE>> ...

An implementation may wish to provide special optimizatlons for such a program structure..-

s6. An implementation may wish to use a jump-table implementation for alternatives whose
non-others choices cover a small range of values and an if-then-else implementation when a
large range of values is covered but only a few alternatives are present.

S7. There is no rule prohibiting vacuous choices, e.g., a choice denoting a null range of values
is allowed and so is an others choice that can never be selected.

so. When a case expression has a static subtype, values outside the range of the subtype are
not allowed as non-null choices (RM 5.4/4). For example, given the usual definition of the type
DAY, consider the derived type:

type WEEKDAY is new DAY range NON .. FRI;

The following case statement is Illegal:

X: WEEKDAY;

case X is t

when SAT I SUN => ... - illegal
when MON..1WED -> ...

when THU..FRI -> ...

end case;

S9. Since the subtype of a generic In out parameter is always its base type, regardless of the
type mark used in the parameter's declaration (RM 12.1.1/1), all values of the parameter's base
type are allowed as case choices, e.g.,

subtype FIVE is INTEGER range 1 5. 5;-'
'

generic
X : in out FIVE;

procedure P;

procedure P is
begin

case X is
when 10=>... -- legal
when others -> ...

end case;
end P;

If X were not a generic parameter or if X were a generic In parameter, then the choice, 10, 1
would be illegal.

5-15

.-

5.4.a Basic Case Statement Properties Version 1 (Dec 86)

sio. The predefined equality operation determines which case alternative is selected:

package P is %

type T is limited ivate;
function "=" (X, Y T) return BOOLEAN;

private
type T is new INTEGER;

end P;

package body P is
X : T := 1;
function "=" (X, Y ; T) return BOOLEAN is
begin

return (INTEGER (X) - 1) = INTEGER (Y);
end;

begin
case X is

when 1 => PUT ("OK");
when 0 => PUT ("uses redefined =");
when others => null;

end case;
end P;

Note that in this example, the predefined equality operator for T is hidden but is nonetheless
used in the case statement.

Changes from July 1982

Si i. There are no significant changes. " r

Changes from July 1980

S12. Case statements with no alternatives are illegal.

S13. The type of the case expression must not be a generic formal type.

S14. When the case expression is the name of an object whose subtype is static, or is a
qualified expression or type conversion whose type mark denotes a static subtype, no value
outside the range of the subtype is allowed as a choice.

Legality Rules

L1. The base type of the case expression and each choice must be the same.

L2. The base type of the case expression must have a discrete type.

L3. Every choice must contain only static expressions, i.e., for choices of the form E, L.. R, ST
range L.. R, and ST, L, R, and E must be static expressions, and ST must be a static
subtype (i.e., ST'FIRST and ST'LAST must be static).

- L4. Two choices must not have a value in common.

L5. When the case expression Is the name of an object whose subtype is static, or is a
qualified expression or type conversion whose type mark denotes a static subtype, no
value outside the range of the subtype is allowed as a choice.

L6. An others choice, if present, must be the only choice given in the last alternative specified
for a case statement.

5-16
'p 'p

,',

Version 1 (Dec 86) 5.4.a Basic Case Statement Properties

L7. The type of the case expression must be determinable independently of the values or ,,

types of the choices used In the case statement.

Le. The type of a case expression must not be a generic formal type or a type derived (directly
or indirectly) from a generic formal type.

L9. Case statements must have at least one alternative.
Test Objectives and Design Guidelines

Ti. Check that (cf. IG 3.7.3/1TI):

" the reserved word Is Is required;

" when cannot be replaced by If,
Icannot be replaced by or,
=> cannot be replaced by then,
end case cannot be replaced by end, endcase, or esac,
is cannot be replaced by of;

" when the case expression is a simple variable, the name of the variable
cannot follow end case; .,

" when a case statement is labeled, the label name cannot follow end case;

" a case statement cannot be labeled like a loop or block, i.e., with an identifier
followed by a colon;

" the others choice must be the only choice given in the last alternative; ".

Implementation Guideline: Try an others choice as the first and middle alternative, and try it as
the first, middle, and last choice in a set of choices for the last alternative. "5

* at least one alternative is required.

T2. Check that an alternative must have at least one statement (see IG 5.1/T3), and that it can
consist of one or more statements (implicitly checked by other tests in this section).

* T3. Check that the following types are permitted as the type of a case expression (see also T4
and T5) (cf. IG 3.7.1 /T3):

* BOOLEAN

* CHARACTER

" user-defined enumeration type

* all predefined Integer types-"5'

" user-defined types derived from these types
Implementation Guideline: Use an integer type, an enumeration type, and a derived discrete
type in forming the derived types for this test.

T4. Check that a limited or nonlimited private type whose full type declaration declares a
discrete type can be used In a case expression within the scope of the full declaration (i.e.,
within the package that defines the type) (cf. IG 7.4/T4).

T5. Check that nondiscrete types are unacceptable as case expressions. In particular, check
strings of length 1, fixed point types with Integral DELTAs, and private types implemented
as discrete types but used outside the scope of the declaration defining the private type's
implementation.

T6. Check that static expressions (other than a numeric literal, a character literal, an
enumeration literal, or a constant name) are allowed as case expressions (see also T21).

5-17.17

5.4•a Basic Case Statement Properties Version 1 (Dec 86)

17. Check that a vadable used as a case expression is not considered local to the case

statement. In particular, check that the variable can be assigned a new value, and the -,

assignment takes effect immediately (i.e., the case statement does not use a copy of the . ,

case expression).
Implementation Guideline: Use a discrimi!.ant of a variant record as the case expression and change the
discriminant by assigning a new record to the variable. Then check that the discriminant field has the correct
value (e.g.. by attempting to access components unique to the new variant part).

TS. Check that the type of a case expression cannot be a generic formal discrete or integer
type.

T9. Check that a choice may not be a component simple name.

T10. Check that the base type of the case expression and the choice must not be different.
Implementation Guideline: Try a case expression that has type universal integer and choices tt.at have type
INTEGER; also try expressions and choices where the expression is a derived type and the choice is the
parent type (and vice versa).
Implementation Guideline: Include a case when the subtypes are different and the case expression's subtype
is nonstatic.

T1 1. Check that the predefined equality operation determines which case alternative is selected.

T1 2. Check that when the case expression is the name of a constant or variable having a static
subtype, or is a qualified expression or type conversion with a static subtype, no choice
may have a value outside the subtype's range.

T13. Check that if a case expression is a variable (including a generic In out parameter), a
constant (including a generic In parameter), a qualified expression, a type conversion, a
function invocation, an attribute, a static expression, or a parenthesized expression having
one of these forms, and if the subtype of the variable, the constant, the qualified
expression, or the type conversion is nonstatic, then any value of the expression's base '.,
type may appear as a choice.
Implementation Guideline: In particular, try function calls, attributes, and expressions that have a static
subtype, and expressions whose values are outside the range of this subtype.

Checks involving discrete ranges

T20. Check that every pair of choices must cover a disjoint set of va!ues (cf. 10 3.7.3'2).
Impiementation Guideline: Use both single valu. s and ranges of values, and check for overiapping values
within a single alternative and between alternativas. Use overlapping ranges whose end points are different,
e.g., 3.5 and 4..6 as well as ranges in which overlap occurs only at the end points. Use some examples in
which a large range of values has to be checked for potential overlap. The choices should not all occur in
monotonically increasing or decreasing order.

T21. Check that nonstatic choice values are forbidden (cf. IG 3.7.31T3).
Implementation Guideline: Try a variable whose range is restricted to a single value. Try a discrete range of
the form ST, where ST is a subtype name having at least one nonstatic bound, as well as choices of the form
ST range L .. R and L .. R, where either L or R is nonstatic. Include a case where an exception is raised. e.g.,
POSITIVE range 0.. 3. Include A'RANGE.

T22. Check that all legal forms of choice are permitted in case statements, and in particular, that
forms like ST range L.. R, and ST are permitted (cf. IG 3.7.3/T4).
Implementation Guideline: Use the same subtype name in more than one choice.

T23. Check that choices using named numbers and static constants are permitted (cf. IG
3.7.3/T4).

T24. Check that choices denoting a null range of values are permitted.
Implementation Guideline: The vacuous alternatives should have null as its sequence of statements in one 7
test and a non-null sequence of statements in a separate test.

5--8
',I :L t,,' , '.' =''"', , ,... .% ... ,,r". e"-.ie .'n.%-'..".."."; .".v'v",'."-v"-.",,"".-,''" '

Version 1 (Dec 86) 5.4.a Basic Case Statement Properties

Check also that an others alternative can be provided even if all values of the case expression have been
covered by preceding alternatives (see also IG 5.4.b) (of. IG 3.7.3/T5).

T25. Check that out-of-range derived type values are not permitted as choices.

T26. Check that choices within and between alternatives can appear in nonmonotonic order .
(cf. IG 3.7.3/T6).

T27. Check that relational and logical operators are allowed as choices only if the expressions
containing these operators are enclosed In parentheses (cf. IG 3.7.31T7). Similarly, check
the membership operations. .,

T28. Check that non-null choices of the form ST range L .. R are illegal if either L or R is outside
ST's bounds and ST, L, and R are all static (cf. IG 3.7.3/T3) (see also IG 5.4.a/T21).

Optimization checks

T41. Check that the flow of control in a case statement is appropriate.
Implementation Guideline: Use a case statement with a small enumeration type inside a loop and check that
each alternative is executed in the appropriate sequence. Also check a case statement whose alternatives
contain only goto statements. %

T42. Check that a case statement may have:

a. a large number of potential choices grouped into a small number of 4
alternatives, e.g.,

INTZGZR'IZRST .. -101
-100

100
101. . INTEGoR. LAST
others

b. a small range of choices grouped as a small number of alternatives
(suggesting a jump-table implementation), e.g., alternatives using values in
the range 1 .. 10

c. a sparse set of alternatives In a large range, e.g., 1, 2, 1000, 5000, 10_000
.. 10_200. 1,.

d. a few alternatives covering a large range, e.g., 1 .. 1000, -9 000..0, 11-
000..INTEGER'LAST. -S.

e. a small range very far from 0, e.g., 10 001, 10 002, 10 003, 10 004; (this
permits a biased jump-table implementation) I)

f. an others alternative that covers a small range of noncontiguous values, e.g.,
MON and FRI;

g. an others alternative that covers several noncontiguous ranges of values,

e.g., 1 .. 10, 15, 1000, -500.. -400, etc.

and that the appropriate alternatives are executed.

Overloading Checks

T60. Check that if the case expression is an overloaded literal or function call, the case "

statement is considered illegal. '

Implementation Guideline: Try a function overloaded with an INTEGER and FLOAT return value, a function 0I
returning a value of an INTEGER and a derived integer type, and an integer literal in a context containing a
derived integer type.

5-19

,, , ...~~~ ,, ,, ., , .. ~, -. ,.% .. ,..

5.4.b When others Can Be Omitted Version 1 (Dec 86)

T61. Check that when the case expression has the type universalinteger, it is not automatically
converted to the integer type of the choices (see Ti 0). .

5.4.b When others Can Be Omitted
Semantic Ramifications
si. An others alternative can always be omitted if every value in the base type of the
expression is covered by the non-others choices. In certain cases, full coverage of the base
type is neither required nor allowed. These cases arise when the case expression is:

* a name of a variable or constant whose subtype is static; "

- a qualified expression or a type conversion whose type mark denotes a static
subtype.

L.

In particular, note that the following forms of expression require coverage of the base type:

a parenthesized expression;

• a function call, even if the return type is a static subtype; and

• an attribute of a static subtype.

Hence, if we have:
'A.

I: INTEGER range 1 .. 5;
subtype FIVE is INTEGER range 1 .. 5;
J: FIVE;

then any of the following case statements must only have choices covering the range 1 through
5:

case Iis
case J is
case FIVE' (1+1) is

Note, in particular, that the expression I + 0 is not a name, a qualified expression, or a type
conversion; hence, case 1+0 Is must provide choices for all values in the range of INTEGERs.
However, since FIVE is a static subtype, the case expression FIVE'(I+O) requires covering only
values in the range I through 5.

S2. There is an important interaction between the use of a loop parameter as a case
expression and the need for an others alternative, e.g., consider:

for I in FIVE range1 .. 4 loop
case I is

the subtype of I is static; hence, only the values 1 .. 4 need be covered.

S3. The subtype of a name is never contextually modified. In the inner case statement of the
following example:

for I in 1.. 100 loop A"
case I is

when 1.. 10
case I is

-- mst-still cover 1 .. 100

5-20

. .1 .: '. . .: ...-. : .. : ,.,:.: . . : ,-.,....-.-..-. .. ,.... - .: :.-..,.._.,..-, - , . .= .
S-. L 'A--''r -'.. ,J . .'."... .',=... "% .-. • . ."% .€.' ,. -.... , '._

Version 1 (Dec 86) 5.4.b When others Can Be Omitted

the inner case statement must still cover the range of I's static subtype (i.e., I .. 100) before
OGIVI.others can be omitted.

S4. When an implementation discovers that an others alternative has incorrectly been omitted,
it would be helpful to users If the values of the missing alternatives were indicated in a
diagnostic message. This, however, is not a language requirement.

ss. Note that if A is an array type or object, A'FIRST and A'LAST are names whose subtype is
defined by A's index subtype:

type TZN is range 1 .. 10;
type ARR is array (TEN range <>) of INT.GER;

A AJR(1 .. 5);
B ARR (1 .. N), -- N nonstatic

A's index subtype is TEN. Since TEN is a static subtype, A's index subtype is static. However,
if the case expression is the name A'FIRST, the choices must cover the range of the index base
type, i.e., TEN'BASE, since though A'FIRST is a name, it is not the name of an object, and thus
its subtype does not determine the range or permitted choices. In particular, it is not sufficient to
cover just the range of TEN'FIRST .. TEN'LAST, i.e., 1 .. 10.

Changes from July 1982

S6. There are no significant changes.

Changes from July 1980

* S7. When the case expression is a function with a static return type or a parenthesized
expression with a static subtype, the set of case choices must cover the range of the base type.

CIO* Legality Rules

Li. The others alternative must be present if the set of values covered by the set of
non-others choices does not equal:

* the set of values associated with the base type of the expression if either of
the following two cases does not apply;

e the set of values associated with the subtype of a variable or constant whose
name is given as the case expression, when this subtype is static;

, the set of values associated with a static subtype whose type mark is used in
a qualified expression or type conversion serving as the case expression.

Test Objectives and Design Guidelines

Ti. Check that if a case expression is a constant (including a generic In parameter having a
nongeneric type), a variable, a type conversion, or a qualified expression, and the subtype
of the expression is static, an others choice can be omitted if all values in the subtype's
range are covered, and must not be omitted if one or more of these values are missing.
Impiementaion Guideline: The interaction between loops and case statements is tested separately below and
in IG S.5.b/T11.-T14.
Implementation Guideline: One form of variable should be a selected component of a record and an object

*' designated by an access value.

T2. Check that if a case expression is a variable (including a generic In out parameter), a
constant (including a generic In parameter), a type conversion, a qualified expression, a
function invocation, an attribute (in particular, 'FIRST and 'LAST), or a parenthesized
expression having one of these forms, and the subtype of the expression is nonstatic,

5-21

5.5.a Properties of All Loops Version 1 (Dec 86)

others can be omitted if all values in the base type's range are covered, and must not be
omitted if one or more of these values are missing. ... %

Implementation Guideline: Do not use looo parameters as case expressions in this test; these are tested in IG ,. ->

5.5. -'

T3. Check that when the case expression is a loop parameter, an others alternative can be
omitted under the appropriate circumstances (see IG 5.5.b/T1 2, /T1 3).

T4. Check that even when the context Indicates that a case expression covers a smaller range
of values than permitted by Its subtype, an others alternative is required if the subtype
value range is not fully covered.
Implementaton Guideline: Use the nested case statement example above.

T5. Check that if the case expression is 1+0, the full range of INTEGER values must be
covered if I is an INTEGER type or an integer subtype.

T6. Check that if the case expression is an enumeration literal, all the values of the literal's

base type must be covered if others is omitted.

Check that if the case expression is an integer literal, others cannot be omitted, even if the
alternatives cover SYSTEM.MININT.. SYSTEM.MAXINT.

5.5 Loop Statements
The discussion of loops is divided into four subsections:

a. properties of all loops

b. FOR loops

c. WHILE loops

d. continuous loops

5.5.a Properties of All Loops
Semantic Ramifications

Changes from July 1982
s1. There are no significant changes.

Changes from July 1980

S2. There are no significant changes.

S3. The rule specifying where loop identifiers are implicitly declared is given in RM 5.1/3.

Legality Rules

L1. If a loop is named, an identifier must be present after end loop and must be the same as
the identifier naming the loop (RM 5.5/3).

% L2. Within the sequence of statements and the (optional) exception handling part of a
subprogram body, package body, task body, or generic unit (and excluding any nested ,
subprograms, packages, tasks, or generic units), no identifiers used for statement labels,
block identifiers, or loop identifiers are allowed to be the same (RM 5.1/4).

.-

SI.%

Version 1 (Dec 86) 5.5.a Properties of All Loops

Test Objectives and Design Guidelines

4'. T1. Check the basic syntactic requirements:

* a loop can have a loop identifier, and if present, the same identifier must be
present at the end of the loop; if not present, no identifier is permitted at the
end of the loop;

e the identifier at the end of the loop cannot be a name of the form P.LABEL,
where LABEL is the name of the loop;

a the identifier at the end of the loop cannot be the name of the loop-parameter
or the name of a statement label preceding the loop statement;
Implementation Guideline: For the statement label case try:

<<A>> loop ... and loop A; -- illegal.

e when a loop with a loop identifier is nested inside another loop with a loop
identifier, the inner loop cannot be terminated by an end loop that mentions
just the outer loop's identifier;

e the forms

loop for I in 1..10; ... end loop;
loop while X; ... end loop;

are prohibited;
A- e the reserved word loop cannot be replaced by do or a semicolon as in:

i ,. for I in 1 .. 10 do .. end (for];
while A do ... end (while];

0 for I in 1 .. 10; ... end:
while A; ... end;

e a loop cannot be terminated just with end (i.e., end loop is indeed required);
e check that end for and end while are illegal;

e check that the forms:

for I in 1..10 while A loop ... end loop;
while A for I in 1..10 loop ... end loop;

are not permitted;

e check that repeat until statements are illegal;

e check that ':=' cannot be used instead of in;

9 check for illegal use of '=' in loop statements (Pi/I style loop);

a check for illegal use of to in loop statements;

* check for Illegal use of from and to In loop statements;

* check that loop cannot be followed by ';';

9 check that a loop body cannot be empty (see IG 5.1/T3);
* check that a loop body can consist of more than one statement (Note: This

check is performed implicitly as a result of coding other tests required for
loops);

5-23

5.5.b FOR Loops Version 1 Dec 86,

* check that loop parameters can only be simple names.

* check that end loop cannot be replaced by endloop or pool ?..Z:..

T3. Check that several levels of loop ,-.ing are permitted. Design a capacity test to ensure
that an arbitrary degree of loop nestirg is permitted.

5.5.b FOR Loops

Semantic Ramifications

S1. If a loop-,parameter is renamed inside a block in a loop, the new name shares the
properties of the loop_parameter; namely, the new name cannot be used in an assignment
context. See IG 8.5/S for further discussion.

S2. The loopparameterspecification declares the loop parameter as an object whose base
type and subtype are defined by the discrete range. The subtype of a loopparameter is only of
interest when the loopparameter is used in a case statement, because the subtype of the case
expression determines when an others alternative can be legally omitted and the permitted

* range of choice values (see IG 5.4/S).

S3. Consider the following situation:

for I in L.. R
case I is

What is the range of values that must be covered by the case statement alternatives? The
range is determined by expanding the loop statement into the form:

for I in T range L .. R
case I is

and then treating I in the case statement as though it had been declared (AI-00006):

I T range L .. R;

T is determi-ned Dy the base type of L and R, without regard to the subtype of L and R (see RM
3.6.1/2). Moreover, if L and R are both composed solely of integer literals, then T is the
predefined type INTEGER (RM 3.6.1/2).

S4. Given that the subtype of I is determined, then the legality of the case statement follows the
rules discussed in IG 5.4/S. In particular, the legality of case statements having no others
alternative or having choices outside the range L .. R is affected by whether I has a static
subtype.

S5. An implementation must be careful to avoid raising NUMERICERROR or CONSTRAINT-

_ERROR when evaluating loops of the form:

for I in INTEGER'LAST-10 .. INTEGER'LAST loop ...
for I in reverse INTXGER'FIRST .. INTEGER'FIRST + 10 loop ...

When evaluating null ranges, care must also be taken it the absolute difference between the
bounds can exceed INTEGER'LAST, e.g.,

for I in INTEGER'LAST .. INTEGER'FIRST loop

S6. Note that an enumeration type can be given a representation such that successive
components of the type do not have successive integer values, e.g., ..

5-24

,,4-

Version 1 (Dec 86) 5.5.b FOR Loops

type Zs (A, 3, C, D):
NON,. for I use (3, 10, 50, 1000),

for J in A .. C loop

J must take on the values A. B, C successively. In effect, an implementation could implement
such a loop as

for J' in K'POS(A)..z'POS(C) loop

and then wherever J was mentioned in the original loop, the implementation would supply
E'VAL(J').

S7. Note that the loop parameter specification is the declaration of the loop_parameter.
According to RM 8.3/5 and RM 8.318, a loop parameter is only visible after its declaration. In
addition, since the scope of the loop parameter starts at the beginning of its declaration (RM
8.212), i.e., from the beginning of the loop parameter specification, any outer declaration of I is
hidden (RM 8.3/15). Hence, the loop parameter cannot be named In its own specification:

declare V
I : INTEGER := 0 V

begin
for I in 1 .. I loop end loop; -- illegal 9

end;

is illegal. The following is also illegal:

L: for I in 1 ..L.I loop ... end loop; illegal

Changes from July 1982

s8. There are no significant changes.

Changes from July 1980

sq. There are no significant changes.

Legality Rules ;

See also IG 3.6.1/L. ,. ',p

Ll. The loopparameter must not appear in an assignment context, i.e., as the target of an
assignment statement or as an in out or out parameter of a subprogram or entry, or as an
In out parameter of a generic instantiation.

_2. A primary or a function name in an expression of a loop parameter specification cannot be
a simple name that is the same as the loop parameter nor can it be an expanded name
whose selector is the loop parameter and whose prefix denotes the loop. .

Test Objectives and Design Guidelines

The tests for discreterange (IG 3.6. 1/T) are repeated here to ensure that discrete-ranges
used in loops are processed correctly.

Ti. Check that a loopparameter cannot be used as the target of an assignment statement or
as an actual in out or out parameter.
Implementaion Guideline: Include cases where the loopparameter is a parameter in procedure calls, entry
calls, and generic instantiations.

5-25

S5..b FOR LOOPS Version I (Dec 86)

T2. Check that if a loop_..parameter is renamed, the new name cannot be uspo :Is tlr'e target of
an assignment statement or as an actual In out or out parameter (see IG 8.5,,T4).

* ~Implomentat'o., (uideleni: Include cases where the loop~parameter is a parameter *ri prucedur, ca'Is entry I.
calls, and generic instantiailon.

* T3. Check that the looparametr is assigned values in ascending order it reverse is absent,
and descending order if reverse is present. (Note: loops over enumeration types with
user-defined representations are tested in IG 5.5.b/T16.)

T4. Check that the loop is not entered If the lower bound of the discrete range is greater than
the upper bound, whether or not reverse is present.
Check that the loop bounds are evaluated only once, upon entry into the loop.
Imploementaftoi Guiideone: Use both static and dynamic bounds. At least oine test should "pcity tnounds with

* fairly complex arithmetic expressions. Attempt to modify fte loop bounds by changing the vaiue of a varlabie 0,
subscript used in the discrete range.

*T5 Check that loops whose upper bound is INTEGER'LAST (for non-reverse 1oops) and
whose lower bound is INTEGER'FIRST (for reverse loops) are executed without raising
NUMERICERROR or CONSTRAINTERROR.

T6. Check that loops can be specified for BOOLEAN. CHARACTER. INTEGER, user-aefined
enumeration typies, and types derived from these typs. Use all four forms of discrete-
-range (ST. L .R, ST range L .R, and A'RANGE). Include types derived from derived

types.
T 7. if an Implementation supports LONG-INTEGER or SHORTINTEGER, 1-fu3)CK that loops

* using literais and vanables of these types can be written.
S' Irplernenta Von Gudefino. Note that in these cases the type of the Wotrai must be flaicaieds expicill Dy writing
is one of tfle toilowing forms:

for : n SHORTINTlZR raiqes 1 110 loop
for I in 1 SNiJORT_IUTXGKN' (10) loop

* ~ T8. Check that integer literals outside the range of INTEGER raise NUMERIC ERROR when
S used in. a loop of the form for I In L.. R loop (see IG 4.6/S).

T9 ChecK ma* i::e type of a loopparameter!- crectly determined, In particular for a ioop of
the form

-. for I in L .. Rloop

% where L and R are integer literals, check that I hias the type INTEGER and cannot be used
S. in a context requiring a value of a type derived from INTEGER or reqlu:nng a LONG-

-INTEGER or SHORTINTEGER value.
Impiemeinzatian Guideline: Separate tests should be wrifttn for LONGINTEGER and SHORT _INTFGER

T1O Check that if L or R are overloaded enumeration lterals, the overloading is properly
resoed nd te lopparameter is considered to have the appropriate type (see

Overloading Resolution in IG 3.6,1.aIS).
T11I Check that the type of a loopparameter is correctly determined for loops of the form-

forIin ST range L .. Rloop

4.* in particular, it ST is a subtype of T. check that I can be assigned to variables declared with
some other subtype of T as well as to variables of type 'f. %S
Check that the above form is accepted even if L and R are both overloaded enumeration
literals i so L. R would be ambiguous if ST were omitted).

5-26

Version 1 (Dec 86) 5.5.b FOR Loops
I

T12. Check that the subtype of a loopparameter is correctly determined so that when the loop-
_parameter is used in a case statement, an others alternative is not required if the choices %
cover the appropriate range of subtype values. Use loops of the form

for I in ST rangeL R loop

where
,',,

" L and R are both static expressions, and ST is a static subtype covering a
range greater than L.. R. (The case statement alternatives must only cover
the range L.. R);

" L or R is a nonstatic expression, but ST is a static subtype. (The case
statement must cover the range ST'FIRST .. ST'LAST, ST'BASE'FIRST :

ST'BASE'LAST.)
Implementation Guideline: Check that it is illegal for case alternatives to cover just the range
L .. ST'SASE'LAST when L is static, or ST'BASE'FIRST.. R when R is static. I

* L and R are static expressions but ST was defined with a nonstatic bound.
(The case statement must cover the range ST'BASE'FIRST
ST'BASE'LAST.) ..

T1 3. Using a case statement, check that in loops of the form:

for I in L .. R loop

the subtype of I is equivalent to that associated with a loop of the form: '.

for I in T range L .. R loop

where T is INTEGER if L and R are integer literal expressions.
Impementabon Guideline: Use both integer expressions and enumeration literals for L and R.

T14. Using a case statement, check that in loops of the form:

for I in ST loop
for I in A'RANGE loop

the subtype of I is ST'FIRST.. ST'LAST only when ST is static and for A'RANGE, the full
range of A's index base type must be covered (since A'RANGE is never static) (see IG
4.9/S).
Imrplmentationi Guidelin.: Use A'RANGE for multidimensional arrays as well as single dimension arrays.

Ti 5. Check that if a discrete range of the form ST range L.. R raises an exception because L or
R is a nonstatic expression whose value is outside ST's range of values, control does not I
enter the loop before the exception is raised.

T16. Check for correct processing of iterations over an enumeration type whose representation
is user-defined as a non-contIguous set of integers. Use both reverse and normal loops.
lmpoomontalon Guideline: Use UNCHECKEDCONVERSION to check that the proper representations are
assigned to the lepjparaeter.

Ti 7. Check that a loop-parameter cannot be a subscripted variable, a record component, or a
selected name identifying a variable in the scope enclosing the loop.

TIS. Check that the loopparameter cannot be used in the definition of the discrete range of the
iteration rule.
Implementalion Guideline: Use boWl a simple name and an expanded name.

- ... "..p

.',

5-27
W

5.5.d Continuous Loops Version 1 (Dec 86)

5.5.c WHILE Loops
Semantic Ramifications

81. Note that although

for I in ST range L.. R loop

is allowed,

while I in ST range L..R loop

is not allowed, since a membership test requires a type mark, not a subtype indication, after in.

Changes from July 1982

S2. There are no significant changes. %,

Changes from July 1980

S3. There are no significant changes.

Legality Rules Ile

L1. The expression following while must have a boolean type (i.e., a type denved from "
BOOLEAN is allowed).

Test Objectives and Design Guidelines

T1 Check that the expression following while can have a type derived from BOOLEAN.

T2. Check that if the while expression is statically or nonstatically FALSE when the iteration-
specification is evaluated, the loop is not entered.

Check that the while condition is evaluated before each iteration, e.g., if an assignment
changes the value of the while expression, the loop is exited the next time the condition is
evaluated.
Implementation Guideline: Change the value of the condition by assigning to a variable used in the expression
and by changing the value of a subscript used in the expression.

T3. Check that the while expression may be arbitrarily complicated for both static and
nonstatic expressions.

5.5.d Continuous Loops
Semantic Ramifications

Changes from July 1982

S1. There are no significant changes.

Changes from July 1980

S2. There are no significant changes.

Test Objectives and Design Guidelines

T1. Check that loop .. end loop is executed until control is explicitly transferred out of the loop "5

(via an exit, goto, or return statement) or implicitly by an exception.

5-28

-. , ,=. , :,:.-,..;. -.-..-;.._...-...... -......._.._.._.. -............ ,.. ,-.-................. ,.-......... ,.. ,....,

Version 1 (Dec 86) 5.6 Blocks
p

5.6 Blocks
Semantic Ramifications

The declarative.part of a block is tested in IG 3.9/T. The exception handling part of a block is
tested in IG 11 /T. The fact that each of these parts is optional in the presence of the other is';
also tested in IG 1 I/T. The fact that both these parts may be missing at the same time, leaving
the block in the simple formbegin '

<sequence_ofstatements>

end

will be tested here.

Changes from July 1982

si. There are no changes.

Changes from July 1980
S2. The exception handling portion of the block statement can no longer be empty.

Legality Rules

Li If a block name is given, the identifier in the end statement closing the block must be
present and must be the same simple name.

L2. There must be at least one statement between the begin and end parts of the block
statement.

L3. There must be at least one exception handler between the exception and end parts of the
block statement if exception is present. P

L4. Within the sequenceofstatements and the (optional) exception handling part of a
subprogram body, package body, task body, or generic unit (and excluding any nested
subprograms, packages, tasks, or generic units), no identifiers used for statement labels,
block identifiers, or loop identifiers are allowed to be the same (RM 5.1/4).

Test Objectives and Design Guidelines

Transfers of control within a block and out of a block are tested in IG 5.9/T2, /3. The
detection of (illegal) transfers of control into blocks is tested in IG 5.9/1T1.

Redeclaration of identifiers and name identification issues are treated in IG 8.3/T.

T1. Check that:

" a named block must be closed by an end statement which repeats the block
identifier;

" more than one identifier cannot be given as the name of a block;

" the declarative part of a block may be empty, as in:

declare
begin,

sequenceofstatements
exception
end: exceptionhandlereand:

5-29
"I %

-. 4' . . . - - %

5.7 Exit Statements Version 1 (Dec 86)

but the sequence of statements and the exceptionhandler must not be
lII.

empty. (The sequence of statements may consist of nothing but the "empty" 9-

statement null.) Note: the requirement for a null statement is checked in IG
5.1/T3.

" the following
declare

exception
when -=> ..

end;

is forbidden;

" blocks can be embedded in blocks;
Implementation Guide/ine. As a capacity test, check at least 65 levels of nesting. There is no
need to have declarative parts in these blocks.

" the syntax used for blocks in other block-structured languages ",

begin
declarative_part
sequence_of-statements

end

is not valid in Ada (see IG 5.1/T).

T2. Check that blocks can have declarative parts, and that the declarations in these parts have
an effect limited to the block in which they appear.

5.7 Exit Statements

Semantic Ramifications

Si. The following construct is forbidden:

A: loop
declare

procedure P is
begin

loop

exit A; -- illegal
end loop;

end P;
begin

null;
end;

end loop;

Note that the outer loop name is visible within P, but since the loop being exited, i.e.. A, is
outside the procedure enclosing the exit statement, the exit statement is illegal (RM 5.73, last
sentence). Hence. it is not sufficient just to check that an exit statement is inside a loop: it must
also be checked that the effect of the exit statement would not be to transfer control out of a
subprogram, package, task, or accept statement.

S2. Note that when leaving a block via an exit statement, a check must be made to ensure that .
any tasks dependent on the block are terminated (see RM 9.4 and IG 9.4/S) .

5-30

4..0

% ".
Iz1

Version 1 (Dec 86) 5.7 Exit Statements

loop
declare

task T;
task body T is ... and;

begin
exit; -- no control transfer until T terminates

end;
end loop;

Changes from July 1982

S3. There are no significant changes.

Changes from July 1980

S4. There are no significant changes.

Legality Rules

L1. The loop-name in an exit statement must be the name of an enclosing loop statement.

1-2. The loop to which an exit statement applies must not be outside a subprogram body,
package body, task body, generic unit body, or accept statement that also contains the exit
statement.

1L3. The expression following when must have a BOOLEAN type (i.e., a type derived from
BOOLEAN is allowed.)

. . Test Objectives and Design Guidelines

T . Check that:

* exit statements cannot be written outside a loop body.

* an exit statement cannot transfer control out of a subprogram, package, task,
or accept statement.
Implementation Guideline: These tests should be performed inside a block wholly contained in
the body of a loop.
Implementation Guideline: Include generic units.

e the loop parameter cannot be used as a loop-name in an exit statement.

e an exit statement with a loopname must be enclosed by a loop statement
with the same name.

T2. Check that a simple exit unconditionally transfers control out of the innermost enclosing
loop. Three contexts should be considered -- the statement is:

1. one of the simple statements in the sequence ofstatements constituting the
body of the loop;

2. inside a block in the body of the loop; exits should be attempted from the body
of the block and from an exception handler for the block (see IG 11.2/T7 for
the exception handler test);

3. inside a compound statement In the body of the loop.

T3. Check that the exit statement condition is evaluated each time through a loop, and that it is
evaluated correctly whether positioned at the beginning, middle, or end of the loop.

5-31

5.8 Return Statements Version 1 (Dec 86)

T4. Check that an exit statement with a loop_name terminates execution of the enclosing loop
statement with the same name, as well as all inner enclosing loop statements.

T5. Check that conditions of a type r-ived from BOOLEAN are allowed in exit statements. .'-

5.8 Return Statements r,

Semantic Ramifications

Si. A subprogram's exception handler may contain a return statement that returns from the
subprogram (see RM 11.2/7).
S2. The restriction on where return statements can appear boils down to forbidding return "
statements in package, generic package, or task bodies. However, the restriction must be -.

carefully checked to ensure that the following examples are illegal:

procedure P is
package Q is ... end:
package body Q is
begin

return; -- illegal
end;

begin
declare

package QQ is ... end; %
package body QQ is .%.,.

begin
return; -- still illegal

end;
begin

end;
end P;

The above examples, of course, are illegal even if the return statement is nested in the
* statement part of a block inside the package bodies. So the relevant consideration is to ensure

that the innermost construct enclosing a return statement is the begin-end portion of a
*subprogram body (generic or nongeneric), not the begin-end portion of a package (generic or

nongeneric) or task body.

s3. CONSTRAINTERROR is raised by a return statement under the same conditions that this
exception would be raised when passing the value to a parameter having the subtype of the
function. In particular, if the function's subtype is a constrained array type, the returned value
must have the bounds of the subtype:

subtype STR2 4 is STRING(2..4);
function F return STR2 4
begin

return ("abc"); -- CONSTRAINT ERROR: bounds are 1. .3
end F;

In particular, returning a value is not semantically equivalent to assigning the value to a variable
having the function's subtype:

X STR2_4 ("abc"); -- no CONSTRAINTERROR M"'.%

5-32 5-,

"-- -. .. ,

Version I (Dec 86) 5.8 Return Statements 10J
p

(Note: no CONSTRAINTERROR would be raised by return "abc", since the bounds of the
string literal would be determined by the index constraint defined by STR24 (RM 4.3.2/9).) P%

Changes from July 1982

S4. There are no significant changes.

Changes from July 1980 ,'.

S5. There are no significant changes.".1'
Legality Rules

L1. The innermost construct enclosing a return statement must be the begin-end portion of a
subprogram or a generic subprogram, or the do-end portion of an accept statement, not
the begin-end portion of a package body, generic package body, or task body.

12. Returnstatements in functions (generic and nongeneric) must have expressions. Return-
_statements in procedures (generic and nongeneric) and accept statements must not have
expressions.

L3. The base type of a returnstatement's expression must match the base type of the type
specified in the function's specification or declaration. (Note: the subtypes do not have to
match.)

Exception Conditions I

El. CONSTRAINTERROR is raised if a function's subtype is not satisfied by the value of the
return statement's expression. In particular, CONSTRAINT-ERROR is raised if the ;

function's subtype is:

e a scalar type and the return value is not in the range specified for the subtype.

e a constrained array type and the bounds of the return value do not equal the ",
bounds specified for the subtype. "R

o a constrained type with discriminants and the discriminants of the return value
do not equal the discriminant values specified for the subtype.

e a constrained access type, the return value is not null, and the designated
object's bounds or discriminants do not equal the corresponding values for the
subtype.

Test Objectives and Design Guidelines

T1. Check that a returnstatement cannot appear outside the body of a subprogram, a generic
subprogram, or an acceptLstatement.
Implementation Guideline: After trying simple cases, try to return from a package body and a task body where
the package or task is nested in a block contained in a subprogram. Also try putting the package in the
declarative part of a subprogram.

Check that a return statement is permitted in an exception handler (see IG 11.2/T5).

T2. Check that returnstatements in functions and generic functions must have expressions.

Check that returnstatements in procedures, generic procedures, and accept statements
cannot have expressions.
Implementation Guideline: Use procedures nested in functions and vice versa.

T3. Check that the base type of a returnstatement's expression must match the base type of
.- '. the type specified in a function's specification or declaration.
' - Implementation Guideline: The subtype of the return expression should be different from the subtype of the

function and still be legal.

5-33
;0 %. I

5.9 Goto Statements Version 1 (Dec 86)

T4. Check that a return statement completes execution of the innermost enclosing
subprogram, generic subprogram instantiation, or accept-statement .

Check that for functions and ger - functions, the value specified in the return _statement
is actually returned.
Implementation Guideline: Check these to both recursive and nonrecursive subr>,ogrars tteturi -,tements
in exception handlers are chocked in IG 11.2/TS.)

T5. Check that the constraints on the return value of a function and generic function are
satisfied (or CONSTRAINTERROR is raised) when the function returns control to its
invoker.
Implementation Guideline: Check for integer, enumeration, floating, fixer. constra! ed array (limited and
nonlimited), constrained record (limited and nonlimited), constrained private, constrained limited private, and
constrained access types (with both array, record, private, and limited types as the designated type)
Implementation Guideline: For the array subtype case, be sure the returned vaii.,8 iias tne ,'.crect number of
components so CONSTRAINTERROR is raised only because the bounds ditfer. Try a null array also
Implementaton Guideline: For the access subtype case, check thai CONSTRAINTP.ROR is not raised when
the returned vaiue is null.
Implementation Guideline: Use a subtype name in the function specification or declaration that is more
reslrictive than tne subtype name for a variable used as the return statement expression.
Implementaticn Guideline: Try some subtests where the return statement's expression value satisfies the
function return value subtype constraints (which must return control normally), and some subtests where the z
constraints are not satisfied (which must raise an appropriate exception; see IG 5.8/E1)

T6 Check that :f 'he evaluation of a return statement's expression raises an exception, it can
be handled within the body of the function or generic function ,ithout necessarily
propagating the exception to the function's invoker.

5.9 Goto Statements
Semantic Ramifications

Si. The first sentence of RM 5.9/3 implies that a goto statement cannot transfer control
between the alternatives of a case statement, if statement, c, select statement cs:nc- the
structur; c the.s statements is:

_di .E , tion then
sequence of statement"

else
sequenceofstatements

end if:

Hence, an it statement like the following:

if BE then
-,<L>> null; -- (1)

else
goto L; -- (2)

end if;

is illegal, the innermost sequence of statements enclosing the target csatement (1) does not
also enclose the goto statement. Note that the RM rule does not prohibit transfers of control
from inner statc;!ents to outer statements:

if BE then

* .%

5-34 5

%'.

.52

Version 1 (Dec 86) 5.9 Goto Statements
I)

if BE then
goto L; -- legal

end if;
end if;

Here the sequence-of-statements enclosing L also encloses the goto statement.

S2. The net effect of the RM rule is to prohibit transfers of control:

" from outside a compound statement (i.e., an if, loop, case, accept, or select
statement, or a block) or exception handler into the compound statement or
handler;

" from one alternative of an if statement, case statement, or select statement to
another alternative of the same statement;

" from one exception handler to another handler of the same unit;

" from an exception handler into the statements of the block, subprogram body,
package body, or task body associated with the handler;

Sinto a subprogram, package, task, or generic unit (such transfers are also VP

prohibited by the rules defining the visibility of labels; see RM 5.1/3).

S3. The first part of the second sentence of RM 5.9/3 prohibits using a goto statement to
transfer out of an accept statement or a subprogram, package, or task.

S4. Although a goto statement cannot transfer control from outside into a subprogram,
package, task, exception handler, or compound statement (i.e., an if, loop, case, accept. or
select statement, or a block) this restriction does not necessarily imply that these constructs
form name scopes for labels (see IG 8.3.a/S).

ss. Note that when leaving a block via a goto statement, a check must be made to ensure that
any tasks dependent on the block are terminated (see RM 9.4 and IG 9.4/S):

declare
task T; -
task body T in ... end; LP

begin
loop ..

goto L; -- no transfer until T term inates
end loop;

end;

Changes from July 1982

ss. There are no changes.

Changes from July 1980

S7. There are no significant changes.

Legality Rules

Li. A goto statement cannot attempt to transfer control out of an accept statement or a
subprogram, package, task, or generic unit.

L2. A goto statement cannot attempt to transfer control into a compound statement (i.e., an if,,-
loop, case, accept, or select statement, or a block), subprogram, package, task, exception
handler, or generic unit. %

5-35 X

5.9 Goto Statements version 1 (Dec 86)

L3. A goto statement cannot attempt to transfer control between the alternatives of a case
statement, if statement, or select statement, or between statements belonging to different .
exception handlers in a sequence of handlers.

L4. A goto statement in an excepti. iandler cannot transfer control into the sequence of
statements guarded by the set of handlers.

Test Objectives and Design Guidelines %

Ti. Check that

a. a goto statement cannot reference nonexistent labels;

b. a statement with multiple labels can be a target of a goto statement, and any
one of its labels may be used for this purpose;

c. a goto statement cannot transfer control into or out of a subprogram, package.
task, accept statement, or generic unit;

d. a goto statement cannot transfer control into an if, loop, case, accept, or select
statement, or a block;

e. jumps between alternatives of a case statement, if statement, or select
statement are not permitted;

t. jumps from an exception handler in a unit to another belonging to the same
unit are not allowed;

g. jumps out of an exception handler to a label declared in tne statements
guarded by the exception handling part of a block, subprogram body, task
body, or package body are not permitted; r*

h. jumps into an exception handler from outside the handler are not allowed.

T2. Cneck that jumps out of an exception handlor to a statement in an enclosing unit are .

ailowed and are performed correctly.

Check that jumps out of compound statere.its 1.-thef tha, an accecL :tateme, tl are
allcw .: anc: performed correctly.
%Inin, . " GUidekne: Jump to satementswhichpeceoeii .J foilow i., ;o!)Puunu- :iaie ni.

C Wec, trx jumps out of select statements (other inu from inside accept bodies in select alternatives) are
poss;. ;s atd are correctly performed.

T3. Check that goto statements correctly transfer program control. (This objectlve is implicitly
checked by other tests in this section.).

* ,,

.J4.

5-36

'p'

5-36

'P . N.% .%- --'.'. *'% ,"2 "° . ' . "-°-"-."."-" "=
°
- % . .-. "-" - - -- - -° - o- •. * - . ' .. -. - . . ** .

Version 1 (Dec 86) 6.1 Subprogram Declarations

Chapter 6

Subprog rams

I".

6.1 Subprogram Declarations
Semantic Ramifications

si. RM 2.3/3 says that the case of letters used in any identifier (including an operator) is not
significant. Hence, the specification of operators In RM 4.5/2 implicitly includes all forms with
upper case letters, which means that the case of the letters in a string literal representing an
operator is not significant. Similarly, since an identifier does not syntactically include any
leading or trailing spaces, the string literal representing an operator cannot include such spaces.
Finally, no embedded spaces are allowed since the only operators having embedded spaces
are the short-circuit control forms and then and or else, and the membership tests In and not
in. None of these are overloadable operators (RM 4.5/1). Consequently, no spaces are
allowed within an operator symbol.
S2. Note that a default value can be provided for a formal parameter of an unconstrained array
type or of an unconstrained type with discriminants that do not have default values. In this
respect, a parameter declaration is similar to a constant declaration. (However, see IG 6.4.2/S
for some important differences.)
S3. Although a parameter declaration may not use a name that refers to a parameter declared
earlier in the same formal part, it may use the name of a parameter declared later in that part if
such a name has a meaning outside the parameter declaration, e.g.,

C : constant INTEGER := 5;
type T is new INTEGER;
procedure P (A T; -- (1)

T INTEGER := C; -- (2)
C INTEGER); -- (3)

Type T and constant C can be referred to by their simple names until their declarations are
hidden. Type T is not hidden until the beginning of parameter T's declaration. Similarly,
constant C is not hidden until the beginning of parameter C's declaration (RM 8.3/15 and RM
8.2/2). Note that C at (2) does not refer to the formal parameter declared in P's formal part; it
refers to the constant C, and hence, the rule in RM 6.1/5 does not apply. The rule in RM 6.1/5
forbids a declaration like the following:

procedure Q (A : INTEGER; B : INTEGER := A);

This rule is needed since parameter A is visible within B's declaration (RM 8.3/5).
S4. A parameter declaration may also use the identifier of a parameter declared earlier in the
formal part as long as the Identifier does not refer to the formal parameter, i.e., the identifier may
be used as a selector In a component selection, as a component simple name in an aggregate,
or as a parameter name in a named parameter association:

package P is
type F is

record

F : INTEGER;
end record;

subtype FF is F;

6-1

-N

6.1 Subprogram Declarations V'etsion 1 (Dec 86)

G :F;
junc-tion FUJNC (F :INTEGER) return INTEL;Z;ik

procedure Q(F I; ,ER;
A P-. - ea use oi F
H FF .= (F => 3); - aqai, use of F
I INTEGER FUI4C(F => 3): - iegal use of F
J INTEGER G.F); ~~eo

end P:
.eo

s5. A parameter declaration may, of course, use the value of a tr-a) parameter of an
enclosing subprogram. e.g.,

subtype SIMALL is INTEGER range 1. .. 100: hl

pro-ed-,ire P1 (X, Y :INTEGER) is
begin.

prcr~cedure P2 (Z :SMALL :=X);

Calls to P2 ,vi .*. ONSTRAINTERROR if the default is used arJ X~ f c> thle range
1'.. 100.
S6. The eia>cfatlon of a subprogram specification cannot raise an iGpu ~ i I4'S).

S7. I n ar, t~t:d.claration of a subprogram, entry, or gene"r ijn~ r~~ forna!
parameter ' c m. A~ may have a limited type only under th~e faoAowi.- qare (RM
7.4.4/4):

& ry1- s a !imited private type (i.e., not a composite iim' pp no ar tasr

cageneric subprogram, or entry declaratlil ,U u ! ,L I The
.c,i 3fo the package that declares the limitked private tvipe

,aj!o of the limited private type does riot t V -"tec

One it ,s of this rule is that a type r: ofn
out para,. ;- . a limited private tyl:, %-hose fuil ciclarati c.,: i a ta'sk type.

*Another co~n~e: -- e is Irat, even though Subprograms Khj.vinq para"'e. 0-' 'imiie~ i'ypes may
*be declared OU 1'J the 'package that declare's th')e type, Such ~ :suLa nr "e an
*out parainetri c- (halt type.

s8. The resin,-tio; iorbidding subprogram out parameters of jm a,,,,oiee .)niy to
"explicit su'procrdrain ,declarations," entry declarations, and gercic .~eedecaratiol5.
Since a glenc-,- formal subprogram is not declared -w.h s<.I. I ~ r :- - - tnls
restriction du) ;. -,rpiy to formal subprograms, nor does it app: tz ' r; -

generic
type LP in limited private;
vo:th procedure P (X :out LP):

pack~i~P1 is
r-,. -r,.-dure S (X out LP) - ~ ,

C.<r-wedl'Ire NP (X :out LP) reneiies P

sq. With : ., ion of a subprogram, every declari:, N'.L: ,

subprograr ' ' RM 8.3/16). This rule means r,~ &~ a V

6-2

e %,

Version 1 (Dec 86) 6.1 Subprogram Declarations

subprogram simple name can be used within the subprogram specification as the selector in a
component selection, as a component simple name in an aggregate, or as a parameter name in
a named parameter association:

package P is
type P is

record
rF INTEGER;

end record; P,
subtype FT is F;
G : r; G.R
function FUNC (F : INTEGER) return INTEGER;

procedure r (A P.7; -- illegal use of F
B : P.7F; - - ok
F: INTEGER; -- ok use of F

: FF := (F => 3); -- illegal use of F
I : INTEGER FUNC(F => 3); -- illegal use of F
J INTEGER := G.F); -- illegal use of F

end P,

Note that such examples cannot be written for operator symbols, since an operator symbol can
never denote a type, a formal parameter, or a record component. Moreover, an operator
symbol can never be used in a default expression of a function whose designator is an operator
symbol, since default expressions are forbidden for such functions (RM 6.7/2).

sic. Since no rule forbids a subprogram calling itself or being called from different tasks, all
subprograms can be called recursively and are reentrant.

Changes from July 1982

S 11. There are no significant changes.

Changes from July 1980 N.-

S12. The return type in a function specification must be a type mark; no explicit constraint is
allowed.

S13. The type of a formal parameter must be specified by a type mark; no explicit constraint is
allowed.

S14. Default expressions are not evaluated until the subprogram call (see RM 6.4.2).

S15. Names of variables, calls to user-defined operators, calls to functions, and allocators may
now appear in the default expression of a formal parameter.

Legality Rules

L1. An operator_symbol used as a designator In a subprogram specification must not be one
of the following strings: "/-" (RM 6.7/4) or "in" (RM 6.7/4), nor may the literal contain i"-
spaces.

1.2. A default expression is allowed only for formal parameters with mode In and only for %
subprograms not designated with operator symbols (RM 6.7/2).

L3. The base type of a default expression must be the same as the base type of its formal
parameter.

L4. A simple name is not allowed in a parameter declaration if the name refers to a formal
parameter declared earlier In the same formal part.

%.

,1,. ,, ,p .. ,P . 4 . ,t" + J +" +, . . r . ,.• .. - . .-- _. - . . . • j • . . .
=1 1 . ,% % " • % • "q".'.',.'.% %.% ".%.% ".".' ". . °. -... "•.. , "- "% "% . ". "-

6.1 Subprogram Declarations Version I (Dec 86)

L5. The simple name of a subprogram cannot be used within the subprogram's fcjrnal part
except to declare a formal parameter having the name of the subprogram (RM 8.3/16). In
particular, the subprogram's name iannot be used as a selector in a component selection,
as a component simple name i aggregate, as a parameter name i,,a named '-

parameter association, or as a simpi, name in a default expression.

L6. An explicit declaration of a subprogram (in a subprogram declaration, generic :ostaritiation.
renaming declaration, or formal generic subprogram declaratiorl must not oce a homograph
of another declaration occurring immediately within the same declarative region unless
exactly one of these declarations is the implicit declaration of a predefined operation, or
exactly Dmne of tt'.em is the implicit declaration of a derived subprogram (AM 8.3,1 7) (see
also :C' 6.6,S)

LT Formral parameter identifiers of subprograms must be distinct I ro', eacr, ot~e' a, from
idertift-< declared in the subprogram's declarative part or a pre_-ed~),- 3,-!- ', r*, 1PM

L8. A fu"'-t,)to r rogra m mu st on ly have pa rameters o f mode i n AM R !E

L9 An ,j.t -arameter of a subprogram, generic subprogram, or entry declaration must not
ra,, ! tA type unless (RM 7.4.4/4): -

., Pe is a i mited private type, '

_li a.ioii of the Subprogram, generic subprogiam , cl- o'~ coux VnrII
-.:e part of the package that declares the limited pnvci-- ud

a' f nested packages), and
declaration of the limited private type does not deciaro m- ~ited type

L10, TN& -; y rbois *and", "or, "xor". , " V" ."" ,' ".'mod".

reo, a., - roust only be used in froction specifications hay rig two paiamneters RAM
6., thuper case letters replacing lower case letters arc. also allowed.

L11 7h (7 ar-~rtols "+" and %-" must only be used in funrctio :" ')-Jcr aving ore
oir t.r . M 6.7/3).

L I ? 7.. n'ibos "not' and "abs' r. . -!y nrl !ced ;n -i fi.!-2- 7 .' ha,.'ng
Ca-c RM 6.7/2). (Str~ngs v' " ipper ; e~ers repicir~ io.ve: c;ase letters

are, o

L13. F(.4-.-trs tor the 11=Io operator nust havie 'he sa-r. ty .. ~ .~ ir eriaming
% der- ra;, ' ve type must be a limited type (RIM 6.7/4).

L14. !f a _1ec..atiur and body (or body stub) are both given for a sutbpioqrarn, tre body must
the decfaration (RM 3.9/9).

Test OLtc,; -_; v rd Design Guidelines

*Ti. Chec, ,rat -.artain syntactic malformations are forbidoen, viz.:

aa s:ubprogram cannot be declared as an object, a type, or a fofrn.a parameter:

* tire aoentifier returns cannot be used in place of return in a funcre-;n
;e c ti o n;

-served word return cannot be used in the speci6 ,atic, fo: pfoc; '_x

r-,- ator -sy'mbol for a one-character operatz'c,:n .ler~

6-4

Version 1 (Dec 86) 6.1 Subprogram Declarations

" parameter declarations cannot be separated with commas;

e the mode designation out In is forbidden;

* a semicolon is not allowed in place of Is for a procedure or function;

" a formal part for a function or procedure cannot have the form "0; a'

" an array type definition is forbidden in a formal parameter declaration;

" the type of a formal parameter must be designated by a type mark;

" the return type of a function must be designated by a type mark;

" default expressions are not allowed for functions declared as operator
symbols (see IG 6.7/T).

T2. Check that "in", "not in", "and then", "or else", "/=", and ":=" are not permitted as operator-
-symbols in subprogram declarations (see IG 6.7,T1).

Check that leading or trailing blanks are not allowed in operator symbols (see IG 6.7/Ti).

Check that all the permitted operator-symbols can be used in function specifications with
the required number of parameters (see IG 6.7/T2).

Check that when the permitted operator symbols are used in function specifications. the
case of the letters in the string literals is not significant (see IG 6.7/T2).

Check that functions for "and", "or", "xor", =, <=11, "<, 11>=1, ">", "&", " *m "", "od",
"rem", and cannot be declared with one or three parameters (see IG 6.7/1TI).

Check that functions for "not" and "abs" cannot be declared with two parameters (see IG
A6:.. 6.7/Ti).

Check that functions for "+" and "-" cannot be declared with zero or with three parameters
(see IG 6.7/1).

T3. Check that duplicate subprogram specifications are not allowed in the same declarative
region (see IG 6.6/T).

Check that a subprogram declaration and subprogram body can be given separately in the
same declarative part, but that the subprogram declaration must precede the subprogram
body.

T4. Check that duplicate formal parameter names are forbidden in a single formal_part, and
that a formal parameter, a generic parameter, and a local variable or enumeration literal
cannot have the same name (see IG 8.3.e/T1).

T5. Check that default expressions are forbidden for formal parameters of mode in out or out.

T6. Check that the type of a default expression must be the same as the base type of the
formal parameter.

T7. Check that an unconstrained record type (with and without default constraint values) and
an unconstrained array type are permitted as formal parameter types (see IG 6.4.1/T6).

T8. Check that CONSTRAINTERROR is not raised when a subprogram is declared if the
value of the default expression for the formal parameter does not satisfy the constraints of
the type mark, but is raised when the subprogram is called and the default value is used.
Implementaffon Guideline: Try an array parameter constrained with nonstatic bounds and initialized with a
static aggregate, a scalar parameter with nonstatic range constraints initialized with a static value, and a record
parameter whose components have nonstatc constraints initialized with a static aggregate.

a.-5

-.
'. .

J% . . -a, % * , ,.•.°, o°." , . *- = .. ,% P #

6.2 Formal Para'1teters

T9 Check , ,--,a -rnes of variables, calls to usetdetlnri () , and

allocaa s s , used in default expressions for tUrm, p :,. J
TI0. Check t-, , a parameter of r '- In and In out C', ,cjg a

Check ' . parameter of iode out may be a . -eIG

7.4 4

Chet . , parameter of mode out cannot he a 'aslk * vi.

T1 1. Chec - . referring to a formal parameter caniot 06 . . .;v> .. formal

part . ameter's identifier car! be used ft i doi c ir , . ' - -- '.

T12. Che-: - ;ernlier of a subprogram cannot n, :_,sel I. . a'. a

Sse,- nent simple name in af-, aggrega .,,

ass -a -,;mple name in a default Expte,;,on is

T13. C ' -,,-ms can be called recirsivafy an '

.C .-,nrab'es, Iocal variaoes, and pa.rnette,: 'C ams.-.

Ca. -. ectly from within a recuisive ,ai ,

6.2 . ers
Semar, .3

SI. It t . . 'ormal parameter is an access e tne. ,- -.. , can De a e ."

to any , i, f the parameter's deslsr:ated obiect. no . >. - .

obe): . . tributes can be applied !o t '.., ". I q,.. 4 ;iss:

.. is an access type, tan the pereti i.: nn , i . , e a
. ,r mode out or a subcompon-en threof'

Conseq ,nc forms of name are fcr cidae .a .- "e
formal c.

..ridexed ccno:

slice, when AC
N

-selected coiq... . c rd

attribute, wh, ".C n. .-. .- when

the designatec. io .

.r.ndexed cofcponer. ..,hen AR "- , omponent

type is an access tj-p 3, 3 ,-ay

slice, when AR is a reccrd an..' ti cmzrrent of

an access type cesi4. :.: .

selected comnpcnent w -a- . .:.. . C is a

component desigr. ir'g . -"

4' A:- - --- attribute, when AR.C is a iecora-i .-. , ... v r an

-- access type -

Note t1 -ie, (except for discninants ar o ,.. :. • . i e

* procedL,r - 'alue has been assigned to the catanm,- e

S2. Th# FIRST, 'LAST. 'LENGh ar:- F,,; . .7H outt1'

parame- , since they read the bounds of . . t

be app, .anieter of an access r"p , e e , . . t.

*(RM 4.'

V V .. .- ...

I4 :.

--U.' ',[' '[a' ' Z " ['. '

Version 1 (Dec 86) 6.2 Formal Parameters

S3. RM 3.7.4/3 explicitly permits the attribute 'CONSTRAINED to be applied to an out formal
parameter, A, (or a subcomponent of A) if A (or its subcomponent) has discriminants (even
though 'CONSTRAINED does not read a discriminant or bound).

S4. Other attributes that can be applied to an out parameter or its subcomponents are the
representation attributes 'ADDRESS, 'SIZE, 'POSITION, 'FIRST BIT, and 'LASTBIT. These
attributes can be applied because evaluation of the prefix of such attributes means determining
the entity denoted by the prefix (RM 4.1/9, /10), and such a determination does not require
reading the value of the entity. However, even these attributes cannot be applied to out
parameters or out parameter subcomponents of an access type.

ss. No other attributes can be applied to an out parameter or its subcomponents, since the
only other attributes that can be applied to objects are 'STORAGESIZE, 'CALLABLE, and
'TERMINATED. These attributes all can be applied to task objects, but an out parameter and
its subcomponents can never denote a task object (see IG 7.4.4/S and RM 6.1 'S). '.

S6. If a formal In parameter is an object of an access type, assignments can still be made to
the object designated by the parameter (i.e., to components of the object or to the object itself),
but not to the parameter itself.

V,S7. Scalar subcomponents (otrier than discriminants) of out parameters that are not updated
during a procedure call are undefined upon return from the call, e.g.,

type AP.R is array (1 .. 2) of BOOLEAN:
AR R := (TRUE, TRUE);

procedure P (X : out ARR) is
begin

% ,X (ARR'LAST) TRUE;
end P;

After the call

P (AR);

AR(1) is undefined (see also IG 6.4.1/S).
ss. Note that a formal parameter must not have mode out if its type is limited unless

" the type is private,

" the type is declared in the same visible part as the subprogram declaration, and

" the full declaration of the private type is not limited.

In particular, a formal out parameter may not have a task type or a composite type that contains
a task type. (See RM 7.4.4/4).

sg. No subcomponent of an out parameter may be used as an In out actual parameter of a
subprogram call (RM 6.4.1/3), an entry call (RM 9.5/2, RM 6.4.1/3), or a generic instantiation
(RM 12.3.1/2). In addition, no subcomponent of an out parameter (other than discriminant
subcomponents) may be used as an In parameter of a subprogram call, an entry call, or a
generic instantiation, since such actual parameters are evaluated (i.e., read) when the call is
evaluated (RM 6.4.1/2 and RM 12.3/17), and reading of an out formal parameter or its
subcomponents (other than a discriminant subcomponent) is not allowed.

s10. A nonerroneous program's semantic effect must be the same whether a parameter is
passed by copy or by reference. The effect of the rules for the erroneous use of formal
parameters is that an implementation can assume, for purposes of optimization, that an

6-7

6.2 Forma! Parii-m-co- J ec 86,

*assignmte vi parameter will not aff ect tho '3(-! .or
can any is-, " o i global variable affect the "D a3 oC c.
are passec' -fir. and an assigi -int to a forf i .r.-..i (1009S
affect th e v -3 1,- o sme (other) formal Meter. then the PrOyir. ;:1 *Tt attgemp!
is made ' ' :, value of the ch nged formal parameter.: rc'me
responsibit, ticon nsure that a program is not erroneous. Se ni: c>'>.s aiowed to
assume tr)icess'ng nonerroneous progiams, !4~ is aV.oxi'c is ntfo

* semantic HJby the implementation's choice of a paarrimti. . ;-."

s11. if A~. actual parameter is a ou~~~e ~;&.--2 fltO
an unco - ccrd type, then an evaluation of the r me :1u>>~n at 'he

*compore i o current value ot the discrim':nant. Thlis :'),v" r~ 3r),ri- once
*before t n name is only evaluated once ,RBM ~A 4 - need

not che,- - existence of the component after 'a;;Iexs it
an asc :a made that changed the disor;:-.rjact vii - - iio
and s ii akes the call asroneou.i, .a, ;x
such s- no occurred.-

* I-NTEGER :=0) i

- SRING(1 D),

when 3 .

when others null:
case:

r. S "'-ABC',

((1);in out H3j7R

-. '2,S => "EF")

C A)

* The c, .! oecause both actual pairameaters -depe-d o-n RE: ~cr~iminant, and
the bc, '. ?ad the discriminants of RECV. The effect c . ; vi ill be
unpreci 1he mrplementation can ct:osqn v alues of~e... .i ttr to
the loc:,? - ed at the time of the call vvwth-o-t tcherkirg to be sj.i -- iccatiofls
are stil --,omponerits of the variatwuf. J. eu;j ino~ ih

* be as,: 'ocations, leading to unprecictaot Y'2-.' ,c TUer
respons: . nrroneous programs.

S12. For nf scalar type, the difference between mode in out and o~& ut is that
the actu~j - -:ije is not copied to the formal parameter tor inn® , noc kre value

C-checkef: .,--)-)straint of the formal parameter iRM 6.4. i. tb r~~r~r of an

acces difference between muOes In out dro. OA IS th,1itO MOCIP out. the
C, sutbtypt arneter is not cfeckeci acl-vY~ a 1ti~

ever) eV f actual paranneter ;s c:&~ to 1,e
for fun ! point). Foi out paramete~s -,f co~rci,, z", eence
from ir ?antics is that scallar rndcclr~i.' ot be

* passe,' l--eter. Hence, ar array cf . -2ilete

d?1

Version 1 (Dec 86) 6.2 Formal Parameters

must be passed to the formal parameter, just as if it were an In out parameter. Constraint
checks between actual and formal parameters are identical for In out and out parameters (RM
6.4.1/9) having composite types.

Changes from July 1982

S1 3. The value of an actual out parameter, or an out parameter subcomponent, is copied to the
formal parameter at the start of a call if the parameter or the subcomponent has an access type.

S14. Inside the procedure only the bounds and discriminant values of a formal out parameter
and its subcomponents may be read.

sis. If copy is used for array or record type parameters of mode out, then copy-in is required
for the bounds and the dlscriminants of the actual parameter and its subcomponents, and for <
each subcomponent whose type is an access type. I-.

si6. For parameters of a private type (including limited private), parameter passing effects are
achieved according to the rule for the corresponding full type.

Changes from July 1980

S17. Except for parameters of mode in having a scalar or an access type, the execution of a
subprogram call is erroneous if an actual parameter is a subcomponent that depends on the
discriminants of an unconstrained record variable, and the value of the discriminants is changed
by the execution.

Legality Rules %

Lt. A formal In parameter of a subprogram, a generic subprogram, or an entry (RM 9.5/6)
must not be used as an actual In out parameter (RM 6.4.1/3), as an actual out parameter
(RM 6.4.1/3), as the target of an assignment statement (RM 5.2/1), or as a generic in out
actual parameter (RM 12.3.1/2).

L2. A formal out parameter or a subcomponent of a formal out parameter must not be used as
an actual in out parameter of a subprogram or entry call (RM 6.4.1/3), or as an actual In
out parameter in a generic instantiation (RM 12.3.1/2).

L3. A formal out parameter or a subcomponent of a formal out parameter (other than a ,

discriminant subcomponent) must not be used in an expression (RM 6.2/5), except as the
prefix of the attribute ADDRESS, CONSTRAINED, FIRST and FIRST(N) (when the
parameter has an array type), FIRSTBIT, LAST and LAST(N) (when the parameter has
an array type), LASTBIT, LENGTH and LENGTH(N) (when the parameter has an array
type), POSITION, RANGE and RANGE(N) (when the parameter has an array type), or
SIZE.

L4. No attribute can be applied to at) out parameter or a subcomponent of an out parameter if
the parameter has an access type (RM 4.1/4).

Test Objectives and Design Guidelines

T1. Check that a formal In parameter cannot be used as the target of an assignment
statement, or as an actual parameter whose mode is In out or out, or as a generic in out
actual parameter (see IG 12.3.1/T2).
Implementation Guideline: Use a simple scalar In parameter, an array and a record in parameter (attempt to
assign to a component of the parameter or use a component as an out actual parameter), and an access in
parameter.
Check that in is optional for in parameters of procedures and functions.
Check that labels and subprograms can neither be declared nor passed as subprogram parameters.

6-9

6.2 Formal Parameters Version 1 (Dec 86)

T2. Check that objects designated by In parameters of access types (including the object
selected by all) can be used as the target of an assignment statement and as an actual .,. ,
parameter of any mode. ',,-"

T3. Check that scalar and access pararni. .rs are copied for all three modes.
Implementation Guideline: Check this by callirg subprograms of the form F(AA) where the second parameter
is an in out or out parameter. Assignments to the second formal parameter should not change the value of the
first formal parameter, nor should direct assignments to the actual parameter change the value of the
corresponding formal parameter. Check this for both procedures and functions.
Implementation Guideline: Check that if an exception is propagated from a subprogram. the values of the
actual scalar parameters are the values at the time of the calls, even if assignments were made to the formal
parameters before the exception was raised.
Chack that a private type whose full type declaration declares a scalar or access type is passed by copy for all
modes.

T4. Check that aliasing is permitted for parameters of composite types, eg., that a matrx
addition crocedure can be called with three identical arguments, e.g., MAT ADD(A,A,A);.

Check. that for unconstrained array formal parameters, the bounds 0f tr,9 lormakl parameter
are 0temned by the bounds of the actual parameter, even if a default value is specified
for tr C .'rrnal parameter (see IG 6.4.1/T6).

T5. ChC, :T',a. discriminant values for record, private, and limited private actual parameters
are ised to unconstrained formal parameters, even if a default value is specified for the

--- I Ere.r (see IG 6.4.1"/T6).

T6. Ct-; oc- that :;te discrminants of an out formal parameter and its subcomponents may be
reau .sde a procedure, but not other component values.

Chf.'c(, xha-. an out parameter cannot be passed as an In or in out parameter of a
sJt ,::,,-fam call, an entry call, or a generic instantiation. , %;

Che , th PI FIRST, 'LAST, 'LENGTH, 'RANGE, 'ADDRESS, 'SIZE, 'POSITION, 'FIRST-
B1 i a(c; 'LASTBIT cannot be applied to an out parameter of an access type (nor to an

acce ,s subcomponent of an out parameter), but are allowed for an in or in out parameter.

Ch;7L that 'MIRST. 'LAST, 'LENGTH, 'RANGE, 'ADCERESS, 'SIZE, 'POSITION. 'FIRST- :2
P;T :- 'LASTBIT can be applied to an out. parameter or out parameter subcomponent

th- o." r ave an access type.

Ct,9e.':- :at 'CONSTRAINED is not allowed for a parameter (of any mode) having an
acce: z t, even if the designated type is a type with discriminants.

Cher,;K 'hat an out parameter or an out parameter subcomponent having an access type
carr, t be used in a selected component, an Indexed component, or a slice.
lro'p,3eration Guideline: Check in both expression and assignment contexts.
Check that)o out oarameter or out parameter subcomponent can be used as an in out actual parameter.
Che.,< ' - t -n out parameter can be passed to another out parameter.

17. Chec¢e that procedure calls are allowed even if they do not assign values to scalar formal,.
out parameters or to scalar components of formal out parameters. No exceptions should !

be raised. and no errors reported in compilation. (Warnings are allowed, however).
Impier.elnta!)on Guideline: Do not refer to the values after the calls.

T8 Ca;:" " at :mited formal out parameters are only allowed if the type is private, the pnvate
typ, io-:'aration appears in the same visible part, and the full type declaration of the private
typ. :c ,oniiinited type (see IG 7.4.4/Ti).

T9. Ch -:k tnat default initialization expressions are not evaluated for out parameters. .. '2..

6-10

Version 1 (Dec 86) 6.3 Subprogram Bodies
9

6.3 Subprogram Bodies
Semantic Ramifications

si. A subprogram returns to its caller (RM 6.2/6) when it executes a return statement that does
not raise an exception (RM 5.8/6) or when there are no more statements to be executed. Note
that such a return occurs for both procedures and functions, although if the last simple
statement executed by a function is not a return statement and does not propagate an
exception, PROGRAMERROR is raised after the return to the caller (see IG 6.5/S).

S2. Since a subprogram body serves to declare a subprogram in the absence of a separate
subprogram declaration, when a subprogram body is compiled as a library unit, it serves to
declare the subprogram. It later it Is necessary to change the subprogram specification --- e.g., 2,
by adding an optional parameter - it is necessary to compile a subprogram declaration to
replace the previous specification in the library (see RM 10.1/6): .0

procedure P(X : INTEGER) is -- first compilation (1)
begin ... end P;

procedure P(X : INTEGER;
Y INTEGER 0) is -- illegal; does not conform to (1)

begin ... end P;

procedure P(X INTEGER; S
Y INTEGER 0); -- legal; replaces old declaration

procedure P(X INTEGER;
Y INTEGER := 0) is -- legal now

begin ... end P;

Changes from July 1982

S3. Each subprogram declaration must have a corresponding body, except for subprograms
written in another language (see RM 13.9).

Changes from July 1980

S4. The exception part of a subprogram body must contain at least one exception handler.

ss. A body stub can be used to declare a subprogram (in the absence of a subprogram
declaration).

S6. See also IG 6.3.1/Changes and IG 6.3.2/Changes. "

Legality Rules

L1. The designator at the end of a subprogram body, if present, must be the same as the
designator used in the subprogram specification.

L2. A subprogram body Is only permitted as a library unit or in the declarative-part of a
packagebody, block, subprogram body, or task body. (It is not permitted as a
declarativeitem in a package specification or a taskspecification (see RM 7.2 and RM
9.1).)

L3. The subprogram specification given in the subprogram body must conform to the
subprogram specification given in the subprogram declaration (see IG 6.3.1).

L4. If a declaration and body (or body stub) are both given for a subprogram, the body must
appear after the declaration (RM 3.9/9).

6-11

6.3.1 Conformance Rules Version 1 (Dec 86)

Exception Conditions

El. PROGRAMERROR is raised at the point of call if the last simple statement executed
within a function body is not a rett -.tatement and does not propagate an exception (RM"
6.5/2).

Test Objectives and Design Guidelines

TI Check that the designator at the end of a subprogram body must be the same as the
designatcr used in the subprogram specification.
lmpiofrontbOr' Guidein.: ULe both an operatorsymbol and an identifier. Check that selected component
notaton cannot be used. even 1 the selected component properly identifies the subprogram.
ImpoementabtO Guideline: Check for genenc and nongeneric subprograms.

T2. Cneck that a subprogram body is forbidden as a declarative item in a package-
specification (see IG 7.2/T4) or a taskspecification (see IG 9.1/T2).

T3 Check that a null statement, at least, is required In the body of a subprogram (see IG
5.1,73).

T4. CiecK that a procedure with and without a return statement returns correctly.

T5. Check that for each subprogram specification there must be a corresponding body (unless
the s.-oprogram is wnitten in another language (see IG 13.9/Ti)).

Check that a renaming declaration cannot be used to provide a subprogram body.
-;iplementathor, Guideline: Check for a subprogram declared in the visible part of a package and a subprogram

declared earier in the same declarative part.

T6. Check that if a subprogram body has an exception part, at least one handler must be -..
specified.

17. Check that an exception raised during the execution of a subprogram body can be handled
inside the subprogram body (see IG 11.4/T4).

* T8. Check that recompiling a subprogram library unit body does not replace the subprogram
declaration in the library (see IG 10.3/T2).

T9. Check that the formal part of a subprogram specification in a declaration must conform to
the specification given in the body.
Implementation Guideline: Check for generic and nongeneric subprograms.

implementaion Guideline: Check that for parameters of mode in, in must appear in both formal parts or
neither formal part.

Implementation Guideline: Conformance with separately compiled units and body stubs is checked in IG
10.' T10 and IG 10.21T11.

Ti 0. Check that a subprogram body cannot precede its specification in a declarative part (see
I G 6.1/T3).

6.3.1 Conformance Rules
Semantic Ramifications

si. Note that:

function "MOD" (L, R T) return T;
function "mod" (L, R T) return T is ...

and

6-12

% <'

, %.. . o . o • , .- .- .. • - , ,p , o .j . , - . ,. it -, . .- p -. j, .. ,..r.-.P., .. t-. ..e. .

Version 1 (Dec 86) 6.3.1 Conformance Rules
I

procedure P (X : INTEGER : "MOD" (10, 3));
procedure P (X : INTEGER := "Od"(S#12#, 03)) is ... end P;

have conforming formal parts because the string literals denote the same operator and the
numeric literals have the same values. I

S2. Note that since real literals have type universal real, "have the same value" means have
the same universalreal value. Hence, It Is not sufficient for two literals to map to the same
model number. For example, even If the maximum floating point mantissa supported by an
implementation is 24 bits, 1 6#AAA AAA A# and 16#AA_AAAAA# do not conform, although
both might be represented by 16#AAA_AAA#. Similarly, 3#0.1#, 0.33333.... and 16#555_555#
do not conform, although they all have approximately the value 1/3.
S3. Since conforming expressions must have the same sequence of lexical elements 3 + 2
does not conform with "+"(3, 2).
s4. A name declared by a renaming declaration or by a subtype declaration does not conform
with the name of the renamed entity, since the meaning of the names are given by different
declarations:

package P is
X INTEGER;
NX INTEGER renames X;
procedure Q (A : INTEGER :- X);

end P;

package body P is
procedure Q (A : INTEGER := NX) is -- illegal
begin null; end Q;

end P;

NX and X are not given the same meaning by the visibility rules (RM 8.3/2) since they are
declared by different declarations. Hence the above specifications for 0 do not conform
according to RM 6.3.1/5.

s5. The visibility rules are applied independently for the names appearing in conforming
constructs:

N : INTEGER := 5; -- (1)
package P is

procedure R (X INTEGER : N);
end P;

package body P is
N : INTEGER :- 5; -- (2)
procedure R (X INTEGER := N) is -- illegal

end P1.

The N in the second declaration is associated with the N declared at (2) rather than with the N
declared at (1). Hence, the formal parts do not conform.

s6. Since the conformance rules for simple vs. expanded names also require that both names
be associated with the same declaration, new and old names introduced by renaming
declarations cannot be freely interchanged in the selector of an expanded name:

6-13

P,.F or',

6.3.1 Conformance Rules Version I (Dec 86) p

package P is
type T is new INTEGER; '.-c .-

end P"->;
I

with P; use P;
package Q is

procedure R (X T);

end Q; 0'
package body Q is

package S is
subtype T is P.T;

end S;
procedure R (X S.T) is -- illegal
begin ... end;

end Q;

Although S.T and P.T denote the same entity, they are not associated with the same
declaration; hence, S.T and T do not conform.

S7. New names introduced by renaming declarations can sometimes, but not always, be used
in the prefix of an expanded name: I

package P is
type T is new INTEGER;

end P;

with P; use P;
package Q is 14

procedure R (X : T);
package QP renames P;

end Q;

Now consider the following possible ways of naming P.T and consider which of these pairs
satisfy the conformance rules:

T, P.T -- conform
T, QP.T -- conform

P.T, QP.T -- do not conform

T conforms to P.T and QP.T because both selectors denote the same declaration, and RM
6.3.1/3 allows a simple name, T, to be replaced by an expanded name (P.T or QP.T) if the
meaning of the selector in the expanded name (i.e., T) is given by the same declaration.
However, P.T and QP.T do not conform because we are here replacing one expanded name by
another expanded name. Two expanded names conform If their selectors are the same and if -0
their prefixes conform. For P.T and OP.T, the prefix consists of a simple name, but since these
simple names are not given by the same declaration, the prefixes P and OP do not conform.
Hence, the expanded names P.T and QP.T do not conform. Note that the names
STANDARD.P.T and P.T would conform since the simple name P in P.T has been replaced by
the expanded name STANDARDP, and both P and STANDARD.P are associated with the
same declaration.

Se. The rule specifying when simple names can be "replaced" by expanded names does not
specify whether the simple name appears in the first or the second occurrence of conforming P- .
constructs. Hence, either can appear first.

6-14
S

*- . * *-*. .'_%*%"%.-w -, .. - -. , - - .- ,--.. .. ** . - • .. *. ,., , 1. .

Version 1 (Dec 86) 6.3.1 Conformance Rules

s9. The requirement that corresponding lexical elements must denote the same declaration
includes operators, of course:

package P is
type T is new INTEGER;
procedure Q (X : T 3 + 5); -- uses predefined "+"
function "+" (L, R T) return T;

end P;

package body P in
procedure Q (X : T 3 + 5) is -- illegal; not predefined "+"

end P:

The second use of "+* denotes the user-defined +" operator, not the implicitly declared
predefined "+, so the two specifications of 0 do not conform.

so. RM 6.3.1/3 only allows simplenames, i.e., identifiers (RM 4.1/2), to be replaced by
expanded names. Hence, an operator symbol or a character literal cannot be replaced by an
expanded name, even if both names denote the same declaration:

package P is . .

function "+" (L, R : INTEGER) return INTEGER;
procedure Q (X INTEGER "+"(3, 5));

end P;

package body P is
procedure Q (X INTEGER "= P."+"(3, 5)) is -- illegal

end P;

S 1. Note that a pragma is a lexical element; hence, if a pragma appears in the formal part of a
subprogram declaration, the same pragma must appear later in the formal part of the
subprogram body, even if the pragma is ignored.
Changes from July 1982

S12. A simple name can be replaced by an expanded name if the same declaration gives the
simple name and the selector their meanings.

S13. A string literal given as an operator symbol can be replaced by a different string literal if
and only if they both denote the same operator.

Changes from July 1980

S14. Literals having the same value are considered to conform.

S 5. Conforming constructs must be lexically identical except for comments and special rules
regarding literals and expanded names.

Legality Rules

U. Conforming constructs must consist of the same sequence of lexical elements except that
comments are ignored, certain string literals can be replaced by different string literals (see
below), and simple names can be replaced by expanded names if the meaning of both
names is given by the same declaration (RM 6.3.1/5).

L2. A character literal or an operator symbol cannot be replaced by an expanded name
denoting the same literal or operator (RM 6.3.1/3).

6-15

S' %

6.3.2 Inline Expansion of Subprograms Version 1 (Dec 86)

L3. Corresponding string literals used as operator symbols can differ only with respect to the
case of the letters used in the operator symbol (RM 6.3.1/4). .. .*- -

L4. Corresponding numeric literals mu! ave the same (universal integer or universal rea) -"- '"
value (RM 6.3.1/2).

L5. Corresponding simple names, character literals, operators, and operator symbols must be
declared by the same declaration (RM 6.3.1/5).

Test Objectives and Design Guidelines

Ti. Check that corresponding simple names or expanded names must be declared by the
same declaration when they appear in conforming:

. discriminant parts as default expressions or type marks (see IG 3.8.1/T3 and
IG 7.4.1/'T4);

" formal parts as default expressions or type marks;
implementation Guideline: Check for subprograms and generic subprograms (see IG 6.3/T9
and IG 10.2/T11).
Implementation Guideline: Check entry declarations and accept statements (see IG 9.5/T20).

" deferred constant declarations as type marks (see IG 7.4.3T3);

" type conversions of actual parameters as type marks (see IG 6.4.1/T 0).

T2. Chock that if different forms of a name are used in a default expression of:

* a discriminant part (for private and incomplete types);

a a formal part (for subprogram specifications);.- "

then the selector may not be an operator .;ymbol or a character literal (RM 6.3.1/3).

T3. Check that universalreal literals in default expressions must have the same value in
conforming formal parts.

. 6.3.2 inW!n,, E'xpansion of Subprograri--
Semantic Ramifications

.* S1. An implementation is free to expand any subprogram call inline, since there is no semantic
effect of doing so. The absence of the pragma does not ensure against inline expansion, and
the use of tne pragma does not guarantee inline expansion. The pragma is of use only if a
compiler is prepared to perform inline expansion and has not chosen to do so.
S2. If a pragma does not appear in the required place, or its arguments do not correspond to
what the RM requires, then the pragma must be ignored (RM 2.8/9). Hence, if any INLINE
argument is not a subprogram or a generic subprogram name, then the entire pragma must be
ignored, in principle. However, since there is no semantic effect associated with inline
expansion, there is no way to tell whether the pragma has been ignored. In addition, since an
implementation is always allowed to expand a call inline, it is certainly free to do so for the
recognizable subprogram names in such a pragma.

S3. Note that for each call of a subprogram named in the INLINE pragma, the implementation
is free to follow or to ignore the recommendation.
S4. INLINE pragmas only have an effect if they appear in the same declarative part as does the '.

subprogram specification to which the pragma applies, unless the pragma applies to a library

6-16

, _ , , . . .-
.. ., ,_ • , . . ,. . ,.

Version 1 (Dec 86) 6.3.2 Inline Expansion of Subprograms

unit. In that case, the pragma must appear following the library unit and preceding the

, subsequent compilation unit, e.g.:

procedure P is

end P;
pragma INLINE(P);
procedure Q is ... end Q;

S5. Note that INLINE can be specified before or after the body of its named subprogram has
been declared.

s6. Note that the INLINE pragma may appear in the private part of a package specification and ,
name a subprogram that appears in the visible part.

Changes from July 1982 _

S7. There are no significant changes.

Changes from July 1980

ss. The pragma INLINE is allowed for library units.

sq. The effect of the pragma INLINE on generic units is now specified.

Legality Rules
L1. An INLINE pragma must be ignored if:

it does not appear Immediately after a declarative item or immediately after a
library unit;

sit appears in a package specification and one subprogram or generic •
subprogram named in the pragma was not declared earlier in the same
package specification (by a subprogram declaration, generic subprogram
declaration, generic instantiation, or renaming declaration);

" it appears in a declarative part and one subprogram or generic subprogram "
named in the pragma was not declared earlier in the same declarative part;

* it appears after a library unit and there is more than one name in the pragma's
argument list or the single name is not the name of the preceding library unit;

• all names in the pragma's argument list are not names of subprograms or
generic subprograms (e.g., one name is a name of a subprogram declared as
a generic formal parameter). •

Test Objectives and Design Guidelines

T1. Check that legal INLINE pragmas are recognized. (A warning may be issued if the
recommendation is going to be ignored.)

T2. Check that illegal INLINE pragmas have no effect on the program unit. (Warnings should •
be issued).
Implementation Guideline: Include the following illegal cases:

1. The pragma appears in a declarative region and

* the name is not the name of a subprogram or a generic subprogram;

* the name is not the name of a subprogram or generic subprogram declared in the same
% " declarative part or package specification.

6-17
SM

6.4 Subprogram Calls Version 1 (Dec 86)

Impimvtatw Guideine: Use the name of a genenc tomai sutprograr for one case

2. The pragma appears following a library unit and

" the name is not the name of t' . rary unit;

* the library unit is not a subprogram or a generic subprogram.

3. The pragma does not appear in a declarative part, package specification, or following a library unit.

6.4 Subprogram Calls
Semantic Ramifications '-

s1. The semantic details of the association between actual and formal parameters are
discussed in IG 6.4.1.

S2. Although programmers are not supposed to write programs so the order of actual
parameter evaluation changes the effect of a call, a program that is affected by the order of
parameter evaluation is not erroneous; it is simply "incorrect" (RM 1.6/9). Since it is not
erroneous, an implementation cannot optimize programs based on the assumption that what is
true for one order of evaluation is true for all orders of evaluation:

I : INTEGER;
S STRING(1..5);

function CHANGEI return INTEGER is
begin "I := -1: ,,.. "

return 3; .
end;

I 5:
P (CHANGE I, S(I));

An implementation is free to evaluate S(I) first wit-, checking at run-time to see if the value of
I is acceptable, since constant propagation at ,oi ipile-time allows the check to be omitted. If
CHANGEi is evaluated first, however, the -' luation of S(I) must raise CONSTRAINT-
_ERROR. If the RM had said that dependence on the order of parameter evaluation makes a
program erroneous, an implementation would have been free to assume that, for nonerroneous .
programs, all evaluation orders have the same semantic effect, and so it would have been valid
to omit the subscript check when evaluating S(l) in the call to P. This example (due to Paul
N. Hilfinger) shows how incorrect order dependence and erroneousness differ.

Changes from July 1982

S3. There are no significant changes.
Changes from July 1980

S4. A function call with no actual parameters no longer requires an empty parameter list, 0.

Legality Rules

Li For a function or procedure call with positional parameters only:

* the number of actual parameters must equal the number of formal parameters
(RM 6.4/5); or

* the number of actual parameters must be less than the number of formal

6-18

Version 1 (Dec 86) 6.4 Subprogram Calls

parameters, and. if N parameters are omitted, the last N formal parameters
must have default values specified for them (RM 6.4/5);

* the base type of the ith actual and formal parameter must be the same (RM
6.4.1/1).

60.
L2. For a function or procedure call with both named and positional parameters:

• the total number of actual parameters must not exceed the number of formal
parameters (RM 6.4/5);

* omitted actual parameters must correspond to formal parameters for which
default values were specified (RM 6.4/5);

" positional parameters must appear first (RM 6.44);

" a named parameter must not be specified for a formal parameter if an actual
positional parameter is also given for that formal parameter (RM 6.4/5);

" the base types of corresponding formal and actual parameters must be the
same (RM 6.4.1/1).

L3. The formal parameter name in a named parameter association must be identical to that of
a formal parameter in the corresponding subprogram specification (RM 6.4/3). .

L4. No duplicates are permitted among the formal parameter names used in an actual-
._parameterpart (RM 6.4/5).

Exception Conditions

• ;"See IG 6.4.1/E and 6.4.2/E.

Test Objectives and Design Guidelines

TI. Check that the form F0 is illegal.

T2. For functions and procedures having no default parameter values, check that the number
of actual positional and named parameters must equal the number of formal parameters.
Implementation Guideline: Use calls that are valid except for the number of parameters. Check calls to
procedures and functions. Use purely positional notation, purely named notation, and a combination of
positional and named notation.
Check that parameterless subprograms can be called with the appropriate notation. " r

Check that the base type of formal and actual parameters must be the same. .0,
Implementation Guideline. Check numeric types in particular. Z

T3. Check that for a mixture of named and positional notation, named parameters cannot be
interleaved with, and cannot precede, positional parameters.
Implementation Guideline: Use a call in which the types of all the formal parameters are identical. Check that
in a mixture of named and positional notation, a named parameter and a later positional parameter cannot be
specified for the same formal parameter.
Check that two or more named parameters cannot specify the same formal parameter.
Check that the name used in a named parameter must only be a name of a formal parameter.
Check that a formal parameter in a named parameter association is not confused with an actual parameter. -

identifier having the same spelling (see IG 8,3.e3).
Check that a named parameter cannot be provided for a formal parameter if a positional parameter has already
been given for that formal parameter.

-% T4. For functions and procedures having at least one default parameter. check that:

* calls of the form F(A,,B) are forbidden, where the second formal parameter
has a default value;

6-19

6.4.1 Parameter Associations Version 1 (Dec 86)

" for a call using only positional notation, no parameters can be omitted unless
the default parameters are at the end of the parameter list;

• for a call using named notatic. omitted parameters must have default values;

" for a call using named notation, regardless of the order of the actual
parameters, the correct correspondence with the intended formal parameter is
achieved.

T5. Check that a subprogram can be called recursively, and that global variables, local
variables, and parameters of enclosing, recursively called subprograms are properly
accessed from within recursive invocations.

T6. Check that calls of the form F (AIB => 0) are not permitted even if A and B are both integer
formal parameters of F.

6.4.1 Parameter Associations
Semantic Ramifications

si. The various syntactic forms allowed for names are given in RM 4.1/2. Of these forms, the
term variablename includes just simplename, indexed-component, selected component, and
slice. The term excludes character literals, operator symbols, and attributes since these forms
of name do not denote variables. In addition, the name of a constant is disallowed (e.g., the
name of a constant object, loop parameter, subprogram In formal parameter, or generic in
formal parameter).

S2. For use as the prefix in the name of a variable, a functioncall must return an access value
(see IG 5.2/S) Furthermore, since operators can be overloaded to deliver access values,
should %"+ be overloaded to yield an access value, "+"(A,B).all can be used as a variable name
(since the prefix has the form of a function call).
S3. Numeric conversions raise NUMERICERROR instead of CONSTRAINTERROR if the
value being converted cannot be represented ccrrectly (RM 3.5.4/10), i.e., if the value lies
outside the range of the base type. Hence, th6 : of a type conversion as an in out or out
parameter can raise NUMERICERROR. For e'.:rr)!e:

procedure F (X : in out LONGINTEGER);
INT "INTEGER range 0 5;

F (LONGINTEGER(INT));

The conversion to the formal type, LONGINTEGER, cannot raise any exception. However, the
inverse conversion from LONGINTEGER to INTEGER will raise NUMERICERROR if the
value of X is not in the set of INTEGER values. CONSTRAINTERROR will be raised if the
value is in the range of INTEGER values but not in the range 0..5.
S4. The semantic effect of processing an actual parameter depends on the mode, type, and
form of the parameter. For parameters with mode In:

J the actual parameter is an expression and is evaluated (RM 6.4.1/2);

a if no exception is raised when the expression is evaluated, the value is checked
against the subtype of the formal parameter (RM 6.4.1/6);

a if no exception is raised by the subtype check, the value of the actual parameter
becomes the value of the formal parameter; in particular, "A.

6-20
I!,>. ,. '>'.-,.. ,. ,",'. " %- " -.. . ,, .- -' . .,,,._, , .. , :.,-.,,,-, -, ,, ,. :, . ,, -, • .. . -.-,,..-... ,. :.-. .,.., .- ,-

4, " "" " . "" " " " - .""_,, '.". v-*",'""""." " ".'' . " ,' .'. ','""' '.', . . ' " . ". """'

i' aww,.~m'= a'ld5- % sW..id ii " " °...-

Version I (Dec 86) 6.4.1 Parameter Associations "_

* for scalar and access types, and for private types whose full declarations
declare a scalar or access type (RM 6.2/8), the value is copied (RM
6.2/6);

* for record, array, and task types, the value is copied or passed by
reference (RM 6.2/7).

s5. For parameters with mode In out:

* before the call:

" the variable name is evaluated (see IG 4.1.1, IG 4.1.2, and IG 4.1.3 for a
discussion of what exceptions can be raised; note also that any function
call appearing in the prefix of the variable name is evaluated (RM
4.1/10));

" if no exception is raised when the name is evaluated, and if the actual
parameter has the form of a type conversion, the conversion is performed
(RM 6.4.1/4);

" the (possibly converted) value of the actual parameter is checked against
the subtype of the formal parameter (RM 6.4.1/6). Note that this check is
also performed as part of type conversion (RM 4.6/4), and so is
redundant if the actual parameter has the form of a type conversion;

" if no exception is raised by the subtype check, the (possibly converted)
value of the actual parameter becomes the initial value of the formal
parameter, just as for in parameters (RM 6.2/6, /7);

* after the subprogram returns normally:

e if the actual parameter has the form of a type conversion, the inverse
conversion to the subtype of the actual parameter is performed (RM
6.4.1/4);

e if the parameter has a scalar or access type, the (possibly ,;onverted)
value of the formal parameter is checked against the subtype of the
actual parameter (RM 6.4.1/7);

e if no exception is raised by this subtype check, the value of the formal
parameter becomes the value of the actual parameter.

S6. For parameters with mode out:

* before the call, the variable name is evaluated (as for an in out parameter);

* subsequent actions depend on the type of the parameter and on whether the
actual parameter specifies a type conversion:

scalar access array record

perform type conversion? no yes* yes* yes*
•*see discussion below

can exception be raised
independent of subtype check? no yes yes no

check against formal subtype? no no yes yes
p. p.-6,

,5-21

.. ..

6.4.1 Parameter Associations Version I (Dec 86)

pass value of actual paranreter? no yes bounds discrim

aftar the call: -'-

for a type conversLci, can
an exception be raised? yes yes no no

check (converted) value
against subtype of actual? yes yes no no

S7. If an actual out parameter has the form of a type conversion, the type conversion is
performed if the parameter is not a scalar type even though RM 6.4.1/4 does not explicitly
mention performing type conversions for out parameters, and superficially, by its explicit
reference to type conversions for In out parameters, appears to exclude the evaluation of out
parameter type conversions before the call. However, consideration of other requirements of
the RM leads to the conclusion that the actual parameter type conversions must be evaluated
before the call for nonscalar parameters. In particular, for access types, RM 6.2/6 requires that
the value of the actual parameter be copied to the formal parameter. If the actual parameter
has the form of a type conversion, such copying cannot be performed unless the conversion is
done first since, without the conversion, there is no value to be copied. (From an-,5 implementation viewpoint, the access types might have different representations, e.g., one

might be an offset pointer and the other an absolute address, so a physical conversion would be
needed :n any event.) Performing the type conversion requires checking the subtype of the
value (RM 4.6./4). For access types, this means checking that any constraint imposed on the
subtype of the formal parameter is satisfied by the actual vanable's current value. For example,

type AST is access STRING:
subtype AST_3 is AST(I..3); .,5. ',.
subtype AST 5 is AST(I..5)"

X 3 : AST 3 := new STRING(1..3):

procedure P(X : out AST_5)"'

P(AST 5(X_3));

The call to P raises CONSTRAINT ERROR p . ku the call since the conversion to AST 5
raises CONSTRAINTERROR (RM 4.6/4 anc ,M 3.8/6). Note that without the conversion, no e-
exception would be raised before the call: •

P(X_3); -- no exception before call

No exception is raised since RM 6.4.1/6 does not specify that the value of the actual parameter %
be checked against the subtype of the formal parameter. In the above case, the value of X_3
will be copied to the formal parameter (RM 6.2/6), even though it does not satisfy the formal
parameter's constraint. This causes no inconsistencies since the formal parameter's value

cannot be read within P (RM 6.2/5) nor can the bounds or subcomponents of the designated
object be read (RM 4.1/4). In addition, no assignments can be made to the designated object or
to its subcomponents, because such assignments would require component selection. which is
forbidden by RM 4.1/4. If no value is assigned to X within P, then upon P's return, the original
access value is copied back to X_3, and no exception is raised, since the designated object
satisfies X_3's constraint. If a value is assigned to P.X, then the designated object must obey
P.X's constraint (RM 6.2/9, RM 5.2/3, and RM 3.8/6). When P returns, CONSTRAINT ERROR
will be raised when it is found that the object designated by the formal parameter does not
satisfy X_3's constraint (RM 6.4.1/7, /10).

6-22

A.' ,, n %.S".'. . . 5

"....".., -. - ; '. ...- , .-. - . . '. .-.- - ., . ,. .. '. y . ,;. ,..- , .- ,. . ., .. ,. . ,. ,. ,-,- .,. , ,. .

Version 1 (Dec 86) 6.4.1 Parameter Associations

Se. If the formal parameter has an unconstrained array type, then it is necessary to evaluate
the type conversion since the index base types of the formal and actual parameters can be
different (RM 4.6/11) and it is required to make the bounds of the actual parameter accessible to
the formal parameter (RM 6.2/5). By requiring that the bounds be made accessible, the RM
implies that the type conversion must be evaluated, since bounds of an incorrect type cannot be
made available to the formal parameter. In addition to converting index bounds, an array
conversion checks to ensure that any constraints on the array component type are identical.
Finally, if the conversion is to a constrained array type, corresponding dimensions of the
variable and the formal parameter must have the same number of components for non-null
arrays; for null arrays, corresponding dimensions can have different values for the 'LENGTH
attribute (RM 4.6/11 and RM 4.5.2/5).
sq. There are four ways of checking that an array type conversion for out parameters is
performed before the call:

* if the formal and actual array component constraints are not the same, the array
type conversion will raise CONSTRAINTERROR if it is performed:

type AR 3 is array (INTEGER range <>) of STRING(I .3);
type AR_5 is array (INTEGER range <>) of STRING(1..5);
subtype AR_5C is AR 5(l..2); %

Y-3 : AR3(l..2);

procedure Q (X : out AR 5); -- unconstrained array formal
procedure R (X : out AR_5C); -- constrained array formal

Q (AR_5(Y_3)); conversion to unconstrained array type %

R (AR_5C(Y3)); -- conversion to constrained array type

An evaluation of the conversions in the calls to Q and R raises CONSTRAINT-
-ERROR since the component constraint of Y_3 is not identical to the
component constraint for AR_5 and AR_5C. Hence, the failure to evaluate the -
conversion can be detected.

if the actual parameter Is converted to a constrained array type, the bounds of
the formal parameter are used and the bounds of the actual variable are not
passed to the formal parameter or checked against the formal parameter lo-
bounds (the type conversion does check that 'LENGTH is the same for
corresponding formal and actual parameter dimensions when the formal
specifies a non-null array):

subtype ST3 is STRING(l..3);
subtype ST5 is STRING(3..5);

* XS 3 :ST3

procedure S (X : out ST5);

S(ST5(XS 3)W)-"no exception
S(XS 3); -- CONSTRAINT ERROR before call

The first call to S raises no exception because the evaluation of the conversion
to ST5 implies that the bounds of the actual parameter (i.e., the bounds of the
type conversion) are 3.5, and these bounds satisfy the formal parameter's

... 6-23

6.4.1 Parameter Associations Version 1 (Dec 86)

constraint. The second call raises CONSTRAINTERROR since the bounds of
XS_3 are not the same as the bounds specified for the formal parameter. ,
Hence, if the conversion is no* nerformed, the first call will incorrectly raise an . .

exception.

if an actual parameter is converted to a constrained array type that is a null
array, the semantics for type conversion only require that CONSTRAINT-
_ERROR be raised if the array variable is not null ("a check is made that for
each component of the operand there is a matching component of the target
subtype"; RM 4.6/13 and RM 4.5.2/5). Corresponding dimensions need not
have the same number of components since if both arrays are null, they clearly
have the same number of matching components, namely, none. When an
actual out parameter does not have the form of a type conversion, the bounds
of the variable must satisfy tht formal's constraint, i.e., corresponding
dimensions must have the same bounds (RM 3.6.1/4). There is no special rule
for null arrays in this case. Hence, consider the following example:

type ARR is array (INTEGER range <>,
INTEGER range <>) of INTEGER;

X : ARR(1..0, 1..2); ,.
subtype NARR is ARR(1..0, 1..3);
procedure P (X : out NARR);

P(X);-- CONSTRAINT ERROR
P(NARR(X)); -- no exception

The first call raises CONSTRAINT ERROR because the bounds of the formal
and actual are not identical. For the second call, the type conversion does not 4 ', "-.-
raise an exception, because X is a null array and NARR requires a null array. _.
The bounds passed to the formal are the bounds specified for NARR (not the
bounds of X (RM 4.6/11)), so the bounds of the converted actual parameter
match the bounds of the formal parameter.

if an actual parameter is converted to ar . ncon trained array type, the bounds *1,

of the variable must lie within the ranoq ! each index subtype (RM 4.6/13):

NULL STR : STRING(I..0) '; ;
procedure U (X : out STRING);

U (NULLSTR); -- no exception %:
U (STRING(NULL_STR)); -- CONSTRAINTERROR

No exception is raised for the first call since the null string belongs to the
STRING type. CONSTRAINTERROR Is raised by the evaluation of the type
conversion in the second call since NULLSTR'LAST does not belong to
STRING's index subtype, POSITIVE.

Similarly, if the bounds do not even lie within the range of the index base type,
NUMERIC ERROR will be raised by a type conversion: %

type LONG is array (LONG INTEGER range <>) of INTEGER; ,
type SHORT is array (INTEGER range <>) of INTEGER;
LONG ARR : LONG (LONG INTEGER(INTEGER'LAST) + 1 .. 0):
procedure V (X : SHORT); I.... P
V (SHORT(LONG ARR)); -- NUMERIC-ERROR is raised ..

6-24

Version 1 (Dec 86) 6.4.1 Parameter AssociationsI!
NUMERIC ERROR is raised since INTEGER'LAST + 1 lies outside the range

For of SHORT's index base type, INTEGER.

$10. Fran out parameter having a record type without discriminants, a type conversion does
not affect the type of any subcomponent. In addition, the only information that must be passed
to the formal parameter before the call is the discriminants of the record (if any) and the bounds,
discrminants, access values, and task type values associated with subcomponents of the actual
parameter. All this information can be extracted and passed to the formal parameter without
converting the actual variable. Hence, the RM does not imply that a type conversion used as an
actual out parameter is evaluated before the call. However, there is no way to check whether
such a conversion is evaluated or not, since the conversion cannot raise an exception except
when the record type has discriminants, and in this case, an exception would be raisad by the
conversion if and only if an exception would be raised when the value of the discriminants is
checked against formal parameter's discriminants. Hence, there is no way to determine
whether the conversion is performed for record types. For simplicity ana by analogy with array
types, it is acceptable to assume that the conversion is performed.

s1 1. Use of a type conversion as an out parameter for an array or record type still allows theout parameter to be passed by reference if the physical representation of the formal and actual
types is the same, although some care needs to be taken with the bounds of constrained formal
array parameters to ensure that the bounds of the formal parameter are used instead of the
bounds of the actual parameter.

S12. When an actual In out or out parameter has the form of a conversion to an unconstrained
record type, then the formal parameter is also an unconstrained record type (since the type
mark in the conversion and in the formal parameter must be the same (RM 6.4.1/3)) and the

.-. value of 'CONSTRAINED for the formal parameter is determined by the value of
0 L% 'CONSTRAINED for the actual parameter's variable (RM 6.2/9). Even though the conversion is

performed for in out parameters (RM 6.4.1/4), 'CONSTRAINED is not necessarily TRUE for the
formal parameter, i.e., it would be a mistake to treat the type conversion as an expression
yielding a value, for which 'CONSTRAINED is TRUE.
S13. For a scalar out parameter having the form of a type conversion, the type conversion is not
performed because the value is not passed to the formal parameter and the RM does not
require the evaluation of the out parameter before the call. Hence, if the value of the actual
variable does not satisfy the formal's constraint, no exception is raised:

subtype SMALL is INTEGER range 0..10;
procedure U (X : out SMALL); %
X INT : INTEGER := 15;

U (SMALL(X INT)); -- no exception before call

S14. When a type conversion is used as an expression, its argument may be enclosed in
parentheses (RM 4.6/3), e.g., if STRING(X) Is legal, so is STRING((X)). However, the syntactic
form of actual In out and out parameters is fully specified in RM 6.4.1/3, and no extra
parentheses are allowed.
s15. A subprogram call is erroneous if a scalar actual In or In out parameter has an undefined
value when the subprogram is called since such parameter values must be evaluated (RM
3.2.1/18). Similarly, a call is erroneous if a scalar out formal parameter has an undefined value
on completion of the subprogram body. In all other cases, the values read as part of the
semantics of a subprogram call a'e defined:

% % an access type object always has a defined value.

W7 -j FSP7PRW a -

6.4.1 Parameter Associations Version 1 (Dec 86)

" only the bounds of an array object are read (i.e., checked) and the bounds are
always defined. •. ","

" only discriminant values arf aad (i.e., checked) for objects that have
discriminants, and these values .3 re always defined.

In the absence of this rule concerning erroneous calls, a subprogram would have to check the
value of scalar parameters against formal parameter constraints even when it appeared that
such a check could be omitted. As it is, a compiler is allowed to omit range checks for scalar
parameters under the following circumstances:

when calling a subprogram, for In and In out parameters, if the subtype range
of the actual scalar parameter is contained within the subtype range of the
formal parameter:

subtype SMALL is INTEGER range 0..10;
subtype LARGE is INTEGER range -10..107
procedure P (X : in LARGE; Y : in out LARGE):
V : SMALL:

P(V, V); -- no constraint check needed before call

• wnen returning from a subprogram, if the subtype of a formal In out or out
parameter is contained within the subtype range of the actual parameter.

These checks can be omitted because, if the parameter has a defined value, the checks are
unnecessary, and if the parameter does not have a defined value, the effect of the program is
undefined (RM 1.6/7).

s16. Out parameters behave in many ways as if they were targets of an assignment statement.
However, CONSTRAINTERROR can be raisad by a subprogram call even when assignment
of a formal parameter value to an actual variable would not raise CONSTRAINTERROR:

type T (D : INTEGER := 0) is
record null: end record,-

subtype T5 is T(5);

A : T "= (D => 3); - no exception raised

procedure P (X out T5) is
begin

X (D => 5);
end:

P (A): -- CONSTRAINT ERROR raised
A := (D => 5): -- no exception raised

CONSTRAINTERROR is raised by P(A) since the value of A.D (i.e., 3) does not equal the
value of P.X.D (i.e., 5), and these values are checked before the call.

SI7. The type mark used in an In out or out actual parameter type conversion must conform to
the name used in the formal parameter declaration. Conformance means that the names must
denote the same declaration (IG 6.3.1/S). In particular, a name declared by a subtype
declaration does not conform to a name declared by a type declaration, and vice versa. Note
that conformance is not required for type conversions used as In actual parameters:

6-26

- .e

Version 1 (Dec 86) 6.4.1 Parameter Associations

subtype SMALL is INTEGER range 1.. 5;
subtype SMALLISH is SMALL;

F : FLOAT :- 1.0;
procedure P (X : SMALL; S

Y : in out SMALL);
• .. _..

P (SMALLIS(l.0), -- legal; base types are the same
SMALLIS(F)); -- illegal; SMALL and SMALLISH do not conform

SMALLISH(F) is legal for the first parameter because the first parameter is an expression
corresponding to an In parameter. The only requirement here is that the base type of the formal -

and actual parameter be the same. The second parameter is, however, illegal since the type
mark in the conversion does not denote the same declaration as the type mark used in the in
out formal parameter's declaration.

s1s. Note that the RM does not define the order in which actual parameters are updated when
returning from a call (RM 6.4/6). In particular, it is possible for some actual parameters to have
their values updated before a constraint check fails for a parameter and an exception is raised. .

sig. When a formal parameter has a private type, the constraint checks required are those
required for the full declaration of the private type, although RM 6.4.1/9 may seem, at first, to
,nply otherwise. However, RM 6.2/8 implies that the parameter passing semantics of private

types is determined by the rules that apply to the private type's full declaration, including the
rules for constraint checking. The following example (conceived by David A. Taffs) shows why
the value of a formal out (or in out) parameter of a private type must sometimes be checked
against the actual parameter's constraints when a subprogram returns, even when the formal
parameter is a private type:

package P is
type T is private;
DC : constant T;

generic
package INVOKEQ is -- instantiation invokes Q
end P;

private
type T is new INTEGER;
DC : constant T := -1;

end P;

procedure Q (X : out T) is
begin

X :- P.DC,
end Q;

generic 0
Y : in out P.T;

package CALL is
end CALL;

6-27
S.",.

6.4.1 Parameter Associations Version 1 (Dec 86)

package body CALL is
begin

Q (M); -- note c-'I occurs outside P; Y has a private type /'

end CALL:

package body P is
Z : T range 0.- := 0:
package body INVOKE_Q is

package CALLQ is new CALL(Z);
end INVOKEQ;

end P;

package CALLQ_NOW is new P.INVOKEQ;

The elaboration of CALL_0_NOW will execute the call to Q that occurs in the body of CALL.
This call will assign the value of P.DC to O's formal parameter, and when 0 returns, an attempt
will be made to assign the value of P.DC to P.Z. This attempt wiH raise CONSTRAINT ;eiROR
since the value of the formal parameter must be checked against the actual p3rameter's
constraint.

Changes from July 1982

S20, An actual parameter associated with a formal parameter of mode in out must not be a
subcomponent of, or a formal parameter of, mode out.

S21. The execution of a program is erroneous if the value of an actual in or in out scalar
parameter is undefined when the subprogram is invoked, or if the value of a formal out scalar
parameter is undefined when the subprogram returns. ,,- .

Changes from July 1980

parameter.

S22. It is now stated explicitly that actual In out parameters having the form of a type
conversion are converted to the specified type tlre The call. and formal in out or out
parameters are converted to the type of the a-. .rarner after (normal) completion of the
subprogram.

S23. The type mark specified for actual paramete(s naving the form of type conversions and the
type mark used in the formal parameter declaration must conform in accordance with the rules
of RM 6.3.1.

Legality Rules

U. An actual out or In out parameter must be either the name of a variable or have the form
of a type conversion applied to the name of a variable (RM 6.4.1/3).

12. The base types of the formal and actual parameters must be the same (RM 6.4.1/1)

L3. The type mark appearing in an actual In out or out parameter having the form of a type
conversion must conform to the type mark of the formal parameter (RM 6.4.1/3).

L4. An actual In out variable must not be a formal parameter of mode out or a subcomponent
of such a formal parameter (RM 6.4.1/3).

L5. An actual In parameter must not be a formal parameter of mode out or a subcomponent of
such a formal parameter, unless the subcomponent is a discriminant (RM 6.2/5).

6-28

. .

Version 1 (Dec 86) 6.4.1 Parameter Associations
!'

Exception Conditions
.P0o°o.0on

El. For an actual parameter of mode In, CONSTRAINTERROR is raised if:

9 the formal parameter has a scalar type and the value of the actual parameter
before the call lies outside the range specified for the formal parameter.

* the formal parameter has a constrained array type and the index bounds of
the actual parameter are not equal to the bounds specified for the formal 9
parameter.

* the formal parameter has a constrained record, private, or limited private type
and the discriminant values for the actual parameter do not equal those
specified for the formal parameter.

* the formal parameter has a constrained access type, the value of the actual
parameter is not null, and the bounds or discriminants of the designated
object do not equal the values of the bounds or discriminants specified for the
formal parameter's constraint.

E2. For a parameter of mode In out having the iorm of a variable name:

CONSTRAINTERROR is raised before the call if:

" the parameter has a scalar type and the value of the variable lies p
outside the range specified for the formal parameter.

" the formal parameter has a constrained array type and the index
bounds of the actual parameter are not equal to the bounds specified
for the formal parameter.

o the formal parameter has a constrained record, private, or limited
private type and the discriminant values for the variable do not equal
those specified for the formal parameter.

" the formal parameter is a constrained access type, the value of the
variable is not null, and the bounds or discriminants of the designated
object do not equal the values of the bounds or discriminants specified I
for the formal parameter's constraint.

CONSTRAINTERROR is raised after normal completion of the subprogram
if:

" the formal parameter has a scalar type or a private type whose full
declaration declares a scalar type and the value of the formal parameter
lies outside the range specified for the variable named as the actual
parameter.

* the actual parameter has a constrained access type or a private type
whose full declaration declares a constrained access type; the formal
parameter's value is not null; and the bounds or discriminants of the
formal parameter's designated object do not equal the values of the
bounds or discriminants specified for the actual variable's subtype.

E3 For a parameter of mode In out having the form of a type conversion applied to the name
of a variable:

_ NUMERICERROR is raised before the call if:

'I
% %-

6.4.1 Parameter Associations Version 1 (Dec 86)

*the parameter has a scalar numeric type and the value of the actual
parameter cannot be accurately represented as a value of the formal
parameter's type beca, -4 the value lies outside the range of the formal
parameter's base type 7 A 3.5.4/10).

* the formal parameter has an unconstrained array type, and for some
dimension of the formal parameter's type, an index bound of the "4
variable lies outside the range of the formal parameter's index base type
(RM 4.6/13).

* CONSTRAINTERROR is raised before the call if:

* the parameter has a scalar type and the converted value of the variable
lies within the range of the formal parameter's base type but outside the
range specified for the formal parameter.

* the formal parameter has an array type:

* constraints are specified for the component type of the variable
and the component type of the formal parameter, and the
constraints are not equal (RM 4.6/13); or

* the array type is unconstrained, the operand is a non-null array,
and for some dimension of the formal parameter's type, the index
bounds of the variable, after conversion to the formal parameter's
index base type, do not both lie within the range of the formal
parameter's index subtype (RM 4.6/13).

* the array type is constrained,

* the formal parameter declares a null array, and the value of
the variable is not a null array (RM 4.6/13); or

e the formal parameter does not declare a null array, and for
at least one dim',-r'sion, the number of components
specified for the' ntr .'anable is not the same as the
number of com) :.n ,-.-ts sp cified for the formal parameter
(RM 4.6/13).

* the formal parameter is a constrained access type, the value of the
variable is not null, and the bounds or discriminants of the designated
object do not equal the values of the bounds or discriminants specified
for the formal parameter's constraint.

" NUMERIC ERROR is raised after completion of the subprogram if the
parameter has a scalar numeric type and the value of the formal parameter
cannot be accurately represented as a value of the actual parameter's type
because the value lies outside the range of the actual parameter's base type
(RM 3.5.4/10).

• CONSTRAINTERROR is raised after completion of the subprogram if:

* the parameter has a scalar type or a private type whose full declaration
declares a scalar type and the converted value of the formal parameter
lies within the range of the actual parameter's base type but outside the
range specified for the actual variable. -

* the formal parameter is a constrained access type or a private type

6-30

IFPW PV 4~-~.VWW7 r-r %~.VW r%-L rWI-XXWWw r
Version I (Dec 86) 6.4.1 Parameter Associations

whose full declaration declares a constrained access type, the value of
the formal parameter is not null, and the bounds or discriminants of the

, designated object do not equal the values of the bounds or ,,
discriminants specified for the actual parameter.

E4. For a parameter of mode out having the form of a variable name:

* CONSTRAINTERROR is raised before the call as for an in out formal
parameter of a constrained array, record, private, or limited private type (see
E2).

* CONSTRAINTERROR is raised after normal completion of the subprogram 4

as for In out parameters (see E2).

E5. For a parameter of mode out having the form of a type conversion applied to the name of a
variable:

" NUMERICERROR is raised before the call as for an in out formal parameter
of an unconstrained array type (see E3).

* CONSTRAINTERROR is raised before the call as for in out formal
parameters having an array or constrained access type (see E3).

" NUMERICERROR is raised after completion of the subprogram as for an in
out formal parameter of a scalar type (see E3).

" CONSTRAINTERROR is raised after completion of the subprogram as for an
In out formal parameter of a scalar, private, or constrained access type (see
E3).

Test Objectives and Design Guidelines 7-

T1. Check that the expression corresponding to an out or In out parameter cannot be: e.

9 a constant, including an In formal parameter, an enumeration literal, a loop
parameter, a record discriminant, tlha literal null, and a named number;

e a parenthesized variable;

e a type conversion with a parenthesized variable;

e a function returning a value of a record, array, private, scalar, or access type;

e an attribute;

* an aggregate, even one consisting only of variables;
,-.

* a qualified expression containing only a variable name;

a an allocator;

e an expression containing an operator.

T2. Check that the base types of corresponding formal and actual parameters must not be
different (see IG 6.4/T2).

T3. For type conversions of a scalar variable as an In out parameter, check that:
'm

NUMERICERROR is raised for numeric types:

" before the call when the actual value lies outside the range of the formal
" *""4'. parameter's base type.

6-31 .

;,., .,-.-, ,.,**._ ,- ,:-. *.: .. : .. =,.-,.. ,. .-..,,-- ,...,.....-..-..-........_.. ,.......

6.4.1 Perameter Associations Version 1 (Dec 86)

e after the call when the formal parameter's value lies outside the range of

the actual variable's base type. ::--., ,

* CONSTRAINTERROR is ra,.;ed:

* before the call when the converted value of the actual variable lies
outside the range of the formal parameter's subtype.

" after the call when the converted value of the formal parameter lies
outside the range of the actual variable's subtype.

For a type conversion of an array variable as an In out or out parameter, check that:

* CONSTRAINTERROR is raised before the call if:

e the subtype constraints imposed on the actual variable's components
are not the same as the constraints imposed on the formal parameter's
components;
Implementation Guideline: Check conversion to both a constrained and an
unconstrained array type.

, for conversion of a non-null value to an unconstrained array type, an
index bound of the actual parameter, after conversion, does not lie
within the range of an index subtype of the formal parameter.
Implementation Guideline: For a null multidimensional actual array, CONSTRAINT-
-ERROR is raised if a non-null bound is outside the index subtype (AI-00313).

* for conversion to a constrained array type, the number of components
per dimension is not the same for the formal and actual parameters . -

when the actual variable is a non-null array, or the formal parameter
specifies a non-null array.

* NUMERICERROR is raised before the call for conversion to an
unconstrained array type if the value of a bound of the variable lies outside the
range of the corresponding index base type.

For a type conversion to a constrained acces -type as an in out or out parameter, check
that CONSTRAINTERROR is raised:

".',

* before the call if the value of the actual parameter is not null and the bounds
or discriminants of the designated object do not equal the
bounds/discriminants of the formai parameter.
Implementation Guideline: Check for both null and non-null array objects.

* after the call, if the value of the formal parameter is not null and the bounds or
discriminants of the designated object do not equal the bounds/discriminants
of the actual variable.

T4. For calls not involving parameters having the form of a type conversion, check that
CONSTRAINTERROR is raised under the appropriate circumstances, namely:

* before the call, when the value of a scalar In or In out actual parameter does
not satisfy the range constraint of the formal parameter;

* after the call, when the value of a formal out or in out scalar parameter does
not satisfy the range constraint of the actual parameter at the time of normal
subprogram return;

-.

6-32 '-

iv-%

Version 1 (Dec 86) 6.4.1 Parameter Associations
4-..

.5

" before the call, for all modes, when an actual record parameter has
discriminant values that are not equal to the discriminant values of the formal
parameter;
Implementation Guideline: In particular, try an unconstrained actual out parameter.

.,'.

" before the call, for all modes, when an actual array parameter has different
bounds for one dimension than is required by the constrained formal
parameter;
Implementation Guideline: Check for nuli arrays with index values that are outside the index
subtype.
Implementation Guideline: Check that null multi-dimensional actual parameters must have the
same bounds as the formal parameter.

" for access types, when the index bounds of the object designated by the
actual variable do not equal the index bounds specified fco- the formal
parameter:

* before the call for in and in out parameters; ,.,
,p.

0 after the call for In ou! and out parameters.

" for access types, when the discriminant values of the object designated by an
actual variable do not equal the discnminant values specified for the formal
parameter:

* before the call for In and In out parameters;

* after the call for In out and out parameters.
Implementation Guideline: Check that within a procedure, assignments to an out
parameter obey the constraints of the formal parameter, not the constraints of the actual
variable, when the constraints of the formal and actual parameter are different.

e after the call, when the discuiminant values or index bounds associated with
the value of an unconstrained formal access out or In out parameter do not
equal the constraint values of a constrained actual access parameter.

Check that when the full declaration of a pnvate type declares an access or scalar type and
the private type is used as an out or In out parameter, CONSTRAINTERROR is raised
after the call if the value of the formal parameter does not belong to the scalar or access
subtype of the actual parameter. .. ,

Check that CONSTRAINTERROR is raised at the place of the call (i.e., within the caller,
not within the called subprogram) in the above circumstances.

T5. Check that CONSTRAINTERROR is not raised under the appropriate circumstances. In
particular, check that no exception is raised:

" at the time of call, for all modes, when the value of a scalar actual out
parameter does not satisfy the range constraints of the formal parameter;
Implementation Gudeline: Check when the actual has the form of a type conversion as well as
the form of a variable name.

" at the time of call, for all modes, when an actual access parameter has the
value null and the formal parameter is constrained (even if the subtype of the
actual parameter does not match that of the formal parameter). when the
actual parameter has the form of a variable name or type conversion

" on normal return, for In out and out parameters, when the formal parameter %
value is null and the actual parameter is constrained (even if the subtypes of
the formal and actual parameters are not the same);

-. =:,
W-.

~~'Ja

6.4.1 Parameter Associations Version 1 (Dec 86)

for an In out or out parameter of an array type when the formal parameter is ..

constrained and the actual parameter has the form of a type conversion: .'.,.. -

" corresponding dimen- s of the formal and actual parameter have the
same number of com[..nents (for a non-null array), and the index %
bounds of the actual parameter lie outside the index subtype of the
formal parameter.

p.

" corresponding dimensions of the formal and actual parameter do not
have the same number of components, but the formal and actual
parameter are both null arrays.

",P.

T6. Check that unconstrained record, private, limited private, and array formal parameters use
the constraints of the actual parameter (even when the default parameter value has a
constraint different from that of the actual parameter).
Implementation Guideline: For record, private, and limited private types having default discriminant constraints,
be sure to try an uninitialized constrained variable as an out actual parameter.
Implementation Guideline: Check that null strings can have negative bounds, and the bounds are passed %
correctly.

Check that assignments to (formal parameters of) unconstrained record types without default constraints (i.e..
for which T'CONSTRAINED is always true) raise CONSTRAINTERROR if an attempt is made to change the
constraint of the actual parameter (by making a whole-record assignment to the formal parameter). /%

Check that assignments to (formal parameters of) unconstrained record types with default constraints (i.e.. for
which T'CONSTRAINED is true or false depending on its value for the actual parameter) raises CONSTRAINT-

ERROR if the actual parameter is constrained and the constraint values of the object being assigned do not
satisfy those of the actual parameter. Check that CONSTRAINT-ERROR is not raised if the actual parameter
is tnconstrained, even if the assignment changes the constraints of the actual parameter.
Implementation Guideline: Try a case where an actual parameter has the form of a type conversion. -." ...-

Implementabon Guideline: For both checks, include cases where the unconstrained record type is the full
declaration of a private or a limited private type.
Implementation Guideline: Try these checks for nested procedure calls as well. i.e., where an unconstrained
formal parameter is used as an actual parameter in a subprogram call.

17. Check that actual parameters are evaluated and identified at the time of call, e.g., use a
call of the form P(l. A(l)) where the pa amptprs of P are out parameters. or use a name
with a tunction prefix.

T8. Chic,. tt at a!! .ermitted forms of variab!- parameters are permitted.
Implementation Guideline: Include a case when the able is named by a dereferenced function. e. by F all.

T9 Check that silices and arrays that are components of records are passed correctly to
subprograms.
Impiomentahon Guideline, Use all parameter modes.
Implementafton Guideline: Use multidimensional arrays.
Implementaton Guideline. Use records with components whose bounds depend on a discriminant and have -
more than one array component. -.

Implementaton Guideline: Use objects designated by access types.

Implementaton Guideline: Be sure that arrays with different bounds can be passed to unconstrained formal
parameters.
Implementation Guideline. Pass a formal as an actual parameter.

T1O. Check that type marks appearing in actual In out or out parameters must conform to the
type mark given in the formal parameter's declaration.

Check that conformance is not required for In parameters.

*. 'P o

6-34

. .-- °%-

n -"

Version 1 (Dec 86) 6.4.2 Default Parameters

6.4.2 Default Parameters
- ,% Semantic Ramifications

Si. An implementation is not allowed to reject subprogram specifications with default values
not in the range of a formal parameter's subtype. For example,

procedure P (X : NATURAL -1)

must be accepted by the compiler. (CONSTRAINTERROR will be raised if the default value is
used.)

S2. In parameters with default expressions are rather similar to constant object declarations
initialized with the default value, e.g., an initial value can be provided for an unconstrained array
type. There is an important difference, however - the value of a default expression "is used as
an implicit actual parameter" and is not "assigned" to a formal parameter. Hence, default
expressions can be specified for limited types, but not for constants of limited types. In addition,
if a formal parameter has a constrained array type, there is no "sliding" of the default value:

subtype STR3 is STRING(1..3):
procedure P (X : STR3 := (3..5 => 'A");

The call to P will raise CONSTRAINTERROR if the default value is used. Similarly, an array
aggregate with an others choice is legal if named associations are used and if the formal
parameter is constrained:

subtype STR2 4 is STRING(2 4);
S : STR2 4 (2 => 'A", others => 'C'); -- illegal: RM 4.3.2/6
procedure Q (X : STR2 4 := (2 => 'A', others => 'C')):

The aggregate is legal as an actual parameter, but not as the value in an assignment context,
,.g., in an object declaration.

Changes from July 1982

S3. There are no significant changes.

Changes from July 1980

S4. For omitted parameter associations, the default expression is evaluated before the call
(instead of when the subprogram declaration is elaborated).

Exception Conditions

El For omitted parameter associations, CONSTRAINT_ERROR is raised:

" for scalar parameters if the value of the default expression lies outside the
'ange of the formal parameter.

* for formal parameters having a constrained array type if the bounds of the
default expression do not equal the bounds specified for the formal parameter.

" for formal parameters having discriminants if the disciminants for the value of
the default expression do not equal the discnminants specified for the formal
parameter.

" for formal parameters of a constrained access type if the value of the default
expression is not null and the bounds or discnminants of the designated
object do not equal the bounds or discriminants specified for the formal
parameter.

- 6-35

6.5 Function Subprograms Version 1 (Dec 86)
o S

• ,• for formal parameters of a private type if the value of the default expression
would raise an exception when the appropriate rule for the private type's full
declaration is used.

Test Objectives and Design Guidelines

T1. Check that default values of all types (including limited types) can be passed to a formal
parameter. (Nonlimited types are tested in IG 6.1/T8.)
Check that CONSTRAINTERROR is raised for a default expression, if appropriate (see
IG 6.1/T8).
Check that an aggregate with an others choice can be used as a default value for a
parameter with a constrained array subtype (see IG 4.3.2/T4).

T2. Check that default expressions are evaluated each time they are needed.

6.5 Function Subprograms

Semantic Ramifications

Si. The exception PROGRAMERROR must be raised when no other exception is raised and
the last simple statement executed within a function body is not a return statement or does not
propagate an exception out of the function. PROGRAMERROR is raised at the function call,
not withir, the function body, since the RM says PROGRAMERROR is raised "if a function is
left ..."; "is ieft" implies that no further execution is possible within the body. Moreover, RM 6.3/6
says a subprogram returns to its caller "upon completion of its body." This statement applies to
both functions and procedures, and means that a subprogram, even a functior:, returns if there
are no more statements to be executed. In the case of a function, however, this return
immediateiy raises PROGRAMERROR at the point of the call.
S2. Note that an implementation is not required to determine whether or not a return statement
can be executed. Furthermore, it cannot reject a function whose return statement is
unexecutable. A warning can be issued if a compiir discovers that PROGRAMERROR will be
raised an - -- or at: calls. The exception PRDC'- 'M_ERROR must be raised when no other
exceptici, ss rjised iand a return statement is nrit iY- cuted

Changes from July 1982

S3. The rule for raising PROGRAMERROR does not apply when the function is left by
propagatng an exception.
Changes from July 1980

s4. The exception PROGRAMERROR is raised when a function body is left other than by a
return statement or by the propagation of an exception.

Legality Rules

L1 All parameters of a function subprogram must have the mode In.
1.2. A function body must contain a return statement specifying a return value. This return

statement must not be internal to nested program units.
,

Exception Conditions

El The exception PROGRAMERROR is raised at the point of the function call when the last
simple statement executed within a function body is not a return statement or does not
propagate an exception out of the function.

6-36

" -:'.?' -' . v '."...., -,.:*.*. *.v*.'..- ". .. ,.. . . . - ... " - ,.-,--_. *".. --.-.- -' -- "w--,.- I,.

Version 1 (Dec 86) 6.6 Overloading of Subprograms

Test Objectives and Design Guidelines

T1. Check that In out and out parameters cannot be specified for functions.

Check that a return statement with a value specified is required inside a function body.
Implementation Guideline: Include a case where the return statement is inside a nested function, but not given
in the containing function.

T2. Check that a function must contain at least one return statement (excluding return
statements nested in inner function bodies) and is not illegal if its only return statements
occur in unexecutable sections of code.

T3. Check that if no return statement is executed, a function raises PROGRAMERROR at the
point of the call rather than within the functirn body.

T4. Check that a function can propagate an exception out of its body without raising
PROGRAMERROR.

6.6 Overloading of Subprograms
Semantic Ramifications

S1. Note that for packages, the visible and the private part of a package specification, and the 6
declarative part in a package body, are all part of the same declarative region for purposes of
deciding when conflicting declarations are present (RM 8.1/2 and RM 8.3/17). Similarly, the
declarations in a task specification and body are part of the same declarative region (RM 8.1/2).
Hence, subprograms declared in a task body can overload entries declared in a taskspecification (RM 9.5/5):

task type T is
entry E (A INTEGER); -- El

and T;

task body T is
procedure E (A FLOAT) ... -- E2; overloads entry E
procedure E (A,B : INTEGER 0); E3; overloads previous E's

begin
E (.0) ; -- calls procedure E2
E(1); -- ambiguous; calls entry El or procedure E3

end T;

Calls using a name that is overloaded for an entry or subprogram are resolved using the rules in
RM 8.7 and RM 6.6/3. Note that there is no way to call entry E unambiguously.
S2. Since parameter names do not affect the parameter profile of a procedure, an inner
procedure can hide an outer procedure with the same profile, but with different formal parameter
names:

procedure P (A :INTEGER) is

procedure P (8 : INTEGER) is
begin ... end P;

begin
P(A => 1); -- illegal; outer P hidden

end P;

33 Note that neither the mode of a formal parameter nor the form of an actual parameter is
ised to resolve a subprogram call (RM 6.6/3):

6-.6-37,'

6.6 Overloading of Subprograms Version 1 (Dec 86)

procedure P (A : in out FLOAT;
B : FLOAT 1.0);

procedure P (C : FLOAT := 2.0);

P(2.0); -- amrbiguous

Since the mode is ignored when resolving a call, P(2.0) Is ambiguous even though P(C => 2.0)
is the only legal call when the first parameter in the call is a constant. Note that if P.A were of
mode in, then the above call could be either P(A => 2.0) or P(C => 2.0); hence, P(2.0) is
ambiguous when parameter modes are ignored. See IG 8.7/S for further discussion.

S4. Generic subprograms are not considered subprograms immediately within the declarative
region containing their declaration (RM 12.1/5). Hence, a generic subprogram and a
subprogram cannot be declared with the same name in the same declarative region:

generic
procedure P;

procedure P (X : INTEGER); -- illegal

procedure P is
procedure P (Y : INTEGER) is ... end P; -- legal

begin null; end P;

Within a generic subprogram, the generic unit is considered a subprogram (RM 12.1/5). Hence,
the inner declaration of P overloads the generic P.

S5. An enumeration literal has a parameter and result type profile equivalent to a
parameterless function returning a value of the literal's type. Hence, it is illegal to declare a :'.*.-
function and an enumeration literal having the same profile in the same declarative region:

type ENUM is (A, B);
function A return ENUM; -- illegal redeclaration of A

s6. Note that the definition of "overloaded" in RM 6.6/2 says that two subprograms are
overloaded even if their scopes do not overlap. In such a case, the visibility rules, when applied
to the name of the subprogram, suffice to resolve the overloading.

S7. RM 6.6/3 specifies what information in a stuaprogram call can be used to resolve the call.
RM 8.7 specifies additional rules concerning how the context of a subprogram call can be used
to resolve overloaded calls. In particular, RM 8.7 explains how the result type of a function may
be used in resolving a function call. See IG 8.7/S for further discussion. I
Changes from July 1982

s8. There are no significant changes. v
Changes from July 1980

sq. The overloading resolution rule for calls now explicitly says the number of parameters is
used.

si0. The names of formal parameters no longer affect the parameter profile of a subprogram,
nor is the presence or absence of default expressions considered.

Legality Rules

Li. Two subprograms or single entries having the same designator cannot be declared in the ,-
same declarative region If (RM 8.3/17):

6-38

p•••

Version 1 (Dec 86) 6.6 Overloading of Subprograms

* they are both procedures or single entries, or are both functions; and
* the number, order, and base types of the parameters are the same; and

* for functions, the result base types are the same.

L2. A subprogram call Is not allowed unless the name of the subprogram, the number of
parameter associations, the types and order of the actual parameters, the names of the
formal parameters (if named associations are used), and the result type (for functions) do
not suffice to determine which subprogram is being called. (Note that rules in RM 8.7
restrict how the result type of a function call can be used in helping to resolve which
function is called.)

Test Objectives and Design Guidelines

Ti. Check that subprogram redeclarations are forbidden. Use two subprO;giams, two entries,
or an entry and a subprogram declared in the same declarative region that are identical
except for one of the following differences:

a the parameters are narme. differenty (differences in parameter names are

ignored).

* the subtypes of a parameter are different (differences in subtype names are
ignored if the base types are the same).

* the result subtypes of two functions are different (differences in subtype
names are ignored if the base types are the same).

* the parameter modes are different; also try reordering the parameters and
changing their modes.

• a default expression is present/absent (the presence or absence of a default
expression does not affect the parameter profile).

Check that a function declaration equivalent to an explicit enumeration literal is not
allowed.

Check that a subprogram cannot have the same identifier as a variable, type, subtype,
constant, exception, task unit, number, array, package, or generic subprogram declared
previously in the same declarative region.
Implementation Guideline: Use a renaming declaration, a subprogram declaration, a subprogram body, a
generic unit, and a generic formal declaration.

T2. Check that overloaded subprogram declarations are permitted in which there is a minimal
difference between the declarations. In particular, use declarations that differ in only one
of the following aspects:

@ one is a function; the other is a procedure.
Implementation Guideline: Try parameterless subprograms as well as subprograms having at
least one parameter.

a one subprogram has one less parameter than the other (the omitted
parameter may or may not have a default value).

* the base type of one parameter is different.

e one subprogram is declared in an outer declarative part, the other is declared
in an inner part, and

e the parameters are ordered differently;

0-Z9

6.7 Overloading of Operators Version 1 (Dec 86)

one subprogram has one less parameter than the other, and the omitted
parameter has a default value; *-*.- :

the result types of two functor, declarations are different.

Implementafion Guideline: Each of the subprograms in the above tests must be called, if possible, to ensure
that the correct subprogram is invoked.

*6.7 Overloading of Operators

Semantic Ramifications

S1. The restrictions given in RM 6.7/4 may seem to prohibit declaring a user-defined equality
operator for nonlimited types. But, in fact, it is possible to provide a user-defined equality
operator for any type. For example, one might like to define a type for polar coordinates so that
an expression like (-90, 5) = (270, 5) would be TRUE, since -90 degrees specifies the same
angle as 270 degrees. This can be done as follows:

generic le
type LP is limited private; "p
with function EQUALS (L, R : LP) return BOOLEAN;

package EQUALITYOPERATOR is
function "=" (L, R : LP) return BOOLEAN;

end EQUALITYOPERATOR;

package body EQUALITYOPERATOR is
function 11=11 (L, R : LP) return BOOLEAN is
begin

* return EQUALS (L, R);
end

end EQUALITYOPERATOR;

* This generic package can be used to provide a user-defined equality operator for any type:

with EQUALITY OPERATOR;
package POLAR COORDINATES is

type POLARCOORD is
record

THETA INTEGER;

R INTEGER;
end record;

function EQUALS (L, R : POLARCOORD) return BOOLEAN;
package POLAREQUALS is

new EQUALITY OPERATOR (POLARCOORD, EQUALS);
function "=" (L, R : POLARCOORD) return BOOLEAN

renams POLAREQUALS."-"-
end POLARCOORDINATES;

package body POLAR COORDINATES is
function EQUALS (L, R : POLAR COORD) return BOOLEAN is
begin

return (L.TETA mod 360) = (R.TKETA mod 360) and
L.R = R.R;

6-40

....... "... .-. .. "..*-. . -. - - - -. .- .,I , - ,"%, ,,"-". v .- ".', p "., , - ., "- .,". ." ,, " , . "S" .? ,
,, .S, " J "- , p . .- ? ",",'V , , - ,

Version 1 (Dec 86) 6.7 Overloading of Operators

e-dend EQUALS;

end POLAR-COORDINATES;

with POLAR COORDINATES; use POLARCOORDINATES;
package USER is

X POLAR COORD := (THETA => -90, R => 5);
Y POLARCOORD := (THETA -> 270, R => 5);
B BOOLEAN := X = Y; -- will be TRUE

end USER;

Note that the user-defined equality operator for polar coordinates is even derivable when
POLARCOORD is used as a parent type.

s2. The case statement chooses alternatives based on which alternative contains a choice
equal in value to the case expression. Even though the equality operator can be redefined for
the scalar type used in a case statement, predefined equality is used to select the case
alternative. The redefined equality operation can only be invoked when the equality operator is
used explicitly.

S3. The rule for renaming declarations prohibits:

type LP is limited private;
function EQUAL (L, R : LP) return BOOLEAN;
function "=" (L, R : LP) return BOOLEAN renames EQUAL; -- illegal

EQUAL is not an operator and so the renaming declaration is illegal even though a direct
declaration of "=" would be legal.

s,. Although the rule restricting the types for a declaration of "=" allows a renaming
declaration to specify an "=" operator with different parameter types, there will be no "="

operation that has such a parameter profile. Hence, the rule, in effect, says that if a renaming
declaration declares "=", the parameter types must be the same, but need not be limited.

5. The overloading resolution rules given in RM 6.6/3 apply to operators as well as to
subprograms whose designator is a simple name.

Changes from July 1982

S6, A renaming declaration is allowed for an equality operator even if the parameter types are
not limited.

Changes from July 1980

$7. An explicit declaration of the equality operator is now allowed for all limited types, not just
limited private types.

ss. A renaming declaration that declares "=" is only allowed to rename another equality
operator.
Legality Rules

L1. An operator symbol used as a designator in a function specification must only be one of
the following strings: "and", "or", "xor", W "<=", "<", ">=I ">", "+", "-", "&", "not", ..,
"/", "mod", "rem", "abs", and ""; however, any letter in these strings can also be given in
upper case (see IG 6.1/S).

L2. The operator symbols "and", "orp, "xor", =", 1<=1, 1<", >=", 0">", " ", "/", "mod",

"rem", and ... (and their variants using upper case letters) must only be used in function.
specifications having exactly two parameters.

6-41

% %
A I& I&,

6.7 Overloading of Operators Version 1 (Dec 86) 0

L3. The operator symbols "+" and "-" must only be used in function specifications having one
or two parameters.

L4. The operator symbols "not" and " '-s" (including variants using upper case letters) must
only be used in a function specific,, .i having a single parameter. P

L5. Operator declarations must not have default values specified for their parameters.

L6. When "=" is declared by a function declaration, a generic instantiation, or a generic formal
subprogram declaration, the formal parameter types must be the same and must be
limited.

L7. When "=" is declared by a renaming declaration, the formal parameter types must be the
same, and the designator of the renamed function must be "=".

Test Objectives and Design Guidelines

Ti. Check that "in", "not in", "and then", "or else", " /=", and ":=" are not permitted as operator-
_symbols. In particular, check that "in" cannot be defined as a function with three
parameters of the same type and that ":-" cannot be defined as a procedure with one out
and one In parameter.

Check that operator symbols cannot have leading or trailing spaces.

Check that functions for "and", "or", "xor, "=", "<=", "<", ">=", "", "", '", "mod",
"rem", and .** cannot be declared with one or three parameters.

Check that functions for "not" and "abs" cannot be declared with two parameters. p

Check that functions for "+" and "-" cannot be declared with zero or three parameters.

Check that default expressions cannot be specified for operator symbol functions. , . :,- -

Check that the parameter types for "=7' cannot be different for subprogram declarations,
generic instantiations, and generic formal subprogram declarations.

Check that except in renaming declarations (see T5), both parameters 'n a declaration of
"=" cannot have the same scalar, access, or (nonlimited) private type.

ChE,c that except in renaming declarations i:e T5I the type of te parameters for "=" P
cannot c an array type whose componers have a scaiar, accesb, (nonlimited) private, or
nonlimited record type.

Check that except in renaming declarations (see T5), the type ot the parameters for . "

cannot be a record type none of whose subcomponents have a limited type.
Implementation Guideline: For all the above cases, include operators declared by generic instantiation.

T2. Check that all the permitted operator-symbols can be used in function specifications with
the required number of parameters:

" with two parameters -- "and", "r xor", 1 11, ,, . , , "." "v
m/ "mod", "rem", "*00 +,

" with one parameter -- "+ "-", "abs", and "not".

Implementation Guideline: Vary the case of letters in the operator symbols.
Implementation Guideline: Include function declarations, generic instantiations, and generic formal subprogram
specifications. (Renaming declarations are teated in T5.)
Check that these functions are invoked when the appropriate operatorsymbol is used in an expression. ,

Check that except for "-" (see Ti), operator specifications can have parameters with diflerent types. ,

T3. Check that operators for the predefined types can be redefined, e.g., try redefining "+" with

6-42 P")

Version 1 (Dec 86) 6.7 Overloading of Operators

INTEGER arguments and returning an INTEGER result. Check that the redefined operator
is invoked when infix notation is used.

T4. Check that if a renaming declaration declares "=", the renamed function cannot be "/=",
nor can it be a function denoted by a simple name or an operator symbol other than "=".

Implementation Guideline: In particular, check that even if the renamed function is a simple name that renames
an equality operator, the simple name cannot be used when a renaming declaration declares "="..I

Check that when a generic formal subprogram parameter is "=", the default name need not be or denote an P

equality operator.

T5. Check that a declaration of "=" need not have parameters of a limited type in a renaming
declaration.

Check that when "=" is redefined for a scalar type, a case statement using the scalar type
still chooses alternatives based on the predefined equality operation.

6-43-

S'=i

Si N=

* o..

* 'S"

3,%

'p.'

6-43 '.-

1w

Version 1 (Dec 86) 7.1 Package Structure 0

Chapter 7
Packages

.p

7.1 Package Structure
Semantic Ramifications-.

s, It is a consequence of the syntax (RM 3.9/2 and RM 3.1/2) that a package body, task body, |
subprogram body, or body stub cannot appear in a package specification. Any such constructs
must appear, if at all, in the corresponding package body.

S2. A package specification requires a package body if the specification declares a
subprogram, generic subprogram, or task, or if it declares a package or generic package that
requires a body. In addition, a package body is required if an incomplete type declaration
occurs immediately within the private part of a package and no full declaration is given later in
the private part (RM 3.8.1/3).

S3. Visibility rules for packages are discussed in IG 8.3.f/S.

Changes from July 1982

There are no significant changes.

Changes from July 1980
S5. An exceptions part in the body (starting with the reserved word exception) is permitted

only if it contains at least one exception handler.

S6. Representation specifications are permitted in both the visible and private parts of the
package. They are no longer required to follow all other declarations in the private part or
visible part.

S7. The remaining textual changes are not substantive. In particular, although generic
package declarations and instantlations are no longer package-declarations, wherever
package-declaration appeared in the 1980 syntax, the appropriate terms for a generic package
declaration and instantiation were added in 1983. Finally, the July 1982 syntax explicitly shows
that the declarative part of a package body may be empty; this was also the case in 1980, since
declarative_.part could itself be empty.

Legality Rules

L1. If an identifier is present at the end of a package specification or package body, it must be
the same as the package identifier (RM 7.1/3).

L2. A package body must be provided if any of the following are given as a declarative item of
a package specification (RM 7.1/4 and RM 3.8.1/3):

* a (nongeneric) subprogram declaration or a generic subprogram declaration,
unless the subprogram is named in an INTERFACE pragma accepted by the
implementation (see RM 13.9/3),

* a task declaration,

* a (nested) packagedeclaration or a generic package specification that
requires a body, y

-an incomplete type declaration in the private part of a package without a
corresponding full type declaration in the same private part (RM 3.8.1/3).

7-1

22
J .-.~t,."._.G ",,,' ' C'._'='. .'.'.?. I ..,,''. ' ", ',"." " ,," .' "¢. " .. ,, " ", "." . °,,"...',.E

.
" '-.',.", "- ".-"," ""." ." ,""," " ,, " " " " i

7.2 Package Specifications and Declarations Version 1 (Dec 86)

Exception Conditions

The exceptions that can be raised when elaborating a package specification or a package ,. y
body are those raised when elaborating .iy declarative part or those that are propagated (see
RM 11.4.1 (c)) from the package body.

Test Objectives and Design Guidelines

Ti. Check that if an identifier is present at the end of a package specification or body, it must
be the same as the package identifier.
Implementation Guideline: Check for generic and nongeneric packages.

Check that package bodies, subprogram bodies, task bodies, generic unit bodies, and
body stubs cannot appear in the visible or private part of package specifications.
Implementation Guideline: The package bodies should all appear at the end of the set of declarative items of
either the visible or private part, and in the case of package and task bodies, a package and task specification
should appear prior to the body declarations but not interleaved with them.

T2. Check that all degenerate syntactic cases of package specifications and package bodies
are treated correctly. In particular, that both may be empty, that all declarative parts may
be empty, and that in a package body, an exception reserved word is permitted only if
followed by at least one exception handler. (Note: checks using exception handlers are .'
provided elsewhere; see 11.4/T1, 3, 7, and 11.)

T3 Check that a package body is provided when it is required (see IG 7.3/Ti).

T4. Check that all forms of declaration (see IG 3.9) are permitted in the private part of a
package specification except for deferred constant declarations, private type definitions,
package bodies, task bodies, and subprogram bodies (including body stubs for
subprograms).

7.2 Package Specifications and Declarations N
Semantic Ramifications

si. Subprogram specifications, package specifica ions, task specifications, object declarations,
etc., can all appear in the private part. Of course, vuch entities are only known within the private
part and the corresponding package body (excep "or the full declarations of deterred constants,
which are declared in the visible part of the package and are thus also visible outside the
package.)

s2. An incomplete type declaration (see RM 3.8/3) appearing in the visible part of a package
must have a complete declaration given later and in the same visible part. If it is given in a
private part, however, its full declaration must occur later and immediately within either the
same private part or the declarative part of the corresponding package body (see IG 3.8. 1/S).

S3. A deferred constant declaration can appear only in the visible part of a package
specification. Its type must be a private type declared previously in the same package
specification (see RM 7.4/4).

s4. RM 3.4/15 states that if a derived type is declared immediately within the visible part of a -.

package, then within this visible part, the type cannot be used as the parent type of a derived
type definition. For example:

package P is
type TI is range 1 10; -- derived from an integer type ' .

type NT1 is new TI: -- illegal .-.

7-2

: .

*** ~ -* ~ ,, 4-~&~ - 4~~ '- -i .PJ-~ '--..:.~ -~~'-,f<-.-.y- -- '~-'-.-~:%

Version 1 (Dec 86) 7.2 Package Specifications and Declarations

private
type NNTI is new T1; -- legal in private part

NO end P;

Moreover, RM 7.4.1/4 states that the name of a private type cannot be used in a derived type -.

definition until after the end of the corresponding full type declaration of the private type.

package P is
type T is private;
type NT1 is new T; -- illegal

private A

type NT2 is new T; -- illegal
type T is range 1.. 10;
typeNT3 is new -- ok

end P;

S5. RM 3.4/11 also states that a derivable subprogram becomes derivable at the end of the
visible part in which it is declared. As a consequence, derivable subprograms may be derived
both in the private part of the same package and in the package body, as well as outside the
package.

package P is
type T1 is private;
type T2 is private;
procedure Q (X Ti);

private
" type T1 is ...

type T2 is new Ti; -- Derives Q(X T2); the derived Q
is not visible outside P.

end P;

package body P is
procedure Q (X : TI) is ... end Q;
type T3 is new TI; -- Derives Q(X : T3) from Ti since Q(X TI)

-- is declared in P's visible part.
type T4 is new T2; -- Does not derive Q since Q(X T2) is

end P; -- declared in private part.

Changes from July 1982

S6. There are no substantive changes to this section of the RM. However, changes in RM
3.8.1 affect the treatment of incomplete types in packages (see IG 3.8.1/S).

Changes from July 1980

S7. There are no substantive changes to this section of the RM. However, changes in RM 3.4
affect the treatment of derived types in packages.

Legality Rules

L1. The package identifier must not be a homograph of another declaration occurring
immediately within the same declarative region (RM 8.3/17).

Test Objectives and Design Guidelines

.. '~. TI. Check that a package specification can be declared in a package specification, within
either the visible or the private part.

7-3

F .Z. 4 *
., , ,,, ,' . . _._ '. -.'. ,-.,.. r ,.... -,---".'- .*".'.:,.,. ',,* ,.%_ _,*, '.,,- *,.' -... / o.-' ...W . -.... '.-.,."

7.3 Package Bodies Version 1 (Dec 86)

Implementation Guide/in .: Don't use subprogram or task declarations within either package specification (this
situation is tested below in 7.3/T). '' , :""

Check that a package body can b) 'rovided for a package specification that does not
contain any subprogram or task aecarations and that statements within the package
bodies can be used to initialize variables visible within the package body. %

T2. Check that declarative items in a package specification are elaborated in order. .
Implementation Guideline: Use object declarations initialized with functions, or objects having default values
provided by functions.

r

T3. Check that if an incomplete type declaration is given in the visible part of a package, the
full declaration cannot be given within the package's private part or package body, nor can
it be given in the visible part of a nested package specification (see IG 3.8.1Ti).

Check that it an incomplete type declaration is given in the private part of a package, the
full declaration must be given later, either in the same private part or in the package body
(see IG 3.8.1/T8).

In a package which declares a private type T, check that an incomplete type declaration of
T may not appear immediately within the visible part, private part, or body of the package.

T4. Check that only basic declarative items can appear in a package specification, i.e., check
that subprogram bodies, task bodies, package bodies, and stubs may not appear either in
the visible part or in the private part (see IG 7.1/T).

T5. Check that if a derived type is declared in the visible part of a package, it may not be used
as a parent type in a derived type definition in the same visible part (see IG 3.4/T1 7).
Implementation Guideline: Include a numeric type definition as one case of derived type.

Check that other types (i.e., neither private nor derived) may be declared and used as
parent types in the same visible part (see IG 3.4/T 7).

4.!

7.3 Package Bodies
Semantic Ramifications

Si. Since according to RM 7.1/4, the body of any subprogram, package, generic unit, or task
declared in a package specification must appear in the corresponding package body, the
following kinds of nestings can arise:

package A is
C constant INTEGER := 6;
E constant INTEGER 4;
procedure AP (X : INTEGER C);

package B is
D : constant INTEGER 5:
procedure BP (X INTEGER C + D + E):

end B:
end A:

package body A is

D : INTEGER;

package body B is . .
E INTEGER;

7-4

" i.. . . .

[. - - -

• " Version 1 (Dec 86) 7.3 Package Bodies

procedure BP (X INTEGER C + D + A.E) is

end SP;
end B;

procedure AP (X INTEGER C) is ... end AP;
end A;

This example illustrates that:

" the ordering of declarations in the body need not duplicate the ordering of the
declarations in the specification;

" the nesting of package specifications must be duplicated by the nesting of the
corresponding package bodies (see RM 7.1/4);

" the visibility rules for identifiers ensure that the default parameter initialization in
BP's body declaration refers to the same entities that BP's specification referred
to, since in attempting to determine what D denotes, one first looks in B's
package body and B's package specification, then in A's package body, and
then in A's specification (see RM 8.3). This sequence means that if A.E had
been written as E, it would have been associated with a different entity than its
association in the initial declaration of BP. Hence, a selected component form
of name is needed to ensure that the later specification of BP conforms to the
earlier specification (see RM 6,3.1i5).

S2. Note that a null package body can have a semantic effect. If a task object is declared in a
package specification, the task is activated after elaborating the declarative part of the
corresponding package body (RM 9.3/2):

task type T;

X : INTEGER := 1;

function F return INTEGER is
begin

X :=X + 1;
return X;

end F,

task body T is
X INTEGER F;

begin
null;

end T;

package P is
TSK : T;

end P-

package body P is
end P; -- P.TSK activated

7-5

7.3 Package Bodies Version 1 (Dec 86)

package CHK is . ,
B: BOOLEAN := X 2; -- must be TRUE . .

end CBL: ...

Note that package body P is optional. If it is not provided, a virtual body will be assumed to
occur at the end of the declarative part.

Changes from July 1982

S3. There are no significant changes.

Changes from July 1980

s4. There are no significant changes.

Legality Rules

L1. A package body must be provided if any of the following are given as a declarative item of
a package specification (RM 7.1/4):

a (nongeneric) subprogram declaration or a generic subprogram declaration, .'-
unless the subprogram is named in an INTERFACE pragma which is accepted
by the implementation (see RM 13.9/3),

* a task declaration (RM 9.1/1),
* a (nested) packagedeclaration or generic package specification that requires

a body,

* an incomplete type declaration in the private part of a package without a
corresponding full type declaration in the same private part (RM 3.8.1/3). .,>

1.2. The declaration of a package specification in a declarative part must precede the
declaration of the corresponding body (see RM 3.9/9).

Test Objectives and Design Guidelines

Ti. Check that if a subprogram or task specifica' 'n is provided in a package specification, a
package body must not be omitted (see also IG 9.1/T3) (if no pragma INTERFACE has
been specified for the subprogram).

Check that if a generic subprogram specification is given in a package specification, a
package body must not be omitted.

Check that a package body must be provided if an incomplete type is declared in the
private part of a package, but no full declaration for the type is given later in the same
private part.
Implementation Guideline: Include a check for separately compiled bodies and bodies given as subunits.

Given a package specification 0 declared within a package specification P, check that P
must have a body containing a body for Q If 0 requires a body, i.e., if a declares:

* a subprogram, task, or generic subprogram;

* a package specification or generic package specification containing either a
subprogram, task, or generic subprogram declaration;

* an incomplete type whose full declaration Is not given in Q's specification.
Implementation Guideline: Some of these declarations should be given in the private part.
Implementation Guideline: Check for generic and nongeneric packages that require bodies.

7-6

•

Version I (Dec 86) 7.4 Private Type and Deferred Constant Declarations

'4e

Check that if a subprogram is declared in a package specification by a renaming
declaration or by a generic instantiation, no package body is required.

, "* T2. Check that the statements in a package body are executed after the declarations in the
body have been elaborated.

T3. Check that exceptions raised in the declarative or statement part of a package body are
propagated properly (see IG 11.4/T3, /T7, and /T1 1).

T4. Check that entities declared in a package body cannot be accessed from outside the
package body.

T5. Check that if a null package body is provided, any tasks declared in the package
specification are activated (see IG 9.3/Ti).

T6. Check that a package body cannot be provided in a declarative part unless its specification
has already been declared.

T7 Check that the order of declarations (for subprograms, tasks, packages, etc.) which are
required in the package body does not need to be the same as the order of their
declaration in the specification.

7.4 Private Type and Deferred Constant Declarations

SernanLic Ramifications

S1. RM 7.4/4 states that deferred constants are permitted only for private types declared in the
same private part as the deferred constant. Hence,

C constant T:

is illegal unless a declaration for T appears as a declarative item in the same visible part
containing the declaration of C. In particular, the following would be illegal:

package P is

type T is private;
package Q is

type T is private;
C : constant P.T; -- illegal; not in same visible part

private
type T is ... : -- legal, but Q.T is different from P.T
C : constant T; -- illegal; must not be in private part

end Q:
C : constant Q.T: -- illegal; Q.T is not a declarative

-- item of package P
private

type T is...,
end P;

S2. When determining the type of an object, it is always important to know whether the ob --c-,
being referred to inside the package body that knows the definition of the pnvate ,
example,

-'-.d

./-

MAI ?THE ADR (TRADE NOW) COMPILER VALIDATION CAPAILTY sa'
INIEI0ITERS' GUIDE VERION M() SOFTECH INC WALTMAN NA

UWNCMLA S J SOODENOUU DEC KFB1/ L

Hill'---- imWAwM I ri

II11 32-2

14.0 1120

11111.25

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF S ANDOMS-96, -

w w w w w w w w w

7.4 Private Type and Deferred Constant Declarations Version 1 (Dec 86)

package P is
type T is private;

private
type T is new INTEG. -- (1)

end P;

Y : P.T;

package Q is
type TNAME is access P.T;
X : NAM;

end Q;

package body P is
begin

Q.X := new P.T'(3); -- legal (2a)
Y := 1; -- legal (2b)

end P;

package body Q is
begin

Q.X := new P.T' (3); -- illegal (3)
end Q;

Conversion from universal integer to type T is implicitly declared after the declaration at (1).
This implicit conversion operation allows integer literals to be used in contexts requiring a value
of type T. The scope of this operation includes P's package body; hence, the allocator and literal ... ,
written at (2a) and (2b) are legal. However, inside £ at (3), T is private, and so, the scope of
implicit conversion from universaLintegerto type T does not include O's package body. Hence,
no integer literals can be written as though they were values of type T.

S3. All operators (except inequality; see RM 6.7/4) can be overloaded or redefined to accept
operands of a limited or nonlimited private type either within the package defining the private
type or outside it (see IG 6.7/S). If the redefinition occurs within the package defining the
private type, tner the subprogram implementing the operation has access to the representation
of the private type. If outside this package, however, the subprogram has the usual knowledge
of a private type's representation, namely, no knowledge at all (except of discriminants, if any).

Changes from July 1982

S4. There are no significant changes.

Changes from July 1980

ss. A deferred constant declaration must be declared with a type mark; no explicit constraint is
allowed in the deferred constant declaration.

Legality Rules

Li. A private typedeclaration used as a declarativeitem must appear in the visible part of a
package specification; It is not allowed in a subprogram body, task body, block, package
body, or the private part of a package specification. (Note: a private typedeclaration is
also allowed as a generic parameter; see RM 12.1/2.)

1-2. If a deferred constant declaration is given, it must appear in the visible part of a package
specification containing a corresponding private type declaration (RM 7.4/4), and the full

U

7-8
, ?

Version 1 (Dec 86) 7.4.1 Private Types

declaration of the constant must appear in the private part of this package specification 'A.
(RM 7.4.3/1).

Test Objectives and Design Guidelines

T1. Check that a private type declaration (both limited and nonlimited) cannot appear in the
private part of a package specification, in a package body, subprogram body, block, or task
body.
Check that the full declaration of a private type (limited and nonlimited) cannot appear in
the same visible part as does the private type declaration, nor can it be omitted entirely
from the package specification (even if it is provided in the corresponding package body).

Check that a full declaration of a private type cannot appear in the private part of a nested
package specification.
Implementation Guideline: Check both generic and non-generic packages.

T2. Check that a deferred constant declaration may only be given in the same visible part as its
private type (see IG 7.4.3/Ti).

Check that a deferred constant cannot be given for a composite type having a component .

of a private type (see IG 7.4.3/Ti)...,

Check that a full declaration for a deferred constant must be given in the private part and
must have an explicit initialization (see IG 7.4.3/Ti), even if the private type has default
values specified for all its components.

T3. Check that no constraint is allowed in the declaration of a deferred constant.

T4. Check that within the package body, operations depending on the full declaration of a
"' private type are available, but that outside the package body, operations that depend on

the characteristics of the full type declaration are not available unless explicit overloadings
of these operators have been provided by the user.

T5. Check that all forms of declaration (see IG 3.9) are permitted in the private part of a
package specification except for deferred constant declarations (see IG 7.4.3/Ti), private .

typedefinitions (see Ti), package bodies (see IG 7.1/Ti), task bodies (see IG 7.1/i),
and subprogram bodies (see IG 7.1/T1) (including body stubs for subprograms) (see IG
7.1/T4).

7.4.1 Private Types
Semantic Ramifications I

Si. In this section, we discuss those properties of private types that are common to limited and
nonlimited private types. The only difference between the two kinds of private types is that,%
limited private types do not have the operations of assignment and equality implicitly declared; %
nonlimited private types do. %

S2. RM 7.4.1/4 states that a name denoting a private type may not be used in a derived type
definition until after the end of the private type's full type declaration. This restriction applies
also to a name denoting a subtype of the private type, and to a name denoting a composite type
or subtype with a subcomponent of the private type. For example:

package P is
type TI is private; I
type T2 is array (1.. 2) of Ti;

type NT2 is new T2; -- illegal

7-9

7.4.1 Private Types Version 1 (Dec 86) p

subtype ST2 is T2; '-
type NST2 is new ST2; -- illegal

private .%.
type NT3 is new Ti -- illegal
type NT4 is new T2; -- illegal
type Ti is range 1 .. 2;
type NT5 is new TI; -- legal after full declaration

end P;

S3. The identifier used to denote a private type can be used prior to the full declaration of the
private type to denote some other entity, e.g.,

type T is private;
type R (T : INTEGER) is

record null; end record;
X : R(T => 3) := (T => 3); -- legal use of T

S4. The full type declaration of a nonlimited private type cannot be a limited type. Thus the full
declaration cannot declare a task type, a type derived from a limited type, nor a composite type
with a subcomponent of a limited type (see RM 7.4.4/2). For example:

package P is
type T is private;
task type U is ...; 'a

type T is
record -

X : U; -- illegal
end record;

end ?;

The full declaration of T is illegal since it contains a component of a limited type (in particular a
task type).

S5. 1- a. rai r - dc-n ca. n oot 11 S:1 .,,;na t part, the .ype declared by the
full type &- r,.- u rt not be an unconstra: -e , vj Al i discriminants nor an unconstrained
array type. -.-- '-11 type declaration cr : . : .orstrainc- type with discriminants only
when the til iy - s cderived from:

* an unconstrained type with discnminants and a discniminant constraint is given
in the sobtype indcation, or

" a pre.iously constrained type with discnminants (in which case no further
constraint is permitted).

For example: %

type BULKSTORAGE is new PERIPRERAL(DROM); -- see RM 3.7.3/6, /7

package P is
type Ti is private;
type T2 is private;

private
type T! is new PERIPHERAL(DISK) - legal
t-yr i T2 is new BULKSTORAGE: -- legal , .

end P: ",..

r710

;.,

Version 1 (Dec 86) 7.4.1 Private Types

Note that in these instances no component selection operations for the discriminants are
implicitly declared in the visible part of the package for the private type (see RM 7.4.2/1), and
therefore these operations are not available outside of the package.
s6. For both private and limited private types having discriminants, the only allowed variation in
lexical structure between the private typedeclaration and the full declaration is that simple
names may be replaced by expanded names (and vice versa) if both refer to the same
declaration, string literals that denote operators may have upper or lower case characters, and
different numeric literals are allowed if they have the same value (see RM 6.3.1). The ability to
use expanded names means that selected component notation can be used to resolve naming
difficulties, e.g.,

X : INTEGER := 5;
package R is

type T(A : INTEGER "mod"(X, 3)) is private:
X : INTEGER := 5;

private
type T(A : INTEGER "MOD"(P.X, 03)) is ...

end R;

Note that according to RM 8.3, it is necessary to write P.X in the full declaration of T, since X by
itseif would refer to R.X. Even though R.X and P.X have the same values at the time both
declarations of T are elaborated, the second declaration would be illegal without writing P.X,
since it would refer to a different X than the one referred to in the first declaration.
S7. Within the scope of the full type declaration of a private type, the type is not considered
"private." Moreover, if the private type is a limited private type and the full type declaration does
not declare a limited type, then within the scope of the full declaration the type is not considered
"limited." Consider the following example:

package A is
type LP is limited private;
type P1 is private;
type P2 is private;
type P3 is private;
function F return LP;
function "+" (L, R : LP) return LP;

private
type PI is array (1 .. 2) of LP; -- illegal
type LP is new INTEGER;
type P2 is array (1 .. 2) of LP; -- legal
type P3 is new LP; -- legal
function "-" (L, R : LP) return BOOLEAN; -- illegal
C1 BOOLEAN := LP'CONSTRAINED; -- illegal
C2 BOOLEAN : P2'CONSTRAINED; -- illegal
procedure G (X : P3 := F + 2); -- legal

end A;

The full declaration of P1 is illegal since it declares a limited type. The full declarations of P2
and P3 are not illegal since LP is not a limited type at the point of the declarations. The
redecaration of equality Is Illegal since LP is no longer limited. The uses of CONSTRAINED are
illegal since LP and P2 are no longer private; moreover, the full declaration does not declare a
type with discriminants or a private type. Procedure G is legal since both F and "+" are derived
from LP.

* -o"se. A full declaration of a private type must be either a fulltypedeclaration or a task-

7-11

.4l

4. '

7.4.1 Private Types Version 1 (Dec 86)

_declaration (for a limited private type). It cannot be an incomplete type declaration nor a
subtype declaration (RM 7.4.1/1).

Changes from July 1982

s9. If a private type declaration does not have a discriminant part, the full type declaration may
declare a type with discriminants if the type is constrained.
sio. Prior to the end of the full declaration of a private type, the private type - or a name that
denotes a type defined in terms of the private type - may not be used in a derived type
definition.

Changes from July 1980

sii. If a private type declaration has a discriminant part, the full type declaration must be a
record type declaration.

S12. If a name denotes a private type or any type defined in terms of a private type, then before
the full declaration of the private type, the only allowed uses of the name are in a deferred
constant declaration, a type or subtype declaration, a subprogram specification, or an entry
declaration; moreover, the name may not be used within an expression.
S13. The conformance rules in RM 6.3.1 now clarify and change the permissible variations
between the discriminant part of a private type declaration and its full declaration.
S14. See also IG 7.4.2/Changes.

Legality Rules

Li. The full declaration of a private or a limited private type declared in the visible part of a
package specification must appear in the private part of the same package specification. It
must not be given in a nested package specification.

L2. If a private type..declaration has a discriminant part, the corresponding full declaration
must have a conforming discriminant part (see IG 6.3.1/L) and must be a record type
definition.

L3. If the private type declaration does not h-' di,,criminant part, the full declaration must
not declare an unconstrained type with discnrminants.

L4. A full declaration of a private or a lImited private type must not declare an unconstrained
array type or an unconstrained type with discriminants.

L5. A full declaration of a private or limited private type must not be an incomplete type
declaration or a subtype declaration.

L6. The full declaration of a nonllmited private type must not declare a task type nor a type
derived from a limited type, nor can it declare an array or record type for which assignment
and equality are not defined (see IG 7.4.4/S).

L7. Prior to the end of the full declaration of a private type, the name that denotes the private
type may be used only as the type mark in a deferred constant declaration, an access type
definition (but not in a formal generic type definition), a component declaration of an array
or record type_ declaration, a subtype -declaration, a formal parameter specification of an
entry declaration or a subprogram specification, or a result type in a subprogram
specification.
The same restrictions apply to the name of a subtype of a private type and to the names of
composite types which have a subcomponent of the private type. " ."

7%

7-12

N % N -.

Version 1 (Dec 86) 7.4.1 Private Types

Test Objectives and Design Guidelines

T1. Check that a private type may not be (fully) declared as:

" a type derived from a limited private type, a task type, or a composite type
having a subcomponent of a limited type,
Implementation Guideline: Include derivation from a generic formal limited private type.

" a record or array type with a component of a limited private type, a task type,
or a composite type having a component of a limited type,

" a record or array type for which assignment and equality are not defined even
though no subcomponent of the type is limited (see IG 7.4.4/T9).

Implementation Guideline: Check that the above restrictions are enforced even if all the types are declared in
the same package.

T3. Check that within the package that declares a private type, T, and before the end of the
corresponding full declaration, neither: .

" a name denoting the private type (i.e., T), .0

" a name that denotes a subtype of T, nor
" a name denoting a composite type with a subcomponent of type T or of a

subtype ofT
may be used:

* in a derived type definition, -

* in a simple expression (as the type mark in a conversion, qualification,
membership test (AI-001 53), or attribute ('SIZE, 'CONSTRAINED, or 'BASE)),

* in a renaming declaration for an object,
* in the subtype indication of an object declaration or constant declaration,

e as a generic actual parameter,
* in a generic formal parameter (object (having mode in or in out), array type,

or access type),
*in an allocator,

* in a representation clause. %

Check that these uses of names are permitted in the private part and body after the end of
the full type declaration.
Check that the identifier T may be used if it does not denote the private type.
Check that all of the above names may be used in a subtype declaration, a type
declaration (for a subcomponent of a composite type or an access type), a subprogram
specification (as the formal parameter type or result type in a subprogram declaration,
generic formal subprogram declaration, or renaming declaration), or an entry declaration
(as a formal parameter type).
Implementation Guideline: Check that these requirements are satisfied both by declarations given immediately
within the same declarative region and within nested package specifications.

T4. If a private type declaration contains a discriminant part, check that the corresponding full
declaration contains a conforming discriminant part and cannot be a derived type with
discriminants. ,

.. , q(
7-13

-Me" '..

7.4.2 Operations on Private Types Version I (Dec 86)

Implementation Guidelin: Include derivation from a formal generic type.

T5. Check that the full type declaration of a private type without a discriminant part may not
declare either a record type with L konstralned disciminants or a type derived from such
an unconstrained type.
Implementaton Guideline: Include derivation from a formal generic type.

Check that the full type declaration may not declare an unconstrained array type or a
derived type that is an unconstrained array type.

Check that the full declaration cannot be an incomplete type declaration or a subtype
declaration.

Check that the full declaration may be either a derived type declaration where the parent
type is a constrained type with discriminants, or a derived type declaration where the
parent type is an unconstrained type with discriminants and an explicit discriminant
constraint appears after the type mark.
Implementation Guideline: Include a constrained formal generic type.

Check that the full type declaration may be a derived type declaration where the type mark
denotes an unconstrained array type if an explicit Index constraint appears as part of the
subtype indication.

For both cases of a constrained type with discriminants, check that the discriminants are
not visible outside the package.

T6. Check that a full declaration of a private type without discrminants (limited or nonlimited)
can be given in terms of any scalar, array, record (including derived record types with
discriminants), access type (including an access type with discriminants), or private type.
Check that the full declaration of a limited private type can be a task type (see IG 7.4.4/T6).

17. Check that discriminants may not have the same Identifier (see IG 8.3.c/T1).

7.4.2 Operations on Private Types
Semantic Ramifications

si. If a composite type is declared within the same package as a private type and contains
components having that private type, then any additional operations for the composite type (i.e.,
operations that depend on the full declaration of the component type) are declared at the
earliest place within the Immediate scope (RM 8.2/2) of the composite type and after the full
declaration of the private type. Such operations may include relational operators for a one-
dimensional array, and equality operators for a composite limited type. One of the
consequences of the rule concerning the declaration of additional operations is that, if the
composite type is declared In an Inner package preceding the full declaration of the private type,
then the additional operations are not declared until the package body of the inner package, if at
all. (If there Is no package body, there are no implicit declarations of these operations.) This is
the case because the package body of the Inner package is the first place after the full
declaration in the Immediate scope of the declaration of the composite type. The following
example illustrates some ramifications of this rule:

package P is i
type T is private;
type 0 is array (1.. 2) of T; -- (1)

7%% 14

~7.14

Version 1 (Dec 86) 7.4.2 Operations on Private Types p
or

package Q is
type V is array (1.. 2) of T; -- (2)0 private
type W is array (1.. 2) of T; -- (3) 9.

end Q; :-

private
type T is range 1 .. 10; -- (4)

end P;

package body P is -- (5)
package body Q is... -- (6)
end Q;

-- (7)
end P;

The following comments pertain to points in the example marked by numbered comments
above:

1. The only basic operations declared for U are indexing, slicing (since U is a
one-dimensional array), aggregates, assignment, conversion, qualification,
membership, and array attributes. The only operators declared for U are
equality and inequality (since the component type is not limited) and
catenation (since the component type is not limited and U is a one-
dimensional array).

2. The operations declared for V are the same as those declared for U.

3. The operations declared for W are the same as those declared for U.

4. All integer operations are declared for T. In addition, since U is now known to
have a discrete component type and is a one-dimensional array, relational
operators are now declared for U. Note that although V is in scope (RM 8.2/2,
/3) and is known to be a discrete array, no relational operations are declared I
for V; the Immediate scope of V only starts with Q's package body. Note that
W's scope does not include this point, since W is declared in Q's private part. .-

5. All operations for T and U are visible throughout the body of P, and no
additional operations are declared here for V.

6. Relational operations are declared for V and W; these operations are visible IP
only within the body of 0. Note that (6) is the earliest point within theonly,

immediate scope of V and W where these operations may be declared.

7. Additional operations for V and W declared at (6) are not visible here since
these are declared within the package body of 0. Additional operations for U
are still visible here but not outside of P. 0

s2. RM 7.4.2/8 indicates that the rules for the implicit declaration of additional operations apply
also to indexing, component selection, and slicing operations declared for an access type
whose designated type is a private type or an incomplete type. The following example shows
the consequence of not having these basic operations available outside the immediate scope of
the access type:

package P is
type T is private;

7-15 3

7.4.2 Operations on Private Types Version 1 (Dec 86)

type U is access T;

,ecord , G

end record; (2)

end 1;

package body P is
X :Q.U := newT' (., 2, 3); -- (3) -- legal
Z : INTEGER := X.A; -- (4) -- illegal

package body Q is
Z : INTEGER := X.A; -- (5) -- legal

end Q;
end P; V

1. U.all and the allocator operation for U are implicitly declared here.

2. Component selection operations for A, B, and C are declared for type T, but
not for type U, even though the designated type of U is known to contain those
components; U's immediate scope does not include this point.

3. The allocation and initialization are legal because aggregate formation and
qualification operations have been declared for T (and are in scope), and the
allocator for U is in scope.

4. The component selection is illegal because no component selection
operations for U are declared yet.

5. All additional operations for U are declared upon entering Q's package body,
so this statement is legal.

The example illustrates the Importance of knowing where operations are implicitly declared.

S3. The following example also shows the Importance of understanding what operations are
declared at a given point:

package P is
type LP is limited private;

private
type LP is new INTEGER;

end P;
j%X : P.LP;

type NLP is new P.LP; -- derived limited type
procedure R (X NLP) is... end;

package body P is
XNLP : NLl;

begin
X := -- (1) legal

XNP 1; -- (2) illegal

7-16

V' N-. - - -V ., -,.,., . .% " ,. -

WXVW WWAr nr %"A ILKV KU KU KP.V ~IdUU UWUU UWV ', WU

Version 1 (Dec 86) 7.4.2 Operations on Private Types

R-- (3) illegal
R(NLP(LP(1)); -- (4) legal

end P;

(1) is legal since assignment is declared for LP when LP is fully declared, and hence is available
in P's body. Similarly, conversion from universaljIntegerto LP is also declared when LP is fully
declared; this conversion operation allows the use of integer literals in contexts requiring values
of type LP (RM 4.6/15).

(2) is illegal because neither assignment nor conversion from universal integer is declared after
NLP's declaration, since the parent type is a limited type (RM 3.4/5). However, conversion from
NLP to LP, and vice versa, is declared (RM 3.4/5).
(3) is illegal because there is no conversion from universalinteger to NLP, but (4) is legal
because such a conversion is declared for type LP, and conversion to NLP's parent type is
declared after NLP's declaration.
s4. The rules for hiding of implicitly declared operations (see RM 8.3/17) need to be given
special attention in packages. The rules state that immediately within the same declarative
region, two declarations must not be homographs unless exactly one of them is an implicit
declaration (of a predefined operation or a derived subprogram). When these conditions are
met, the following relationships hold:

an explicit declaration always hides an implicit declaration, regardless of which
appears first,

* an implicit declaration of a derived subprogram always hides an implicit
declaration of a predefined operator, regardless of which appears first.

In the case of inequality (which is never explicitly declared), the rules in RM 8.3/17 specify that
hiding of inequality operations follows exactly the same pattern as hiding of the corresponding
equality operations.

The following two examples illustrate some of the ramifications of this rule and its interactions
with derived types (see RM 3.4/11).

package PI is
type Ti is range 1 .. 10;

$ -- implicit declaration of integer predefined operations,
-- namiely "+"+, "-", etc. , and "1<h", "=", etc.

C1: constant Ti := 2;
Di: constant T1 := C1 + Ci; -- operation is predefined "+"
function "+" (L, R : TI) return TI;

-- Redeclaration hides predefined "+". New "+" is visible for
-- rest of package specification, package body, and outside of
-- package, and is a derivable subprogram.

private
function "-" (L, R : T1) return T1;

-- redefinition hides predefined "-" for rest of package and
-- body but is not visible outside and not derivable.

and P1 ;

use P1:

%.%

7-? 7

*4,

7.4.2 Operations on Private Types Version 1 (Dec 86)

package P2 is ,.
type T2 is private;
function "+" (L, R T2) return T2;
function "*" (L, R T2) return T2;

-- both "+" and "*" are derivable subprograms
private

function " M" (L, R T2) return T2; -- not derivable
type T2 is new TI;

-- All arithmetic operators derived from Ti are implicitly
-- declared here, namely user-defined "+", predefined "*",

1. "<", etc. Even though these implicit declarations
-- occur later than the explicit declarations, the implicit
-- declarations of +", "*", and "/" are hidden according to the
-- rules of RM 8.3/17.

end P2;

The next example illustrates derivation and hiding of the equality operator for limited private
types (see also RM 7.4.4):

package LIMITED TYPES 1 is
type LT1 is limited private;
function "=" (L,R . LT1) return BOOLEAN;

type LT2 is limited private;

-- no "=" operation declared here for LT2
private

type LT1 is range I .. 10;
-- predefined "=" is hidden by explicit declaration

LC1, LC2 : constant LT. := 2;
NO GOOD : constant BOOLEAN := LC1 = LC2;

-- raises PROGRAMERROR since body of "=" not elaborated

type LT2 is range 1 ..

-- predefined "=" visib only for rest of package and body,
-- no "=" for LT2 vis* outside of package.

end LIMITED TYPES 1;

use LIMITED TYPES 1;

package LIMITEDTYPES 2 is
type LT3 is limited private;
type LT4 is limited private;
type LT5 is new LTI; -- derives "=" from LT1
type LT6 is new LT2; -- no "=11 derived or declared
type T7 is private; -- note: does not say "limited"

private
type LT3 is new LT1;

-- derives "=" from LT1, though only visible inside package
type LT4 is new LT2; -- no "=" derived or declared
type T7 is new LTI;

-- illegal, full type may be a limited type only if private
-- type declaration says "limited" 7. * .

end LIMITED TYPES_2;

'U1

7-18

",44

- .: -' . . - .- - - . -.- . .'. .- .- . .- - - -.- - .- . . - . .

Version 1 (Dec 86) 7.4.2 Operations on Private Types

S5. The attributes T'BASE and T'SIZE are declared for private types, although they may not be
used within the package until after the end of the full declaration of the private type (see RM

A. 7.4.1/4). T'CONSTRAINED also cannot be used within the package before the full type
declaration, and it cannot be used after the full declaration either, unless the full declaration
derives from a private type. In addition, if the private type declaration has a discriminant part,
'CONSTRAINED is permitted for objects of the private type both inside and outside the package
(RM 3.7.4/2). Note that there is, in effect, a special rule for 'CONSTRAINED: although
'CONSTRAINED is declared after the declaration of a private type, it is not usable after the full
type declaration even though visible, unless the full type declaration implicitly declares a new
'CONSTRAINED operation:

package P is
type TI is private; 5_,

type U (D : INTEGER) is
record null; end record;

private
type Ti is new U(1); -- Ti has discriminants
A : Ti;
B : BOOLEAN TI'CONSTRAINED; -- illegal; Ti not private
C BOOLEAN A'CONSTRAINED; -- legal; A has discriminants

end P;

package Q is
type T2 is private;

private
type T2 is new P.Tl;
A : T2;
B BOOLEAN T2rCONSTRAINED; -- legal; T2 is private
C : BOOLEAN : A' CONSTRAINED; -- illegal; A has no discriminant

end Q; 5.-,

S6. Note that it is possible to use 'CONSTRAINED prior to the full declaration of the private
type. For example:

package P is .
type T (D : INTEGER) is private;
C : constant T;
procedure G (X BOOLEAN := C'CONSTRAINED); see RM 7.4.3/2

private

end P; 0

S7. T'CONSTRAINED exists primarily for generic formal private types. It allows the body of a
generic unit to provide different handling for objects of a formal type depending on whether the
objects all have the same constraints (and thus size) or possibly cliffering constraints (and thus
varying sizes). For example, the generic body for the SEQUENTIAL_10 package (see RM 14.2)
might use this attribute to decide whether fixed-size (external) records or varying-size records
are appropriate for the external file.

S8. Note that 'CONSTRAINED Is only defined for private types and subtypes. In particular, it is
not allowed for composite types containing a subcomponent of a limited type.

sq. User-defined operations on limited private types and on nonlimited private types may be
declared outside the package that declares the type, as well as inside. Any operations declared
outside, however, have no special access to the representation of the private types.

11.9
7-19 "-S

.... .. t F~n wnn 01.. .. M , ., .. -, .rw,

7.4.2 Operations on Private Types Version 1 (Dec 86)

sio. Apart from the attributes discussed above ('SIZE. 'BASE, and 'CONSTRAINED), the only
operations implicitly declared for private types are the following:

" the operations involved in as. ' ment (except for limited private types),

" predefined equality and inequality (except for limited private types),

" membership tests,

" qualification and conversion, and

* component selection for any discriminants declared in the private type
declaration.

Since the name of the type may not be used in a simple expression prior to the end of the full
declaration (see RM 7.4.1/4), membership tests, qualification, conversion, and attributes may
not be used until after the end of the full declaration.

Changes from July 1982

s1 1. The attribute 'SIZE is available for every private type. .

S12. RM 7.4.2/4 now says all operations declared within a visible part are available outside the
package (not just operations having a parameter of a private type declared in the visible part). p.

S13. The rule (RM 7.4.2/6) for operations implicitly declared for composite types is extended to
include any composite type with a subcomponent of a private type.

S14. 'CONSTRAINED is allowed for subtypes of a private type.

s15. The rules for implicit declarations of additional operations (see S2 and S3 above) apply
also to access types whose designated types are private types or incomplete types. - "

Changes from July 1980

S16. This sectior! now incorporates information not stated explicitly in the 1980 version. It also
incorporates information that existed in other 1980 sections. We describe here (under
Changes', ony those changes relevant to the contpnts of the July 1982 section.

S17. The ,,uc,- -ie iBASE is declared for eve,' ty,.

S18. The ariutes 'SIZE and 'ADDRESS are 'i lfe for objects of every private type.

Sig. 'CONSTRAINED is available for private types without discriminants.

S20. The operations for private types include membership tests, selected components for
discriminants, qualification, and explicit conversion.

S21. The places where implicit declarations of additional operations occur have been made
explicit.

Legality Rules

L1. If a one-dimensional array type is declared with a component type that is an as-yet
incompletely declared private or limited private type, then the following operations are only
implicitly declared for the array type (and thus usable) after the full declaration of the
component type and within the Immediate scope of the array type:

" relational operators, if the component type is a scalar type;

" logical operators, if the component type is a Boolean type;

" string literals, if the component type is a character type; ' i'

7'p2',47-2o

Version 1 (Dec 86) 7.4.2 Operations on Private Types

equality, inequality, catenation, assignment, and aggregates, if the component
type was a limited prvate type and the full declaration declares a nonlimited
type.

L2. If a multi-dimensional array type is declared with a component type that is an as-yet
incompletely declared limited private type and the full declaration declares a nonlimited
type, then equality and inequality are only implicitly declared for the array type (and thus
usable) after the full declaration of the component type and within the immediate scope of '

the array type.

L3. If the designated type of an access type is an as-yet incompletely declared private or
limited private type, then the following operations are only implicitly declared (and thus
usable) after the full declaration of the designated type and within the immediate scope of
the access type:

* indexing, 'FIRST, 'LAST, 'LENGTH, and 'RANGE, if the designated type is an
array type;

* slicing, if the designated type is a one-dimensional array type;

W component selection, if the designated type is a record type with components. K"
L4. When T is a type, the attribute T'CONSTRAINED is allowed only for a private type or

subtype T, including generic formal private types.

Test Objectives and Design Guidelines

T1. Check that predefined equality and inequality are implicitly declared for nonlimited private
types at the point of the private type declaration, and are not declared for limited private
types or for composite types which have a subcomponent of a limited private type.

T2. Check that operations for arrays of private types which depend on characteristics of the full
declaration of the private type are not visible or usable outside the package. (Such
operations are relational operations, logical operations, string literals, and, for limited
private component types, equality, inequality, catenation, assignment, and aggregates.)
Implementation Guideline: In the limited private case, use an array with a subcomponent of a limited type.

Check that when the designated type of an access type is a private type, operations for the
access type that depend on characteristics of the full declaration of the private type are not
visible or usable outside the package. Such operations are indexing, slicing, 'FIRST,
'LAST, 'LENGTH, and 'RANGE when the type is an array type, and component selection
when the type is a record type.

T3. Check that membership tests, qualification, and explicit conversion are available for private
types (limited and nonlimited).

Check that other basic operations are not available, especially those that are available for
the full type.
Implementation Guideline: Include a case where a derived private type is visible inside the parent type's
package body. I

T4. Check that redeclaration of equality is illegal after the full declaration of a limited private
type, if the full declaration does not itself declare a limited type.

T5. Check that the additional operations for a composite type with a component or
subcomponent of a private or limited private type are not declared before the earliest place
within the immediate scope of the composite type's declaration and after the full
declaration of the private type.

a'.0,

7-21

%"% % -% % %

pR

7.4.2 Operations on Private Types Version 1 (Dec 86)

If the designated type of an access type is an incomplete, private, or limited private type
whose full declaration has not yet been given, check that the additional operations for the .. ,.,,
access type are not declared befor the earliest place within the immediate scope of the ',:."
access type's declaration and after Oie full declaration of the private type. '"

Implementation Guideline: For incomplete types, include a case where the full declaration is given in the
package body.
Implementation Guideline: Include full declarations that derive array types, types with discriminants, and task
types.

T6. Check that component selection is available for any discriminant declared in the private
type declaration.

Check that no selection for discriminants is available prior to the end of the full declaration
if the full type is a constrained type with discriminants (see IG 7.4.1/T5).

17. Check that T'BASE and T'SIZE are available for private type T outside the package
declaring T, and for the full type after the end of the full type declaration.

Check that T'CONSTRAINED is available for the private type (limited and nonlimited)
outside the package, whether or not the private type has discriminants; check that
'CONSTRAINED is not available prior to the end of the full declaration, and is only
available after the full declaration if the full declaration derives from a private type.
Implementation Guideline: Check that the presence of discriminants does not affect the legality of
T'CONSTRAINED.

Check that 'CONSTRAINED is not allowed for a composite type containing a
subcomponent of a private type.

Check that 'CONSTRAINED can be used for generic forma! private types, and that it
returns the correct value. -

Check that no other attributes are available for private types. In particular, check that
attributes that are legal for the full type are not available outside the package.

T8. Check that A'SIZE and A'ADDRESS are available for objects of private types (limited and V
nor.nhmited) both inside and outside the packs-"

Check that ACONSTRAINED is available o-tside zhe package that declares the private
type ?or objects of a private type with visibe' -.scrimi.nants, and is available before and after
the lull declaration of a private type.

Check that A'CONSTRAINED is only available after the full declaration of a private type
that has no discriminants if the full declaration of the type declares a type with
discriminants.
Implementation Guideline: Include deriving from a private type with discrminants.

T9. Check that subprograms that use a private type as a parameter type or as a result type can
be declared both inside and outside the package that declares the private type (limited or

nonlimited).
Implementation Guideline: Include formal generic subprograms and renaming declarations.

Check that out parameters having a limited private type can be declared in the package
declaring the type.

T10. Check that operator symbols using a private type as a parameter or result type may be
declared both inside and outside the package that defines a private type (limited or
nonlimited).

Check that an equality operation may be declared for a limited private type (see RM 6.7/4)
inside the package that declares it, and that an equality operation may be declared for a
limited private type outside the package as well.

7-22

% %

Version 1 (Dec 86) 7.4.3 Deferred Constants

Ti 1. Check that within a package specification and body, any explicit declarations of operators
and subprograms hide any operations implicitly declared at the point of the full declaration,
whether the explicit declarations precede or follow the implicit declarations.

Check that the hiding rules apply also to redefined equality and inequality for limited private
types.

7.4.3 Deferred Constants
Semantic Ramifications

S1. A deferred constant may be given only In the visible part of a package. Its type must be a
private type declared in the same visible part (see RM 7.4/4; see also IG 7.4/S). In particular,
note that deferred constants cannot be given for composite types having a subcomponent of a
private type.

S2. If a deferred constant declaration appears in the visible part of a package, a full declaration I
of the constant with an explicit Initialization must be given immediately within the private part.
The full declaration may not be given in the package body or within a nested package (see IG
7.4/S and RM 7.4/4). Note that a full declaration with an explicit initialization is required even if
the private type has default values for each component.

S3. The type mark of a deferred constant declaration may differ from that of the full declaration
only according to the conformance rules (see IG 6.3.1), i.e., an expanded name may be used
for the type mark instead of a simple name.

Since the conformance rules require that the type marks of the deferred and full declaration
have "the same meaning" as given by the visibility rules (see RM 6.3.1/5), the names must be
associated with the same declaration (see RM 8.3/2). Hence, a name declared with a subtype
declaration does not conform to a name declared with a private type declaration:

package A is
type T (D : INTEGER) is private;
subtype ST is T;
subtype T3 is T(3);
CT3 : constant T3;
CT constant T;

private
type T (D : INTEGER) is

record null; end record;
CT3 constant T(3) := (D => 3); -- illegal; T and T3 are not

-- declared by same decl I

CT constant ST :- (D => 3): -- illegal; T and ST are not
- - declared by same decl

end A; ',s

S4. The conformance rules for deferred constants refer only to the type mark, and do not
prohibit the full declaration from having a constraint In the subtype indication. If a constraint is
given, it must be appropriate for the type mark. If the initial value (which must be present in any
case) is not compatible with the constraint, CONSTRAINT-ERROR must be raised. For
example:

7-23
S

7.4.3 Deterred Constants version 1 (Dec 86)

package B is
type T (D : INTEGER) is private; %
C4, C2, C3, C1 : constant T;
C5 : constant T(D => 3); -- illegal; no constraint allowed

private
type T (D : INTEGER) is

record null; end record;
Cl : constant B.T := (D => 1); -- legal
C2 constant T(2) (D => 2); -- legal; no CONSTRAINT ERROR
C3 constant T (D => 3); -- illegal; no initialization
C4 constant T(4) := (D => 5); -- legal: CONSTRAINTERROR

end B;

ss. Multiple declarations of deferred constants are permitted both for the deferred constant
declarations and for the corresponding full declarations. There is no requirement that both
declarations be multiple declarations if one is so. There is no requirement, either, that the order
of full declarations duplicate the order of the deferred constant declarations (see example
above).

$6. RM 7.4.3/2 allows names of deferred constants to appear prior to their full declaration, but
only in the default expressions for record components and for formal parameters of
subprograms. An attempt to access the value of such deferred constants is erroneous, not
illegal; such an attempt does not necessarily raise PROGRAMERROR. For example:

package P is
type T is private: -- 1
C : constant T; -- 2

private
type T is range 1 .. 10;
function F(X : T := C) renanms '+"; -- 3 -- legal use of C
V : T := C; -- 4 -- illegal use of C
type U (D : T :- C) is -- 5 -- legal, D is a component

record
A : T := C-2: 6 -- legal use of C and"-

end record;
R : U: -- 7 -- erroneous use of C
S INTEGER :- 1; -- 8 -- erroneous use of C0,l
generic
package GP is

R : U; -- 9 -- nonerroneous use of C
S : INTEGER F; -- 10 -- nonerroneous use of C ,4

end GP;
0,.

package NGP is new GP; -- 11 -- erroneous use of C
type V is range 1 .. C; -- 12 -- illegal use of C
C: constant T :- 8;
W : T := C; -- 13-- legal use of C
package NGP2 is new GP; -- 14 -- nonerroneous use of C

end P;

Point (4) is illegal since the constant C has not yet been fully declared. Note that (5) is legal and
(7) is erroneous because only in (7) Is the (nonexistent) value of C actually used (in the default -
initial value). Similarly, (9) and (10) are legal and nonerroneous because these declarations are"..-,.

lop

7,-27-24

4 . *,, , ,a , . ., . , , .

r~v)^

Version 1 (Dec 86) 7.4.3 Deferred Constants

not elaborated until the generic unit is instantiated. Since the instantiation at (11) occurs before
IK the full declaration of C, the instantiation is erroneous. For the same reason, the instantiation at

(14) is nonerroneous. Finally, note that

C : constant T :- F;

would be erroneous, since "before the elaboration of the corresponding full declaration" means
"not after" the elaboration, and since the use of C's value in the invocation of F does not occur
after the elaboration of C's full declaration.
Note that because (7) and (8) are erroneous, not illegal, the program cannot be rejected at
compile time (RM 1.6/10), but PROGRAMERROR may be raised at run-time.

Changes from July 1982

S7. There are no significant changes.

Changes from July 1980

S8. Prior to the end of the full declaration of a deferred constant, a name that denotes the
constant may be used only in the default expression of a record component or subprogram
formal parameter.

S9. Permissible differences between the declaration of a deferred constant and the constant's
full declaration have been clarified in RM 7.4.3 and RM 6.3.1.

Legality Rules

Li. A full declaration of a deferred constant must appear immediately within the private part of
the package declaring the deferred constant (RM 7.4.3/1); the full declaration must have an
explicit initialization (RM 3.2.1/2).

L2. The type mark in a deferred constant declaration must denote a private type that is
declared immediately within the same visible part (RM 7.4/4).

L3. The names used as type marks in a deferred constant declaration and its full declaration
must both denote the same declaration (RM 6.3.1/5, 6 and RM 8.3/2). 40

L4. Prior to the end of its full declaration, a name that denotes a deferred constant may be
used only in default expressions of record components and formal parameters of
subprograms. %

L5. A deferred constant declaration is allowed only in the visible part of a package (RM 7.4/4).

Exception Conditions

El. PROGRAMERROR may be raised by an attempt to use the value of a deferred constant
prior to the elaboration of its full declaration (RM 7.4.3/4 and RM 1.6/10).

Test Objectives and Design Guidelines

TI. Check that a deferred constant declaration cannot be given:

e for a private type declared in some other package,

* for a composite type having a component of a private type,

* in the private part of a package (even the package containing the private
type's declaration, whether or not it appears before the full declaration),

e in the corresponding package body, or

7-25 "

7.4.3 Deferred Constants Version 1 (Dec 86)

a package specification nested within the package specification containing the
private type declaration.

Implementation Guideline: Check both ger i and nongeneric packages.

Check that even if a private type has default values specified for all its components, a full
declaration must be given for a deferred constant, and the full declaration cannot omit an
initialization expression (see RM 3.2.1/2).

T2. Check that multiple declarations may be used for deferred constant declarations, even if
the full declarations are given individually.

Check that multiple declarations may be used for the full declarations of deferred
constants, even if the deferred constant declarations are given individually.

Check that the order of deferred constant declarations need not be duplicated by the order
of full declarations, even if one or both groups are given as a multiple declaration.

Check that when the full declaration of a deferred constant is given as a multiple
declaration, the initialization expression is evaluated once for each deferred constant. "",

T3. Check that the type marks of the deferred constant declaration and the corresponding full
declaration must denote the same type or subtype declaration.

T4. Check that before the end of the full declaration of a deferred constant, the following uses
of a name that denotes the deferred constant are illegal.

* in the initialization expression of an object or a constant declaration,
Implementation Guideline: Include usage within an aggregate and as a function's actual
parameter.

* as the default expression of a generic formal parameter,

* as a generic actual parameter (for both In and In out parameters),

* within a range expression of a subtype indication (in a type or object I

declaration after the full declaration of the private type),

* in :r.dx constraint of a subtype l:-.< -o l l a type or object declaration
ater !he full declaration of the private ty)e),

* as a discriminant constraint of a subtype iidicarion,

e in a renaming declaration.

Implementation Guidefine: Check that all the above uses are illegal even if they occur in the scope of the full
declaration of the private type of the constant.
Implementation Guideline: Check uses even where the illegal use is not elaborated.

Implementation Guideline: Include uses within the deferred constant declaration itself.

T5. Check that use of a deferred constant in the default expression of a record component or
subprogram formal parameter is permitted.
Implementation Guideline: Include use in a default expression of a generic subprogram, in a ormal generic
subprogram parameter, and in a renaming declaration.
Implementation Guideline: Include use in an expression containing an operator (after the full declaration of the
type); use with an attribute ('SIZE or 'ADDRESS befoe the full declaration of the private type, and other
attributes, e.g., 'FIRST. after the full declaration); and use as a function actual parameter.

T6. Check that after the full declaration of a deferred constant, the value of the constant may "
be used in any expression. In particular, check that the uses listed in T4 are permitted.

17. Check that an explicit constraint may be given in the subtype indication of the full

7-26

Version 1 (Dec 86) 7.4.4 Limited Types

declaration of a deferred constant. Check that if a constraint is present, it must be
appropriate for the type mark.

Check that no constraint is allowed in a deferred constant declaration (see IG 7.4/1T3).

T8. Check that an attempt to use the value of a deferred constant prior to the end of its full
declaration is not illegal.

Check whether an attempt to use the value of a deferred constant prior to the end of its full
declaration raises PROGRAMERROR.

7.4.4 Limited Types
Semantic Ramifications

S. RM 7.4.4/1 defines a limited type as a type for which predefined assignment and equality
are not implicitly declared. RM 7.4.4/2 enumerates some sufficient conditions for a type to be
limited, but this list is not complete. In particular, although a composite type is always limited if
the type of any component is limited, it Is also possible for a composite type to be limited even if
the type of no component is limited. Consider the following example:

package P is
type LP is limited private;
type NP is private;
package Q is
end2 type LPARRAY is array (1 .. 2) of LP;

": end Q;
-- -. ,--: private

type LF is new INTEGER;
type NP is new Q.LPARRAY -- illegal; LPARRAY is limited.end P; - "=I and ":= not yet

-- declared for LP ARRAY.

Composite type LPARRAY is a limited type until the body of 0, even though no component of
LPARRAY is limited after the full declaration of LP, because assignment and equality fo LP-
_ARRAY are not implicitly declared until reentering LPARRAY's immediate scope (RM
7.4.2/7). The consequences of this rule are further illustrated by considering P's body.

package body P is
use Q;
function "=" (L, R : LPARRAY) return BOOLEAN is -- legal
begin ... end;

generic
type T is private; -- note: not limited private

package A is

end A;
package NEW A is new A (LPARRAY); -- illegal; LP ARRAY limited

package body Q is
function "=" (L, R : LPARRAY) -- illegal; LP ARRAY not

- - limited
*. e return BOOLEAN is

begin end;

7.27

* " "
% ' p

" d'm-"
" • " % ' ' P %

%% ,.', ' %*%4- ,---- --%%, " =i "" %%%%""°"• .
%

% ' ' % -. ""

7.4.4 Limited Types Version 1 (Dec 86)

package ANOTHERNEWA is new A (LP_ARRAY); -- legal
end Q,

end P; e.h

Although the example is somewhat contned, it is important to keep in mind that "limited" means
having no predefined assignment and equality. The rules of RM 7.4.?7 state that these ..%

operations are not declared until the body of 0, and therefore, LPARRAY must be treated as a
limited type until that point.

S2. If a record has a limited component in a variant part, the record type is nonetheless limited,
so aggregates specifying only nonlimited components cannot be written:

type T (D : BOOLEAN) is
record

case D is
when TRUE => C1 : INTEGER;
when FALSE => C2 : TASK TYPE; '

end case;
end record;

TT TASKTYPE; A

function R (X : T) return BOOLEAN;
X! : BOOLEAN R((TRUE, 3)); -- illegal aggregate
X2 : BOOLEAN := R((FALSE, TT)); -- illegal aggregate

S3. Note that if '= is overloaded for a limited private type, T, a composite type (e.g., an array
of T's) still does not have equality defined, since equality for composite types is not defined in
terms of equality of the component types (see RM 4.5.2/8). Equality can be defined, however,
for any limited type (see RM 6.7/4).

S4. Note that assignment and pre-defined equality operations are permitted on limited private
types within a package specification as soon as the full declaration of the private type has been
given. For example,

package P is
tpe T is limited private-

.onstant T:
- . constant T;

private
type T is new INTEGER,
E constant T 5: -- legal now
C constant T := 3;
D constant T :4;
CHECK : BOOLEAN := C D; -- legal now

end P:

S5. If a deferred constant is declared for a limited private type, the full declaration of the type
must declare a nonlimited type, since if it declares a limited type, the deferred constant cannot
be given a value:

package P is
type LP is limited private; 14 ..

C : constant LP; -,

private
-ype LP is new TASK TYPE: -- derives a limited type

, onstant LP := .. -- illegal: no assignment for LP
end P Z

7-28

>:' . * * %* *

Version 1 (Dec 86) 7.4.4 Limited Types
S

Se. An access type whose designated type is a limited type is not itself a limited type. Thus
assignment and equality are available for objects of the access type, though still not available
for the objects designated by the access values. For example:

package A is p
type LP is limited private;
type ACC is access LP;
function F return ACC;
function G return ACC;

private
type LP is new INTEGER;

end A;

use A;
P1: ACC : F;
P2 ACC G;
X BOOLEAN := P1 = P2; -- legal S
Y BOOLEAN := Pl.all = P2.all; -- illegal

87. In an explicit declaration of a subprogram, entry, or generic subprogram, a formalparameter of mode out may have a limited type only under the following circumstances.

" the type is a limited private type (i.e., not a composite limited type or a task I
type),

" the subprogram, generic subprogram, or entry declaration occurs within the
visible part of the package that declares the limited private type,

" the full declaration of the limited private type does not itself declare a limited
type.

One of the consequences of this rule is that a task type cannot ever be used as the type of an
out parameter, nor can a limited private type whose full declaration declares a task type.
Another consequence is that, even though user-defined operations on limited private types may
be declared outside the package that defines the type, these operations may not have an out I.
parameter of that type. The above restrictions apply also to composite limited types and types S
derived from limited types; they may not be used as the type of an out parameter. For example:

task type TASK TYPE is ... end TASKTYPE; .
package A is

type LPI is limited private;
type LP2 is limited private;
type ARR LPI is array (1 .. 2) of LPI; S

type NEW TASK TYPE is new TASKTYPE;
procedure G1 (X out LPi); -- 1 -- legal
procedure G2 (Y : out LP2); -- 2 -- illegal

-- full declaration is limited
procedure G3 (Z : Out ARR LPI); -- 3 -- illegal

-- type is not limited private
procedure G4 (W : out NEW_TASKTYPE); -- 4 -- illegal

-- type is not limited private V'.
private A

procedure G5 (X : out LPI); -- 5 -- illegal
-- declaration not in visible part

type LPI is new INTEGER:

7-29

r %.r
.. ~~~*.~~\-*:**%. *-*. * %~.--. *.

7.4.4 Limited Types Version 1 (Dec 86)

type LP2 is new TASKTYPE;

procedure G6 (Y : out LP1); -- 6 -- legal . ,
-- LPI not co: dared limited here

procedure G7 (Z : ou- LP2); -- 7 -- illegal
-- declaration not in visible part; LP2 not limited private ,.

end A;

so. The restriction forbidding subprogram out parameters of limited types applies only to
"explicit subprogramdeclarations", entry declarations, and generic procedure declarations.

Since a generic formal subprogram is not declared with a subprogram declaration, this
restriction does not apply to formal subprograms, nor does it apply to renaming declarations: .'I

generic
type LP is limited private; '

with procedure P (X : out LP)- -- legal
package P1 is

procedure S (X out LP); -- illegal
procedure NP (X out LP) renames P; -- legal

end P1;

Note that declaration of a subprogram with an out parameter of a limited private type is not
restricted to immediately within the package declaring the type. Hence, such declarations can
occur in nested packages, even in the private part of a nested package.

s9. The unavailability of assignment for limited types has certain consequences, some of which
are indicated in RM 7.4.4/6-8. Explicit initializations for variables, constants, and record
components are not allowed if the type is limited, since initialization requires the assignment
operation (RM 3.2.1/8). Similarly, an explicit initial value is not permitted in an allocator if the 9-"-'
designated type is limited, since an assignment is needed (RM 4.8/6).

The fact that a generic formal parameter of mode In must not have a limited type is not really a
consequence of the unavailability of assignment; although RM 12.1.1/3 requires that such
generic actuals be copied, the act of making a copy is not, strictly speaking, assignment.
Consequ;-.!', nr, -estriction is also explicit!y Rt- tr - :- RM !2 1.1/3. Note that limited types are
allowed as subprogram In parameters even ,ht their values must be copied to the formal
parameter , .'g. when the full declaration of ,ied type deciares a scalar or access type; 'I

RM 6.2/8), because copying is not, technically spe..king. assignment.

Changes from July 1982

Sio. In an explicit declaration of a procedure, entry, or generic procedure. a formal parameter of
mode out may have a limited type only if:

" the type is a limited private type,

" the declaration occurs within the visible part of the package that declares the
limited private type, and

" the full declaration does not declare a limited type.
.,:

Changes from July 1980

Si. The attribute 'BASE is declared for every limited type.

S12. The attributes 'SIZE and 'ADDRESS are declared for objects of every limited type.

Si3 'CONSTRAINED is declared for limited private types without discriminants.

7-30 I

Version I (Dec 86) 7.4.4 Limited Types

S14. The operations for limited types include membership tests, selected components for .v'.
discriminants, qualification, and explicit conversion.

s15. Operations for a private type (i.e., subprograms with a parameter of a private type) may be 9,

declared outside the package that declares the type.

sis. Formal subprogram parameters of a limited type may have default values.

S17. A generic formal parameter of mode In is not allowed to be a limited type.

Legality Rules

L1. The full declaration of a nonimited private type must not be a limited type (RM 7.4.1/3).

L2. An out parameter of a subprogram, generic subprogram, or entry declaration must not ...

have a limited type unless:

" the type is a limited private type,

" the declaration of the subprogram, generic subprogram, or entry occurs within
the visible part of the package that declares the limited private type (including
within any nested packages), and

" the full declaration of the limited private type does not declare a limited type.

Test Objectives and Design Guidelines

Ti. Check that in the specification of a subprogram declaration, entry declaration, or generic
subprogram declaration, a parameter of mode out may not have a limited type if:

" the limited type is a task type, a composite limited type, or a derived limited
private type.
Implementation Guideline: Include derivation from a generic formal type.

" it is a limited private type and the declaration of the subprogram, entry, or eA

generic subprogram appears in the private part or body of the package
declaring the limited private type, or outside the package declaring the type.
Implementation Guideline: Check that parameters of mode out are allowed in packages nested
in the visible part. including within the private part of such nested packages. S

" the full declaration of the limited private type declares a task type, a composite
type with a limited component, or a type derived from a limited private type.

Check that an out parameter of a limited type is permitted in the private part after the full
declaration of the limited private type if the full declaration does not declare a limited type.

Check that a generic formal subprogram parameter can have an out parameter of a limited S
type.

Check that a renaming declaration can declare a subprogram with an out parameter of a
limited type.

T2. Check that a subprogram parameter of a limited private type may have a default
expression, even if the subprogram is declared outside the package that declares the
private type.

Check that a subprogram parameter may have a default expression if its type is a
composite type with a limited private component or a type derived from a limited private
type, even if the subprogram is declared outside the package that declares the limited type.

T3. Check that a variable declared outside the package defining a limited private type cannot
"i,"-. have an initialization specified explicitly (see IG 3.2.1/T).

731 ,

: "" .. '.". :.":'. .,.'.'-:-:.:.:'..'-:.:, ."" :" .'.:. " .'.'.'.:.; ''.:. .o.".". -.". . ..","."."- ." " " ". " " ,

7.4.4 Limited Types Version 1 (Dec 86)

T4. Check that variables and constants of a limited private type cannot be compared for -
equality (or inequality) outside the package defining the type, nor can they be assigned to %

or given initial values. ,-
hnplementaion Guideline: Include an accr. ;ype whose designated type is limited.
Implementation Guideline: Include instantiation of a package that declares a limited type.

Check that the restrictions on use of assignment and equality extend to objects having at
least one component of a limited private type, and to types derived from limited private
types.

T5. Check that a generic In parameter may not be a limited type (see IG 12.1.1/T4).

T6. Check that the full declaration of a limited private type can declare a task type, a type
derived from a limited private type, and a composite type with a component of a limited
type (see also T9).

17. Check that constants and variables of a limited private type can be declared and initialized
in the private part and body of a package after the full declaration of the private type, if the
full declaration is not limited. a

Check that pre-defined equality and assignment Is defined and available within the private
part and body after the full declaration of the private type if the full declaration is not limited.

T8. Check that use of user-defined equality for a limited private type within the private part of
the p,2' age declaring the type raises PROGRAMERROR (since the body of the equality
operator has not yet been elaborated; see IG 3.9/T6).

T9. Check that if a composite type is declared in the same package as a limited private type
and has a component of that type, the composite type is treated as a limited type until the -'a

earliest place within the immediate scope of the declaration of the composite type and after ., ., .
the full declaration of the limited private type.
Implementation Guideline: Use a composite type declared in a nested package similar to the example in S1
above.

T10. Check that an equality operation may be declared for a limited private type (see RM 6.7/4)
inside the package that declares it, and that an equc!ity operation may be declared for a
limited private type outside the package as (see IC 7.4.2/710).

-'3

,'-'a

.'/

Version 1 (Dec 86) 8.2 Scope of Declarations

Chapter 8

Visibility Rules
p

8.1 Declarative Regions
Semantic Ramifications

si. Consider the following package declaration:

package Q is
package P is

P : INTEGER;
end P;

end Q;

The declaration of object P occurs immediately within the innermost declarative region (the
region created for package P). Package P's declaration itself occurs immediately within the
declarative region defined for 0. The first and third occurrences of P are considered to occur in
Q's declarative region (RM 8.1/7). If Q is a library package, it is considered to occur within
STANDARD's declarative region (RM 8.6/2).

S2. The rules prohibiting homographs from being declared in the same declarative region (RM
8.3/17) can be used to check that an implementation supports the correct definition of a
declarative region.

Changes from July 1982

S3. Subunits of subunits are contained in the declarative region of the parent unit.

Changes from July 1980

s4. The term "declarative region" is introduced.

Test Objectives and Design Guidelines

Ti Check that declarative regions are defined correctly (see IG 8.3/T1 -T8).

8.2 Scope of Declarations
Semantic Ramifications

Si. Ada distinguishes the scope of a declaration from its visibility. At a given point in Ada text,
an identifier may have potential associations with several declarations (i.e., several possible
meanings). Which of these meanings is chosen is determined (for nonoverloaded identifiers) by
the visibility rules. In essence, scope rules determine the region of text in which a declared
entity can potentially be referenced, and visibility rules (for nonoverloaded identifiers) determine
which potentially referenceable declaration is actually associated with the occurrence of a
name. (in some other languages, the term "scope" or "name scope" is used in the sense of
"visibility" here.) For overloaded identifiers, operator symbols, or character literals, the visibility ,
rules and the overloading resolution rules together determine which declaration is meant.

S2. The difference between the visibility of a name and its scope is illustrated by this example:

w- procedure P is
I : INTEGER;

8-1

%;

8.2 Scope of Declarations Version 1 (Dec 86)

package Q is
I : CHARACTER;

end Q;
begin

I := 3;
Q.I := 'C';

end P;

The scope of Q.1 and P.1 both include the assignment statements, but the visibility rules
determine that the I in the first assignment statement unambiguously refers to the integer
variable declared in P, whereas the I in the second assignment statement refers to the variable
declared in package 0. Because 0.1's scope extends outside package 0, the variable can be
referenced outside package 0. (See IG 8.3/S for further discussion.)

S3. Scope rules for library units are not mentioned explicitly in RM 8.2 since library units follow
the usual rules, given that library units are considered to be declared implicitly and immediately
within the predefined package STANDARD (RM 8.6/2). For example, consider the following
library unit:

package P is
type NEW CHAR is ('A', 'B', 'C');
type NSTR is array (POSITIVE range <>) of NEWCHAR;
X : STRING (1..1) := (1 => ASCII.NUL);

end P:

The references to POSITIVE, STRING, and ASCII, which are declared in STANDARD, are legal
because package P is considered to be declared in STANDARD's declarative region, and
hence, the scopes of the declarations of POSITIVE, STRING, ASCII, and ASClI.NUL include .'-7..K .

the declarations of NSTR and X. In particular, because the scope of the declaration of NUL in
package ASCII includes X's declaration, the name ASCII.NUL is legal. Now suppose we write:

with P:
package Q is ,

Y : STRING (1. .3) STF7;P' 'ABC) -; illegal
Z P.NSTR (1..3) "CCC' .. ok

end Q:

RM 8.2/1 mentions that a declaration can associate some notation with a declared entity. This

phrase refers to the implicit declaration of basic operations and the notation associated with
these operations. In particular, string literal formation and assigrment are basic operations (RM
3.3.3/4 and RM 3.3.3/7). The scope of the notation associated with these operations for
P.NSTR is the same as P.NSTR's scope (RM 8.3/18). Because of the with clause, RM 8.6/2
requires that package P appear before package Q in STANDARD's declarative region, so the
scope of NSTR's declaration includes package 0 (RM 8.2/3). The type of "ABC" can, therefore,
be either STRING or NSTR, since this string literal is within the scope of the string literal
formation operations declared for STRING and NSTR. The type of the operand of a conversion
must be determined independently of the context (RM 4.6/3). Since the type of "ABC" is
ambiguous, the conversion is illegal. On the other hand, the declaration of Z is legal since
P.NSTR's assignment operation is visible, the overloading resolution rules determine that the
string literal must have type P.NSTR (RM 8.7/8), and P.NSTR's string literal formation operation
is visible.

-

S4. See IG 8.6/S for further discussion of the treatment of library units and the scope of
declarations. *." "1* !

8-2
1q

dp.4

Version 1 (Dec 86) 8.3 Visibility of Identifiers S

Changes from July 1982 •

ss. There are no significant changes.

Changes from July 1980

S6. The scope of library units is now explained by the notion that library units are implicitly
declared in STANDARD, so no additional rules are needed here.

Test Objectives and Design Guidelines

The scope of a declaration can only be checked by seeing if it is visible, directly or by
selection. The visibility checks are performed in IG 8.3fT21 -T29.

T1. Check that the scope of declaration in a declarative region extends from the beginning of
the declaration to the end of the declarative region. In particular, check that the scope
does not start from the beginning of the declarative region (see IG 8.3/T21 -T29).
Implementation Guideline: This is checked by seeing whether homographs implicitly declared earlier in the
same declarative part or in an outer declarative region are visible before the explicit declaration occurs. S

T2. Check that the scope of a declaration occurring immediately within the visible part of a
package declaration extends outside the package declaration (see IG 8.3/T51).
Implementation Guideline: Check that declarations occurring in an inner package are not visible, nor are the -
formal parameters of a subprogram or generic unit. %

Check that the scope of a declaration occurring in a package nested within the visible part
of a package declaration extends outside the package declaration (see IG 8.3/T51).

T3. Check that the scope of an entry declaration extends outside a task declaration or a task
type declaration (see IG 8.3/T52).

T4. Check that the scope of a record component declaration (including a discriminant
component) extends outside the record's type (see IG 8.3/Tr53).

T5. Check that the scope of a formal parameter of a subprogram or an entry extends outside

the subprogram's or entry's specification (see IG 8.3/T54).
Implementation Guideline: Include subprograms declared by explicit declarations (see IG 6.4/T3), by renaming
declarations (see IG 8.5/1TI 3), by generic instantiations (see IG 8.3.e/T3), by derivation (see IG 3.4/T1 8), and
by the occurrence of a subprogram body (see IG 6.41T3). ,

T6. Check that the scope of a generic formal parameter extends outside the generic formal
part (see IG 8.3/T55).

,'j

8.3 Visibility of Identifiers

Semantic Ramifications

Si. Overloading resolution can affect what declarations are visible. For example:

type R is
record

X : INTEGER; S
end record;

X : INTEGER := 1;

A : R := (X => 1); -- X is visible by selection
B STRING (1-1) (X => 1), -- X is directly visible

8-3

VS

8.3 Visibility of Identifiers Version 1 (Dec 86)

The overloading resolution rules determine that the first aggregate has type R. Since R is a
record type, the X in the aggregate denotes the record component name (which is visible by -
selection; RM 8.3/9). In the declaration of B, the overloading resolution rules imply that the
aggregate has type STRING, so the X . st be an expression denoting an index. In this case,
record component X is not visible; X denotes the directly visible declaration of variable X.

s2. If X in the declaration of B is a function call, overloading resolution interacts with the
visibility rules in a more complex fashion:

type R is
record

X : INTEGER;
end record;

function X return INTEGER is -- Xl
begin ... end X; '

function X return FLOAT is -- X2
begin ... end X;

package P is
A R := (X => 1); -- X is visible by selection
B : STRING (1 .1) (X => 1); -- Xl and X2 are directly visible

end P;

Given that the aggregate in B's initialization expression is an array aggregate (a fact determined
by the overloading resolution rules), both functions X are directly visible. Since B's index .

subtype is a subtype of INTEGER, the overloading resolution rules determine that Xl is to be "'-Z ,
called. So the overloading resolution rules can help to determine both what is visible and which I
of the visible declarations is meant.

S3. Since a name cannot be referenced within its own declaration, the name of a task type
cannot be used in its own specification:

task type T is
entry E (X : T); -- illeIal

end T:

(The name T can be used in the task body, however, since a task body is not a declaration (RM
3.9/2). Use of the name within T's body is limited, however. The name cannot be used as a
type mark because T is the name of the enclosing task body; see RM 9.1/4.)

S4. Similarly, a package declared by a generic instantiation is not directly visible within its own
declaration (RM 8.3/5), e.g.:

package P is new Q(P.A); -- illegal

The name P.A is illegal because the context of P's use requires a directly visible declaration of I,'.

P and no P is directly visible where P.A occurs. To see this, first note that a declaration can be
directly visible if:

* it occurs (explicitly or implicitly) earlier in the same declarative region;

" it occurs (explicitly or implicitly) earlier in an enclosing declarative region:

" a use clause makes it directly visible.

Now consider: RM 8.3/5 specifies that the instance, P, is not visible until after the end of the '":" ' -'
,*
-

8-4 'p.

% - ' -%

Version 1 (Dec 86) 8.3 Visibility of Identifiers

instantiation, so the prefix P in P.A cannot denote the package declared by the instantiation. % %
Since package P is not overtoadable, any implicitly declared P that occurs (earlier) in P's
declarative region is hidden (RM 8.3/17); moreover, any P declared in an outer declarative
region is hidden from the beginning of the Instantlation (RM 8.3/15). Furthermore, the prefix P
cannot denote a declaration made visible by a use clause, because no homograph of P can be P,
made visible by a use clause within the immediate scope of package P (RM 8.4/5). Since these
are the only ways a declaration can be directly visible, there is no directly visible P.
ss. A package declared by a generic instantiation is also not visible by selection within its own
declaration. For example, suppose P is declared as a library unit:

package P is new Q(STANDARD.P.A); -- illegal

Even though P is declared in STANDARD, its declaration cannot be referred to within itself.
S6. It is possible to use the identifier P within an instantiation of package P, but only if it refers
to a declaration that is visible by selection. For example:

procedure S is 0

type R is
record

P : INTEGER 3; -

end record;

X :R;

package PACK is
P : INTEGER 3;

end PACK;

function F (P INTEGER) return INTEGER is ... end F;

generic
Ii INTEGER;
12 : INTEGER; S
R1 R;
13 : INTEGER;
P INTEGER;

package P is
end P;

package NESTED is
package P is

new S.P (X.P, PACK.P, (P => 1), F(P => 3), P => 3);
end NESTED;

end S;

All the uses of P in package P's instantiation are legal because each declaration denoted by
each P is visible by selection (RM 8.3/7-13).
S7. None of the above uses of P are legal, however, if the instantiation declares a subprogram:

generic
II INTEGER;
12 INTEGER;

8-5

8.3 Visibility of Identifiers Version 1 (Dec 86)

Rl R;

13 INTEGER;
P : INTEGER;

procedure P;

package NESTED is
procedure P is

new S.P (X.P, PACK.P, (P => 1), F(P => 3), P => 3);
-- illegal uses of P

end NESTED;

RM 8.3/16 says that within a generic instantiation that declares a subprogram, a declaration is
visible neither by selection nor directly if it has the same designator as the instantiated
subprogram. Each of the uses of P violate this rule.

s8. Since a subprogram can be instantiated as an operator symbol, the corresponding operator
cannot be named within the instantiation:

package S is
procedure "+" is new R(3 + 4, STANDARD."+"(3, 4)); -- illegal

end S;

The uses of operator + are illegal (since no "+" is directly visible (as an infix operator) within the
instantiation, and no "+ operation is visible by selection either).

sg. The restrictions of RM 8.316 only apply within subprogram specifications and
instantiations. This paragraph does not apply to the default name of a generic formal
subprogram, e.g.:

generic
with function "+" (L, R INTEGER) return INTEGER

is "+"; -- illegal

with function (L, R : INTEGER) return INTEGER
is STANDARD."+"; -- ok

procedure P;

The first default name is illegal because of RM 8.3i5; the only " " having the correct parameter
and result type profile is the formal parameter itself, and this entity cannot be referenced within
its own declaration. The second second default name is legal because it does not denote the
formal parameter being declared.

si0. RM 8.3/6 says visibility is either by selection or direct. This means that these are the only
forms of visibility; moreover, once a given occurrence of an identifier has been associated with a
declaration, it is either associated by selection or directly (RM 8.3/14).

Si 1. Hiding of an identifier occurs as soon as a new declaration of the identifier is encountered,
e.g.:

procedure R is
I : constant INTEGER := 4;
type R is record

J INTEGER := I; -- R.I would be illegal
K : FLOAT digits I; -- R.I also illegal

end record:

S12. It is sometimes the case that a declaration can only be made visible by selection (e.g., the . ..
component name in a record). It is also possible for a declaration to be visible only directly and .-".. ::

not by selection, e.g.,

8-6
. i~i

-s
5,

Version 1 (Dec 86) 8.3 Visibility of identifiers

declare
X :INTEGER;

begin

end;

Within the block, X is only visible directly since the block does not have a name, so X cannot be
named by selection.

Si 3. Finally, it is possible for a declaration to be visible both directly and by selection, although
any given occurrence of an identifier will be associated with the declaration by only one of these
methods. For example, a declaration in the visible part of a package specification can be
named directly within the package or by selection in an expanded name whose prefix denotes
the package.

S14. The selected component form of naming can only be used to access identifiers whose
declarations are in scope. Outside of a procedure, selected component notation cannot be
used to access any entities declared Inside the procedure, including formal parameter names,, .4,

e.g.:

package body R is
I : FLOAT;
function R (I : INTEGER) return INTEGER is .

J : INTEGER;
begin

end R;
function J return INTEGER is begin ... end J;begin h
-- references to R.I and R.J are illegal

The cited references are illegal because the scopes of INTEGER I and J do not extend outside
of function R. Since the declaration of function R hides the package R declaration, references to
R.1 and R.J can only be attempts to reference components of function R. Since no such
components are in scope, the references are illegal.

S15. If "package body" is replaced by "procedure", the declaration of function R does not hide
the enclosing procedure declaration. Since procedure R is referenceable in this case, the R in
R.l is ambiguous. RM 4.1.3/18 states that R.X is therefore illegal for all X.

s16. Components of private types cannot be accessed using selected component notation
except within the private part of a package and within the corresponding package body, since
the scope of such components extends only over the private part and the package body.

S17. Use clauses can make homographs directly visible:
V.4

package Q is
procedure P (X : INTEGER);

end QI

package R is
procedure P (Y INTEGER); .'

end R: '4'

use Q, R;

....

8-7 'C-

Z , % -' i , _ -' ' , , ' ' .' " .' '* ' ' ..: ' .: ' .€ .' ., " % , " : ." " : " ." " ; " : " " . ." -" " " • " . " . ." " . , • " , " " " • " ' .• • " • ." , .. • . • " .
' -a -% , ' ' -,' - " " ." " " . ." .' " , ' .' " .' " .' " .' " , ' " " . , " • " , " " . -" -" .', ' - - . , " : " "- ' -' " " ' ' ' .' ' -" " ." " ." ". , " " • " ." " , ' , ." , " " " " " " " " " " , .

8.3 Visibility of Identifiers Version 1 kDec 86)
-4

P (3): -- illegal: ambiguous
P(=> 3); -- legal; Q.P is called

The use clause makes both Ps visible eve,, though they are homographs (RM 8.416), so the first
call is illegal. The second call is legal, since formal parameter names can be used to resolve
overloaded calls (RM 6.6/3). (Parameter names are ignored when deciding whether two
subprograms are homographs (RM 8.3/15 and RM 6.6/1, /6).)
SiS. A declaration in an outer declarative region can be hidden by a declaration in an inner
region (RM 8.3/15), and an implicit declaration can be hidden by an explicit declaration declared
in the same region (RM 8.3/17). A hidden declaration is not directly visible, but the inverse is
not true; a declaration can be both "not hidden" and not "directly visible." For example, a
declaration in a package need not be directly visible even though it is not hidden:4.

package P is le
X : INTEGER;

end P;

A : INTEGER := X; -- illegal

Within the initialization expression for A, P.X is not hidden (it is not in the same or an outer
declarative region), but the declaration of X Is also not directly visible.

Sig. RM 8.3/17 speaks of an explicit declaration hiding an earlier implicit declaration. This can J,
occur as follows:

package P is
type T is range 1..10;
-- implicit declaration of "+" and other operations ,
X : T := 3 + 4; -- implicitly declared +
function "+" (L, R : T) return T:
type REC is

record
C : T 3 + 4: -- explicitly declared +

end record;
end P:
use P;

Y T = 3 + 4: -- explicitly declared +

The explicitly declared "+" hides the implicitly declared " " throughout the scope of the explicit
declaration. This scope includes the use of "+" in the declaration of REC, and since '4" is
declared in the visible part of a package, the scope of "+" extends outside the package (RM
8.2/3) and includes the declaration of Y. The scope of the Implicitly declared "+" also extends
outside package P. but RM 8.3/17 ensures that only the explicitly declared "+" is visible, either
directly or by selection.

S20. It is also possible for an explicit declaration to hide a later implicit declaration:

package P is i-

type T is private;
function "+" (L, R : T) return T;

private
type T is range 1..10;
-- implicit declaration of "+"',.

The implicit declaration of "+" is hidden by the earlier explicit declaratiorn Similar effects can

8-8

%•% ..

Version 1 (Dec 86) 8.3 Visibility of Identifiers

occur when the full declaration is a derived type. In particular, it is possible for two implicit
declarations of homographs to occur. When one of the two is the declaration of an enumeration
literal and the other is the declaration of a derived subprogram, the declaration of the derived
subprogram hides the enumeration literal (see IG 8.3.d/S). It is also possible for an
enumeration literal, derived subprogram, and statement label, block name, or loop name to be
declared implicitly in the same declarative region (see IG 8.3.a/S). In this case, the enumeration
literal and derived subprogram are hidden.

S21. A derived type declaration can derive two or more derived sukbprogram homographs ,
(AI-0001 2). One way to derive homographs is: %

package R is
type T is private:

package P is
type U is range 1..10;
procedure Q (X T; Y: U);
procedure Q (X U; Y : T);
procedure Q (X : U; Y U);

end P;
private

type T is new P.U; -- legal; AI-00012
-- three implicit declarations of Q (X : T; Y T);

The three implicitly declared dedved subprograms are homographs of each other.

S22. Another way to derive homographs is when the parent type has two or more derivable
subprograms that are homographs:

generic
type A is (<>);
type B is private;

package G is
function NEXT (X : A) return A;
function NEXT (X B) return B;

end;

package P is new G (A => BOOLEAN, B => BOOLEAN);

The two declarations of NEXT that occur in instance P are homographs, but the instantiation is
legal since the actual parameters match the formal parameters (see RM 12.3/22 and Al-0001 2N.
This sort of construction provides another way of deriving subprogram homographs:

generic
type Ai (<>)
type B in private; 0%

package G is
type T is private;
function NEXT (X : A; Y : T) return A;
function NEXT (X : B; Y : T) return B;

end;

package P is new G (A => BOOLEAN, B => BOOLEAN);

type NT is new P.T: -- legal; AI-00012 '.

8-9

8.3 Visibility of Identifiers Version 1 (Dec 86)

The derived type declaration is allowed even though both NEXT subprograms will be derived,
and the subprograms will have the same parameter and result type profiles (Al-O001 2).

S23. RM 8.3.18 says the notation assc :' ted with a basic operation is visible throughout the
scope of the operation, but consider tne use of a type name in a conversion or qualified
expression:

package P is

typo INT is range 1..10; Send P ;

-- NT is not directly visible here F

X P.INT -NT(S); -- illegal
Y P.INT INT'(5); -- illegal

The conversion and qualified expression are illegal because the identifier 1NT must be
associated with a declaration by the visibility rules, and no INT is directly visible. Although INT
is not directly visible, the conversion operation is visible and can be used. For example:

subtype PINT is P.INT;
ZI P.INT := 5; -- implicit conversion
12 P.INT PINT' (5); -- explicit conversion

The explcit conversion using PINT is legal because PINT is directly visible and because the
conversion operation associated with PINT's base type is visible.
S24. Special interactions between scope and visibility rules are treated in subsections ,'
addressing:

a. Labels

b. Loop Parameters

c. Records

d. Enumeration Literals

e. Parameters

f. Packages

Interactions with separate compilation are treated in IG 8.4. Interactions with overloading are
treated in IG 6.6 and IG 6.7. ,-

Changes from July 1982
s25. The visibility rules don't apply to an identifier given as a pragma argument, e.g., pragma
OPTIMIZE (TIME) is legal even though no declaration of TIME is directly visible.
S26. Hiding rules for subprogram names are explicitly extended to include subprograms 5,

declared for operator symbols.
S27. The designator declared by a generic instantiation is not visible either directly or byselection until after the instantlation.

Changes from July 1980

S28. The visibility rules do not apply to pragmas, the identifier of a pragma argument (e.g., ON
in pragma SUPPRESS (RANGECHECK, ON => P)), reserved words. or attribute designators. .7....

8 1 0 "

S..

*8 ,VV '.' "% = ' , - , * o ,"

WUW~ ~w wUww IwWWw MISU WWV WU W'w WV WU wwwu WUWV 1971 AUr~ Mrnt~ Mr , - .- . . -

Version 1 (Dec 86) 8.3 Visibility of Identifiers

S29. The term "homograph" is introduced. I.-,

Legality Rules

L1. If the visibility rules allow an identifier to be associated with more than one declaration,
then the overloading rules must allow exactly one of these declarations as the meaning of
the identifier (RM 8.3/4).

L2. The identifier or operator symbol being declared by a declaration is not visible within its #%7
own declaration (except for an identifier declared in a package specification as the name of
the package) (RM 8.3/5).

L3. A declaration is not visible, either directly or by selection, outside its scope (RM 8.3/6-14).

L4. Within the scope of a homograph of a declaration given in an outer declarative region, the -4

outer declaration is not directly visible (RM 8.3/15). .

L5. Within the specification of a subprogram declared by a suoprogram declaration, a
subprogram body, a generic instantiation, or a renaming declaration, every declaration with
the same designator as the subprogram is visible neither by selection nor directly (RM
8.3/18).

L6. Within the declaration of an entry or the formal part of an accept statement, every
decla-ation with the same identifier as the entry is visible neither by selection nor directly
(RM 8.3/16).

L7. Two declarations that occur immediately within the same declarative region must not be
homographs, unless either or both of the following requirements are met: (a) exactly one
of them is the implicit declaration of a predefined operation; (b) one or more of them is the
implicit declaration of a derived subprogram (RM 8.3/17 and Al-0001 2).

L8. An operator is directly visible if and only if the corresponding operator declaration is directly

visible (RM 8.3/18).

Test Objectives and Design Guidelines

Tests T1 -T8 check that pairs of homographs are illegal if they occur within each of the
various declarative regions. Tests T1 1 and T1 2 check visibility within a declaration. Tests T21 -
T29 checking the hiding of outer declarations, and T30-T33 check other kinds of hiding. T41 -.

checks visibility of operations declared in a package. Tests T51 -T56 check the various forms of
selective visibility.

T1 Check that the formal parameters of a nongeneric subprogram specification and the
declarative part of the subprogram's body form a single declarative region. In particular,
check that:

* two formal parameters cannot have the same identifier (see IG 8.3.e/T1).

" a name declared explicitly In the body's declarative part cannot be tMe same
as the name of a formal parameter (see IG 8.3.e/T1).

Check that two homographs cannot be declared explicitly in the declarative part of the
subprogram's body.
Implementaon Guidelne: In particular, check a sampling of the following forms of homographs: two
subprograms explicitly declared by combinations of the following methods: a subprogram declaration, a
renaming declaration, an enumeration literal specification (see AI-00330), and a generic instantiation;
subprograms vs, nonoverloadable declarations (IG 6.6T1T checks subprogram homographs and subprogram
declarations vs. nonovoloadable declarations): and two nonoverloadable declarations. The nonoverloadable
declarations to be used are those for variables, constants, named constants, exceptions, types, subtypes.
packages. task units, and generic units (packages. functions, and procedures). (Note: checks for duplicate '4

d-1 -

** * *l . .~ . -. . . ~ .. .', * ~ -J ,.4 ' . . 4

8.3 Visibility of Identifiers Version 1 (Dec 86)

block. oop. and statement names are performed in IG 8.3.a/T1. IG 8.3.a/T7 checks that block, loop, and
statement names cannot be the some as other kinds of names declared in the same declarative region.)

12. Check that the visible and private p~irts of a package specification form a single declarative
region shared with the declarative part of the package body. In particular, check that two
homographs cannot be declared within the following parts of the declarative region: visible-
visible, visible-private, visible-body, private-private, private-body, and body-body (see IG
8.3.f/r2).
Implemontaaon Guideline: Use the guideline given for T1.
Implementation Guideline: Include a check when the package body is declared as a subunit and the other
declarations occur in the package specification.

T3. Check that a task specification and the declarative part of a task's body form a single J,
declarative region. In particular, check that:

* single entry homographs cannot be declared in a task specification (see IG
9.51T94).

" a single entry and entry family cannot have the same identifier (see IG
9.5/T94).

" a procedure declared explicitly in the declarative part of the task's body cannot .'

be a homograph of an entry declared in the task specification (see IG
9.5/T94).
Implementation Guideline: Include procedures declared by a subprogram declaration, renaming
declaration, and generic instantiation. Include a check when the task body is declared as a
subunit.

" an explicit declaration in the declarative part of the task's body cannot have .the same identifier as that of an entry family. -.
Implementation Gudeline: Include all forms of overloadable and nonoverloadabte declaration in
the body (see guideline for TI). -
Implementation Guideline: Include a check when the task body is declared as a subunit.

" two explicit declarations appearing in the task body's declarative part cannot
be homographs.
Implementation Guideline: Include the following pairs of declarations: two subprogram
homographs, an overloadable vs. a nono-,arloadable declaration, two nonoverloadable
declarations (see the guideline for T1).

T4. Check that a generic formal part, a generic package specification, and a generic package
body form a single declarative region. In particular, check that:

" homographs are not allowed within a generic formal part (see IG 12.1/T9).
Implementation Guideline: Include the following pairs of declarations: two formal subprogram
homographs; a formal subprogram and a nonoverloadable formal parameter having the same
identifier; and two nonoverloadable formal parameters having the same identifier. The ,,,
nonoverloadable forms of formal parameter declarations are a formal object declaration and a
formal type declaration (discrete, integer, float, fixed, array, access, and private). JR

" an explicit declaration in the package specification cannot declare a
homograph of a name declared in the generic formal part (see IG 12.1 /T9).
Implementation Guideline: See the above guideline.

" an explicit declaration in the body of a generic package cannot declare a
homograph of a name declared in the generic formal part (see IG 12.1 /T9).
Implementation Guideline: Include cases where the package body is given as a subunit.

In addition, repeat the checks for nongeneric package declarations as described in T2. ..

8-12
I

Version 1 (Dec 86) 8.3 Visibility of Identifiers

T5. Check that the generic formal part, the formal parameters, and the declarative part of a
generic subprogram's body form a single declarative region. In particular, check that:

" homographs are not allowed within the genetic formal part (see IG 12.1 /T9).
Implementation Guideline: See the guideline for T4.

* the identifier of a generic formal parameter cannot be the same as the
identifier of a formal parameter of the generic subprogram (see IG 12.1/T9).
Implementation Guideline: Check for each form of generc formal parameter.

e an explicit declaration in the body of a generic subprogram cannot declare a
homograph of a name declared in the generic formal part (see IG 12.1/T9).
Implementation Guideline: Include cases where the subprogram body is given as a subunit.

In addition, repeat the checks for nongenedc subprogram declarations as described in T1.

T6. Check that a record type declaration forms a single declarative region. In particular, check
that two discriminants cannot have the same identifier, two nondiscriminant components
cannot have the same identifier (even if they appear in different variant parts), and a
discriminant and a nondiscriminant component cannot have the same identifier (see IG
8.3.c/T1).

Check that the discriminants in a private or incomplete type declaration cannot have the
same identifier.

Check that the discriminants in a generic formal type declaration cannot have the same
identifier.

17. Check that the formal parameters of a subprogram declared by a renaming declaration
form a declarative region, and hence, cannot have the same identifier (see IG 8.3.e/T1).

Check that formal parameters of an entry declaration cannot have the same identifier (see
IG 8.3.e/T1 1).

Check that a formal parameter of a subprogram declared by a renaming declaration can be
the same as a name declared in the renamed subprogram's body.

T8. Check that two homographs cannot be declared explicitly in the declarative part of a block. i
Implementation Guideline: See the guideline for T1.

T9 Check that a derived type declaration is allowed if it derives two or more subprogram
homographs.
Implementation Guideline: Check the following cases:

" the subprograms derived from the parent type become homographs because of the substitution of
the derived type for the parent type;

" the parent type is declared in a generic instance and has two or more derivable subprograms that
are homographs.

The derived type declaration should be given in a package specification (in the visible and .5-

the private part), a package body, a subprogram body, and a block. For packages and
subprograms, repeat for generic units.

TI 1. Check that a declared entity is not visible (either directly or by selection) within its own
declaration, except for package declarations.
Implementation Guideline: Check within the following forms of declaration: object declaration (both constant
and variable), type declaration (for each kind of type: enumeration, integer, float, fixed, array, record, access,
and task), subtype declaration, subprogram declaration, renaming declaration, number declaration, formal
parameter declaration, generic formal parameter declaration (object, type, and subprogram, e.g., the default

,.N name). or generic subprogram declaration.

8-13

.0 -. P

d le

8.3 Visibility of Identifiers Version 1 (Dec 86)

T1 2. Check that within a subprogram specificaton (appearing as a subprogram declaration,
renaming declaration, generic formal subprogram parameter), single entry, entry family, or
subprogram instantiation, no declar-ition of the designator of the declared subprogram or A
entry is visible, either directly or by i~iecdon (see IG 6. 1/M 2, where some of this objective
is performed).
Implementabon Guideline: Use all possible forms of visibility by selection: a visible part ot a ii;a.;iage. a record
component, a record aggregate, a named parameter association in a function call, a namned generic
association, and an expanded name whose prefix denotes an enclosing construct.
Implementation Guideline: Check both identifiers and operator symbols. For operator syrois, use the
operator as an infix or prefix operator as well as in function notation.

Check that in the instantiation of a package, a declaration having the package identifier is
visible by selection.

Ti 3. Check that subprograms or single entries having the same identifier can be declared in the
same declarative region if they do not have the same parameter and result type profile Z
(see IG 6.6,72 and IG 9.51T95).A

T2 1. Hiding in packages: check that a declaration given in an outer declarative region is hidden
by the declaration of a homograph occurring in an inner declarative region associated with
a package. Within the package's visible part, private part, and body. check that the outer
dleclaration is directly visible prior to the declaration of the inner homograph (see IG
8.3. f"r 1
Check. that the hidden declaration is visible by selection (except within the formal part of a
subprc(ya,- r entry specification having the same designator as the hididen declaration;
see lG .3'T712 for this special case).
lmplor-etia ;n Guideline: Check the following pairs of homographs (each member of tre pair snould be -

deciar'iri an outer declarative region): 1.
" ,.Uproqram vs. subprogram

~a,,tt7Gwdobn. Iniclude Subpfxograms deciared by armq declaratons and gere4r'c -sta, a.- -S 5 and

* sngie entry vs. subprogram

* I" "Q'ar.~literal vs. function

WC., ,fr, generic formal subprogram. 1-: 3ri . tiy vs. a norjior~ziaablv J .i-a!Cn
-.~oan~t, exception, type, subtype, pa3-.ce unit, gar c ur. r iy : c

afa subprogram, entry, or gb A ~prc.3ram,. ge,-e,-C far;TaIie: cc type
- r. ner a block name, loop name, or statem nt mabel; block names, locc n '~r.Ird ct.aiement

Zneckedl in IG B.3.a[59)

* nce'overiciadable declaration vs. nonoverioadable declaration

Implem-ertarton Guideline: Include cases in which the package body is given, as a suhurtl

T22. Hiding in subprograms: check that a declaration given in an outer declarativde region is .

* hidden by the declaration of a homograph occurring in an inner declarative region
* associatedl with a subprogram. Within the subprogram's formal part and body. cneck that

the outer declaration is directly visible prior to the declaration of the :nner homograph.
Implementation Guideline: Us* subprograms declared by a subprogram declaration and body. a subprogram

* body only, a renaming declaration, a formal generic subprogram parameter declaraton. aric a generic
instartiation In the case of renaming declr~rations. generic formal parameters, and gener'c trst~iotations, only
check that the formal parameters hides outer declarations having the same identifier
Implementation Guideline: Use some examples like the following in which a oclaatior. o tornal Darameter
hides a declaration given in an outer declarative region even though the outer re ~a.cc . ri -liar the %~
subprogram oeciiication.

pro~eniura OUTER is
fuincti~on IF is noew GIF (INTEGER): -- F1 returns INTEGER

PI.

8-14

Version I (Dec 86) 8.3 Visibility of Identifiers

procedure INNER C 4,
X INTEGER :- F; calls Fl %

r FLOAT): -- hides Fl

function F is new GF (FLOAT); -- F4 returns FLOAT •

procedure INNER
X INTEGER := F; -- illegal; write OUTER.F

F FLOAT) is
begin

X := INTEGER(F); -- formal parameter
end INNER;

Check that the hidden declaration is visible by selection (except within the formal part of a
subprogram or entry specification having the same designator as the hidden declaration;
see IG 8.3/T1 2 for this special case).
Implementation Guideline: Check the pairs of homographs given in the guideline for T21.
Implementation Guideline: Include cases when the subprogram body is given as a subunit. S

T23. Hiding in tasks and task type declarations: check that a declaration given in an outer
declarative region is hidden by the declaration of a homograph occurring in an inner
declarative region associated with a task or task type declaration. Within the task
specification and body, check that the outer declaration is directly visible prior to the
declaration of the inner homograph. S

Implementation Guideline: Use some examples like the following in which an entry declaration appearing in a
task specification hides a declaration given in an outer declarative region even though the outer declaration
occurs after the package specification:

generic
type T is private;

package GP is
procedure PROC (Y T):

end GP:

package body GP is

end GP:

procedure OUTER is
procedure P is new GP (INTEGER); -- P1

task INNER is "
entry P (X INTEGER); %

entry P (X FLOAT);
end INNER;

procedure P is new GP (FLOAT); -- P2

task body INNER is
begin

P (Y => I); -- illegal: Pl hidden
P (Y => 1.0): -- illegal: P2 hidden S
declare 2

procedure P is new G (FLOAT): -- P3 ,.'
begin 1

accept P (X FLOAT) do
P-- deadlock; calls entry

end P;

%

P % .".

8-15

s..

4

8.3 Visibility of Identifiers Version 1 (Dec 86) p

P (1.0): - calls P3
and;

and INNER:,4.* ..
.- ,v.

I

Check that the hidden declaration iz vsible by selection (except within the formal part of a '" '-
subprogram or entry specificatlon having the same designator as the hidden declaration; I
see IG 8.3T1 2 for this special case).
Implementation Guideline: Check the pairs of homographs given in the guideline for T21.

Implementation Guideline: Include cases in which the task body is given as a subunit. ..

T24. Hiding in generic packages: check that a declaration given in an outer declarative region is
hidden by the declaration of a homograph occurring in an inner declarative region
associated with a generic package. Within the package's generic formal part, visible part, '
private part, and body, check that the outer declaration is directly visible prior to the
declaration of the inner homograph.
Implementaton Guideline: Use some examples like those given for T21, including cases where the inner
declaration occurs in the generic formal part. I
Check that the hidden declaration is visible by selection (except within the formai part of a
subprogram or entry specification having the same designator as the hidden declaration;
see IG 8 7 1 for this special case).
h. pler;enta ton Guideline: Check the homographs described in the guideline for T21 .;

Implen'eartarion Guideline: Include cases in which the package body is given as a suburit.

T25 Hidin, in generic subprograms: check that a declaration given in an outer declarative
reg i- ;:,idden by the declaration of a homograph occurring in an inner declarative region
assoc;ated with a generic subprogram. Within the subprogram's generic formal part,
formal part, and body, check that the outer declaration is directly visible pnor to the
decl;aration of the inner homograph.
Check that the hidden declaration is visible by selection (except within the formal part of a
subprogram or entry specification having the same designator as the hidden declaration;
see K3 8.3/il 2 for this special case).
Imple',enration Guideline: Follow the guidelines for T22, extending the cases to include cmCarafions in the
genes - r' , o-art (as for T24).

ImpiE,- .,c : Guidelne: Include cases in which :rn s.. , . s ier, a: ,

T26. Hidir>:- !,,! :ntrv declarations: check that a - ,"araftio , given in an outer aeciarative region is -.

hidden by the declaration of a homograph occurring in an inner declarative region
associaW ir with the formal part of an ent- deci&;.3tion and the corresponcing accept
statements. Within the entry's formal part. check that the outer declaration is directly
visible prior to the aeclaration of the inner homograph. .

Check that the hidden declaration is visible by selection within the formal part and accept
statement (except within the formal part of a subprogram or entry specification having the
same designator as the hidden declaration; see IG 8.3/T1 2 for this special case).
Implementabon Guideline: Follow the guidelines for T22.

T27. Hiding in record type declarations: check that a declaration given in an outer declarative
region is hidden by the declaration of a homograph occumng in an inner declarative region

associated with the declaration of a record type. Within the record type's declaration,
check that the outer declaration is directly visible prior to the declaration of the inner P

homograph.
Impiementation Guideline: Include a check within a discriminant part.

Check tnat outer declarations are appropriately hidden within the discnminant part of a *

private type declaration, incomplete type declaration, or generic formal type declaration. - -

8-16 ,-.

% %

A". • • - . % " • ° ,. . - • , - '

{ M Version 1 (Dec 86) 8.3 Visibility of Identifiers

Check that the hidden declaration is visible by selection.

% % .T28. Hiding in block statements: check that a declaration given in an outer declarative region is
N' hidden by the declaration of a homograph occurring in an inner declarative region

associated with the declarative part of a block statement. Within the declarative part,
check that the outer declaration is directly visible prior to the declaration of the innerhomograph.

Check that the hidden declaration is visible by selection (except within the formal part of a
subprogram or entry specification having the same designator as the hidden declaration;
see IG 8.3/T1 2 for this special case).

T29. Hiding by a loop parameter: check that a declaration given in an outer declarative region is
hidden by the declaration of a loop parameter.

Check that the hidden declaration is visible by selection (except within the formal part of a
subprogram or entry specification having the same designator as the hidden declaration;
see IG 8.3/TI 2 for this special case).

T30. Check that within a generic formal part, no outer declaration having the same identifier as
the generic unit is directly visible (see IG 12.1/T5).
Implementation Guideline: Check for both generic subprograms and generic packages.
Impleme.itaton Guideline: Check for declarations that are potentially visible because of use clauses as well as
for declarations given in an outer declarative region.

Check that within a generic subprogram body, no subprogram or generic subprogram
declared in an outer declarative region is hidden (unless the subprogram is a homograph
of the generic subprogram). Similarly, check that subprograms can be made directly
visible because of a use clause that appears outside the generic subprogram body.

T31. Check that an implicit declaration of a predefined operator or enumeration literal is hidden
by an explicit declaration of a homograph of the operator or literal.
Implementation Guiaeline: Check each form of explicit declaration: subprogram declaration, renaming
declaration, generic instantiation, and (for operators only) generic formal subprogram declaration.
Implementation Guideline: An enumeration literal should also be hidden by a nonoverloadable declaration.
Implementation Guideline: Check that the implicit declaration can occur before or after the explicit declaration.
and that in the case where the explicit declaration comes last, the implicit declaration is visible prior to the
occurrence of the explicit declaration. In particular, if the implicit declaration occurs in the visible part of a
package and the explicit declaration occurs in the private part, then the implicit declaration should be visible
outside the package. On the other hand, if the explicit declaration also occurs in the visible part of the package,
only the explicit declaration is visible outside the package.
Implementation Guideline: The homographs for an operator should have different formal parameter names,
and where the implicit declaration is hidden, it should be impossible to invoke it even when named associations
are used.

T32. Check that an implicit declaration of a predefined operator or enumeration literal is hidden
by a derived subprogram homograph.
Implementation Guideline: The homographs for an operator should have different formal parameter names,
and where the implicit declaration is hidden, it should be impossible to invoke it even when named associations
are used. %

T33. Check that an implicit declaration of a block name, a loop name, or a statement label hides
the declaration of an enumeration literal or a derived subprogram declared by a derived
type definition.
Implementation Guideline: Include cases where an enumeration literal, derived subprogram, and block name, ,'.-
loop name, or statement label all have the same identifier.

T41. Check that basic operations (except for explicit type conversion and type qualification; see
below) are visible throughout their scope, and, in particular, are visible even when the type

•-.'I- that caused the operations to be declared is declared in the visible part of a package and -
no use clause is applied to the package.

8B-17
4

S S=i

8.3.a Labels, Loop Names, and Block Names Version 1 (Dec 86) I

Implementation Guideline: The basic operations to be checked are: implicit type conversion, assignment,
allocators, membership tests, short-circuit control forms, selected components. indexed components, slices.
numeric literals, the literal null, a string literal, an aggregate, and attributes. Check for each class of type: " .. "
integer, enumeration, floating point, fixed poi il array, record, access, and private.

Check that the usual visibility rules apply to the type mark occurring in an explicit type 0
conversion or a qualified expression. In particular, if the type mark is the simple name of a
type declared in a type declaration and the type declaration is not directly visible, then the
type conversion or qualified expression is illegal. 0%

Check that operator symbols and enumeration literals declared in the visible part of a
package are not directly visible outside the package unless a use clause makes them
visible.
Implementation Guideline: Check for each class of type: integer, enumeration, floating point, fixed point, array.
record, access, and private.

T51. Check that a declaration given in the visible part of a package is visible by selection from
outside the package (see IG 4.1.3/T20-T28).

Check that declarations in the visible part of a package nested within the visible part of a
package are visible by selection from outside the outermost package.

T52. Check that an entry declaration of a task type is visible by selection when the prefix is
appropriate for the task type (see IG 9.5/T for various tests).

T53. Check that a component of a record value (or a discriminant of a value having a private or S
generic formal type with discriminants) is visible by selection (see IG 4.1.3/Ti).

Check that a component of a record type is visible by selection as a choice in an aggregate
(see IG 4.3.1/T6).
Implementaton Guideline: Include components that are discriminants,

T54. Check that the formal parameter of a subprogram or an entry is visible by selection in a
named association of a corresponding subprogram or entry call (see IG 6.4/T3 and IG
9.5/781).

T55. Check that a generic formal parameter is visible by selection in a named generic
asso-;at:on of a corresponding generic instan';faron see IG 12.3/T4).

T56. Check that any declaration that occurs im. J. _",,7.'ely within a declarative region (other than
a record type declaration) is visible by selection in an expanded name whose prefix
denotes the enclosing construct (except when visibility by selection is not allowed) (see IG
4.1.3T7).

8.3.a Labels, Loop Names, and Block Names
Semantic Ramifications

Si. RM 5.1/3 states that label, block, and loop names are implicitly declared within the
innermost enclosing block or body that encloses the labeled statement, Iop, or block, e.g.:

procedure Q is
L : INTEGER:

begin ",
begin -- beginning of block

• '' L. .. - - legal
end:

end ;

8-18

Version 1 (Dec 86) 8.3.a Labels, Loop Names, and Block Names V' l

The label is implicitly declared within the enclosing block, and so does not conflict with the
declaration of L in the enclosing procedure. If the inner block were not present, label L would be
declared at the end of O's declarative part. Since variable L and label L are homographs, and
since label L is implicitly declared but is not a predefined operation or a derived subprogram, the
homographs are not allowed (AM 8.3/17). o
S2. AM 5.1/4 requires that label, block, and loop names be unique within the entire body. This
means that implementations must treat such names specially. For example:

procedure P is
begin

begin
<<L>> ...

end;

for I in 1..10 loop
<<L>> ... -- illegal

end loop; 0
end P;

The second declaration of label L is illegal even though it occurs within a different declarative
region, and even though the first label is only implicitly declared within the block and the second
label is implicitly declared in P's declarative part. '

S3. A label, block name, or loop name can be the same as an implicitly declared enumeration
literal or a derived subprogram (RM 8.3/17):

package P is
type ENUM is (El, Z2);
function F return KNUM;

end P;

procedure Q is
type NEW ENOM is new P.ENUM;
-- implicit declaration of Zl, Z2, F
X : NEW._NUM := 1l; -- ok
Y : NEW ENUM := F; -- ok
-- implicit declaration of labels El and F

begin
X :El; illegal; only label El is Visible now
Y F; -- illegal; only label IF is visible now

<<El>> ... -- legal
<<F>> ... -- legal
end Q;

Labels El and F are implicitly declared at the end of O's declarative part and are homographs of
enumeration literal El and function F, which are also declared implicitly in O's declarative part.
Since an enumeration literal is a predefined operation, it is hidden by label El (AM 8.3/17, rule
(a)). Similarly, since function F is an implicitly declared derived subprogram, label F hides the
function (AM 8.3/17, rule (b)). Since the labels are declared at the end of Q's declarative part
(AM 5.1/3), the enumeration literal and function are not hidden until after the end of the -"
declarative part.

S4. It is possible to construct a more complex example in which an enumeration literal, a
derived subprogram, and a statement label having the same identifier are all implicitly declared -
in the same declarative region:

8-19
0-

8.3.a Labels, Loop Names, and Block Names Version 1 (Dec 86)
I

generic
type T is private;

package GP is ,_.

type NT is new T; 0
function F return NT;

end GP: .1

procedure Q is
type ENUM is (M F);

package PACK is new GP (ENUM);

type NEW ENUM is new PACK.NT; %
-- derives enumeration literal F and function F
X NEWENUM := F; -- calls function F

begin
X F; -- illegal

end Q.

An enumeration literal is derived for NEW ENUM because PACK.NT is an enumeration type
(see IG 12 .3'S) and function F is also derived. Label F is implicitly declared at the end of O's
declarative part. RM 8.3/17 requires us to consider the homographs for F by pairs: (function,
enumeration literal), (label, enumeration literal), and (label, function). Derived function F hides
enumeration literal F, since the enumeration literal is considered a predefined operation
(AI-00002. Similarly, label F also hides the enumeration literal. Finally, derived function F is
hidden by label F, but only after the end of the declarative part, since the label is declared at the
end of the declarative part (RM 5.1/3).

S5. The occurrence of a label, e.g., <<I>>, should not be confused with the declaration of a
label. <! , > refers to the implicit declaration of I as a label; the context in which <1>> occurs
determines where this implicit declaration occurs. Consider the following example:

N"

pt , -dure P is -r
I INTEGER;
--- inplicit declaration of label I

begin

I. -- illegal
erit P:

The implicit declaration of label I is hidden by the explicit declaration of variable I (RM 8.3/17).
The attempt to reference label I after the first statement is illegal, because no label is visible.
Similarly:

for I in 1 10 loop
1 I.: null: -- illegal
end loop:

The occurrence of label I is illegal because the only visible declaration of I is the loop
parameter's declaration, and a loop parameter is not a label. Label I is implicitly declared in an

" enclosing declarative part. Normal visibility rules then apply to explicit occurrences of this
implicitly drclared identifier. In particular, <<I>> is only legal when this implicit declaration of I
as a label is visible. -l - -

S6. Similar!y. the name of a loop cannot be used by an exit statement if it is hidden by the loop
parameter declaration or some other intervening declaration:

8-20

•~~~~~~~~~~~~~ N ,_ ,,,,.?'.:.,,.,. ,.:v.' ,. ,',.".,-"..

1I.-T

Version 1 (Dec 86) 8.3.a Labels, Loop Names, and Block Names

Li: for Li in 1..10 loop
exit LI; -- illegal

end LI; -- ok0A

The name given in the exit statement refers to the loop parameter, and so is illegal. The name -
given at the end of the loop is, however, legal, since the declarative region associated with a
loop statement does not include the end of the statement (just as the end of a package or a
subprogram declaration occurs in the containing declarative region). Thus, the last occurrence
of Li refers to the loop name. The loop name can be hidden in other ways as well:

L2: for I in 1..10 loop
declare

L2 : INTEGER;
begin

exit L2; -- illegal
end:

end loop L2; p

The occurrence of 1L2 in the exit statement is illegal because only local variable 12 is directly
visible.

S7. Additional consequences of the special rules concerning the declaration of labels, loop
names, and block names are discussed in IG 5.1/S. I
Legality Rules

L1. Within the sequence of statements and the (optional) exception handling part of a
subprogram body, package body, task body, or generic unit (and excluding within any
nested subprograms, packages, tasks, or generic units), no identifiers used for statement
labels, block names. or loop names are allowed to be the same (RM 5.1/4).

L2. For each label used in a goto statement, there must be a corresponding visible implicit
label declaration in the innermost block statement, subprogram body, package body, task -.

body, or generic body that encloses the labeled statement (RM 5.9/1-2 and RM 8.3/3).

For each loop name used in an exit statement, there must be a corresponding visible
implicit loop name declaration in the innermost block statement, subprogram body,
package body, task body, or generic body that encloses the named loop (RM 5.7/3 and RM
8.3/3).

L3 The identifier of a statement label, a block name, or a loop name must be distinct from any
other identifier declared explicitly in the innermost block statement, subprogram body,
package body. task body. or generic body that encloses the labeled statement, the named
loop statement -he named block statement (RM 5.1/3 and RM 8.3/17).

Test Objectives and Design Guidelines

T1 Check that withn the body of a subprogram, package, or task (and excluding within nested
bodies). a statement label, a block name, or a loop name inside a loop, an accept
statement, a block body, or an exception handler cannot be the same as a statement label,
a block name, or a loop name outside these constructs. ,'p
Implementation Gusdeline: Check all nine combinations.

T2, Check that a label, a block name, or a loop name in a nested subprogram, package, or
task can be identical to a label, a block name, or a loop name outside such a construct. In
particular, try a subprogram declaration in a block as well as a subprogram nested in a
subprogram.
Implementation Guideline Check All nine combination,,.

8. ',. ! "p%

I

"% "r", " *,"* .* : :" ,. .- . :". .",".. . .* . . " • ". .. "•••" . .••••• •. ..- "- -. •. ".

8.3.b Loop Parameters Version 1 (Dec 86)

T3. Check that a goto statement inside a loop, a block body, or an exception handler (of a ,.

block) is permitted to access a labeled statement appearing before and after the loop or -
block, respectively (see IG 5.9/T2).

T4. Check that a goto statement in a nesied subprogram, a package, or a task body is not S,

permitted to reference a statement label in the outer subprogram, package, or task body,
nor can a goto statement in an exception handler transfer control into ias associated body
(see IG 5.9/Ti).

Check that an exit statement in a nested subprogram, a package, or a task body is not
permitted to reference a loop name in the outer subprogram, package, or task body (see
IG 5.7T).

T5. Check that a loop parameter can be spelled the same as a label occurring prior to the loop
but it cannot be the same as a label occurring inside the loop.

Check that a loop parameter can have the same name as the loop. oui tn,-, an exit
statement within the loop cannot then reference the loop name.

Check that if a loop name is hidden, it cannot be used in an exit statement within the loop. "

T6. Check that a statement label, a block name, or a loop name in a loop, an accept statement,
a block body, or an exception handler cannot be the same as a block identifier, a loop
identifier, a variable, a constant, a formal parameter, a generic formal parameter, a named
literal, a subprogram, an enumeration literal, a type, an entry, a package, an exception, or
a generic unit declared in the enclosing body, and if the label is the same as a predefined
exception or a user-defined exception defined in an enclosing unit, no handler for that .--

exception can be written.
Impieme,'taton Guideline: Check for each form of declarative region. See also IG 8.3.tT2.

Check that a label, a block name, or a loop name can be the same as the name of a
derived enumeration literal or subprogram, and that the label is declared at ,he end of the
declarative part.

17. Check that a statement label in a subprogram body a 'ask body cr a .ac kte body
cannot bo the same as a block identifier. J .erer, i v. ota, ,. named
literal., a sulprugram, an enumeration litem. type, :n entc,, package, ar ', tp on, or a
generic unit declared in the subprogran: i wcluding formal parametersi. the package
(specification and body), or the task (specification and body).

T8. Check that a statement label declared outside a block can have the same -dentitier as an
entity declared in the block, but a goto statement using that label is illegal within the block
and legal outside the block.

T9. Check that in a nested body, N, an attempt to reference an entity. E. declred in an
enclosing body is not legal if N contains a label, block name, or loop name E.
Implementation Guideline: The attempt to reference the outer declaration shou~a occur befor6 :'o attempt to
declare a label block name, or loop name.

8.3.b Loop Parameters
Semantic Ramifications '

Si. There are several consequences of the rule that the scope of a iop pcrameter extends
only to the end of the corresponding loop:

1 The value of the loop parameter can be accessed only within the looo bodyj.

8.22

Version 1 (Dec 86) 8.3.c Records

2. Nested loops can have identically named loop parameters, in which case the
outer loop parameter is not directly visible within the inner loop. If the outer
loop is labeled, selected component notation can be used.

3. Non-nested loops can use the same identifier for their loop parameters but
these identifiers are distinct loop parameters and can have different types.

4. A loop parameter can have the same identifier as some entity declared in the
immediately enclosing scope. 4

Test Objectives and Design Guidelines

Ti. Check that the value of a loop parameter cannot be accessed from outside the loop body.
Implementation Guideline: Attempt to access the loop parameter after the loop body 3nd !n a program
containing no other use of the loop parameter identifier.

T2. Check that:

a. nested loops can have identically named parameters with or without distinct p
types, and references in the innermost loop are associated with the innermost
parameter, etc.

b. non-nested loops can have identically named loop parameters with distinct
types, and that references within each loop are to its own loop parameter;

c. a loop parameter can have the same identifier as a variable declared in the .

scope immediately containing the loop.

Implementation Guideline: Use loop parameters containing more than a single letter. since JOVIAL gives
single letter loop parameters the Ada interpretation, but gives a different interpretation to multiple letter loop

of parameters.

8.3.c Records

Semantic Ramifications

s1. Components of a given record type definition can have the same name as components of
another record type definition, i.e., two record types can both have components named X.

S2. The visibility rules for records imply that outside the record, the name of a component
begins with the name of the object containing the component, and similarly, for components of
components. Hence, if R is a record containing component S which contains component T, the
only way to reference T is by writing R.S.T; R.T, T, and S.T are not legal references to this
component.

Legality Rules '.

L1. A record component identifier within a given record type definition must be uniquely
named. In particular, components of different variants of a given record cannot have
identical names (AM -.7/3).

S
Test Objectives and Design Guidelines

TI. Check that two components of a given record definition must be uniquely named. In
particular, check that components of different variants cannot have the same name, even if
they have the same, statically defined, subtype. Since record discriminants are considered
components of a record (see AM 3.7.1/1), check also that duplications are not permitted
among the names of discriminants and the names of any other record components of a

.5 given record definition.

b-23 St.

I

."N5 N N NN .

8.3.d Enumeration Literals Version 1 ;Dec 86)

Check that component names may be the same in separate record type definitions.

Check that component names may be the same as names of other objects, viz., formal
parameters, labels, loop parameter., ,,ariables, constants, subprograms, packages, tasks, .t,*

and types.

T2. Check that partial names for record components (as in P/I') are not permitted, e.g., that if
a record component is named T, and this is the only declaration for identifier T, the name T
is not permitted outside the record as a reference to this component. Also, for a record of
records, if the full name for a component is R.S.T, check that R.T is not permitted as a
valid reference, assuming (of course) that there is no T component of R.

p.
a.,.

8.3.d Enumeration Literals
Semantic Ramifications I'

S1. A homograph of an enumeration literal is not allowed in the same declarative region it the
enumeration literal was declared with an enumeration literal specification (A1-00330). For
example,

type ENUM is (RED, GREEN, BLUE);
function RED return ENUM; - illegal

S2. On the other hand, if an enumeration literal is implicitly declared by a denved type
declaration, then a derived subprogram homograph can be (implicitly) declared in the same
declarative region. An explicit declaration of a function homograph is also allowed:

package P is
type ENUM is (RED, GREEN); ..-
type T is private;
function RED return T;

private
type T is new ENUM-
-- derives enumnration literal RED
type NT is new T;

derives enumeration litt-ral RED and function RED
end P-

The explicit declaration of function RED hides the enumeration literal derived by T's full
declaration, and so T's full declaration is legal. Similarly, the declaration of NT is legal because
the derived function RED hides the Implicitly declared enumeration literal (see AI-00002 and RM
8.3/17).
Legality Rules

1L1. Duplicate enumeration literals (including character literals) are not permitted in a given
enumeration type definition (RM 8.3/15 and RM 8.3/17).

L2. A function homograph of an enumeration literal declared by an enumeration type definition
is not allowed in the same declarative region as the enumeration type definition (RM 8.3/17
and A1-00330).

Test Objectives and Design Guidelines .',

T1. Check that ouplicate enumeration literals (including character literals) are not permitted in a
single enumeration type definition (see IG 3.5.1/T3).
Implementation Guidelne: Use duplicates which differ only in the case of the letters as well as luxically -
identical iterals.

8-24

Version 1 (Doc 86) 8.3.e Subprogram and Entry Parameters

,.:,
T3 Check that an explicitly declared function homograph for an enumeration literal cannot be

given in the same declarative region as the enumeration literal if the enumeration literal is
declared by an enumeration literal specification (see IG 8.3/T). ,

Check that a derived subprogram can hide a derived enumeration literal (see IG 8.31T32).
4,P

8.3.e Subprogram and Entry Parameters

Semantic Ramifications

si. The use of a formal parameter in a named association does not hide an entity with the
same name used as the actual parameter, e.g., calls of the form F(A => A) are permitted, where "
the first A is F's formal parameter name and the second A names an identifier visible in the
context of the call to F. The first occurrence of A names the formal parameter by selection (RM
8.3/11); the second occurrence names a directly visible A.

Legality Rules

L. Formal parameters of subprograms must be distinct from each other and from identifiers
declared in the subprogram's declarative part (RM 8.1/2, RM 8.3/15, and RM 8.3/17).

1-2, A parameter name cannot be used in a default value appearing later in a parameter list
(RM 6.1/5).

Test Objectives and Design Guidelines

.T1 Check that a subprogram specification cannot have duplicate formal parameter names.
Implementation Guideline: Check for function and procedure specifications in a generic and nongenenc "

. o subprogram declaration, a subprogram body (no preceding declaration), a genenc formal subprogram
declaration, a renaming declaration, and a body stub. Some forms of this test should use more than two formal
parameters, with the duplicate parameter names oocurring at different positions and in different identifier lists.

Check that a formal parameter of a subprogram or generic subprogram cannot have the
same identifier as one declared by a local declaration in the subprogram body or as one
declared as a generic formal parameter.
Implementation Guideline: The local declaration should attempt to declare a: variable, constant, named
constant, exception, type, subtype. package, task unit, generic unit (package, function, and procedure), block
name, loop name, statement label, function, and procedure.

* Implementation Guideline: Repeat the test for generic and nongeneric subprogram bodies.

T2. Check that within a subprogram or an accept statement, a formal parameter can be used
directly in a range constraint, a discriminant constraint, an index constraint, and an .5

exception handler, but it cannot be used in a default value appearing in the parameter list
(see IG 6.1/T 1).

T3 Check that a formal parameter in named parameter association is not confused with an
actual parameter Identifier having the same spelling.
Implementabon Guideline: Include a check for subprogram and entry calls. Include subprograms declared by
instantiation.

T1 1. Check that an entry declaration cannot declare an entry or an entry family with duplicate
formal parameter names.

8-25 -

d "• '"I

* V -a -o-0 - -J .IIr.W, .WNTX Z

8.3.1 Packages Version 1 (Dec 86)

8.3.f Packages
Semantic Ramifications % J-

Si. Because the declarations in a package specification belong to the same declarative region
as the declarations given in the declarative part of the body, the package specification's
declarations are always visible in the package body. For example:

package OUTER is
package P is

X : INTEGER;

end P;
end OUTER"

package body OUTER is
X : FLOAT;
package body P is

-- reference to X is to INTEGER X, not FLOAT X.
begin

null;
end P:

end OUTER;

Test Objectives and Design Guidelines

T1 Check that inside a nested package body, an attempt to reference an identifier declared in
the corresponding package specification is successful even if the same identifier is
deciared in the outer package body or the outer package specification. Check that the
outer declaration is visible by selection after to the inner declaration and is directly visible l ,' ,
prior to the inner declaration. K
Implementation Guideline: See the Guidelines for IG 8.3/T21
Implementation Guideline: Include a chock for generic packages as weli as for nongene:c.

:%

T2 Check that the visible and private parts of a package specification form a single declarative
regicr that is shared with the declarative pait of the package body. In particular, check
that two homographs cannot be declared within the following parts of the declarative
reg, n: visibie-visible, visible-private, visible-body, private-pn vate, private-body, and body-
body.
knplem,. rta ,:'v: Giidehne: Check for generic packages and subunits as well.

Check that a label defined in a package body cannot be identical to an identifier declared in
the corresponding package specification or body (see IG 8.3.a/Tt).

Check that if a package and an entity declared in the package specification have the same
name, the entity can be used in the package body without being confused with the -"

package name. * -

Implementation Guideline: In particular, check the declaration of a private type.

T3. Check that. if a package body is nested inside a package body. the inner package body
can contain a label identical to a label in the outer package body or to an identifier declared
in the outer package body or its specification.

8-26

- .. ~ - -. --

VUV 3 ,h1I~q7jY " D M Ki 1 MP.~L - P I . -. l

E Version 1 (Dec 86) 8.4 Use Clauses

8.4 Use Clauses
Semantic Ramifications

Si. It subprograms with the same parameter and result type profile are declared in different
packages, both subprograms are made visible by a use clause:

package P is
procedure P1 (X INTEGER);

end P;

package Q is
procedure P1 (Y INTEGER);-y

end Q;
use P, Q;

P1 (3); -- ambiguous
P1 (Y => 3); -- unambiguous

S2. The immediate scope of a library package identifier mentioned in a with clause extends
throughout the compilation unit associated, with the with clause (RM 8.6/2, RM 8.212, and RM
10.1. 1/5). Hence, any potentially visible declaration having the same identifier as the package
identifier is not made visible by a use clause (RM 8.4/5):

package P is
procedure P;

end P:

package Q is
procedure P (X INTEGER);

end Q;

with P, Q;
procedure R is

use Q; -- Q.P is not made directly visible
use P: -- P.P is not made directly visible

"%

S3. No potentially visible names are made directly visible until after the end of the use clause.
Hence, use P; use 0; can be legal when use P, 0; would be illegal:

package P is
package Q is

end Q:
end P;
use P, Q; -- illegal (1)
use P; use Q; -- legal (2)

(1) is illegal since Q Is not directly visible prior to the use clause. (2) is legal because after use
P is elaborated, 0 becomes visible, making use Q legal.

S4. Although a use clause is usually thought of as making certain declarations directly visible
that were not previously visible, a use clause can also cause previously visible declarations to
become invisible. For example:

8-27

1Wr* I 'W" . W Ir Wr- 1% W el

8.4 Use Clauses Version 1 (Dec 86)

package P1 is %
X INTEGER; e.'V

end P1 : '.

package P2 is
procedure X;

end P2;

use PI: -- makes INTEGER X visible
use P2; -- no X is directly visible now

After the second use clause, two declarations of X are potentially visible. Since one of these is
not the declaration of a subprogram or an enumeration literal, RM 8.4/6 says neither declaration
is made visible.

S5. The effect of withdrawing visibility can also occur for a package, so use P, P is not always
equivalent to use P; use P:

package OUTER is
package P is

P : INTEGER;
end P;

end OUTER;

package ONE is
use OUTER; -- OUTER.P directly visible now

end ONE:

package TWO is
use OUTER.P; -- OUTER.P.P directly visible now

end TWO;

package THREE is
use OUTER;
use P; -- means use OUTER.P

-- no I is directly visible now
ft end THREE:

The situation for package ONE is conventional. For package TWO, since the immediate scope
of OUTER P does not include the use clause, OUTER.P.P is made directly visible, but
OUTER.P is not directly visible. In package THREE, the first use clause makes OUTER.P
directly visible. The elaboration of the second use clause makes two P's potentially visible.
Since neither of the potentially visible P's are subprograms, neither P is actually made directly
visible. Note that if use P were replaced with use P, P, there would be no change in effect, but
for the sequence, use P; use P, the second use P would be illegal since no P is directly visible
after the first use P.

S6. The effect of a use clause in the visible part of a package specification extends over the
package body, but not otherwise outside the package:

package P is
use LIBQ;
X INTEGER:

end P-

8-28

''-- I Ift. .. '. i. -..- * .* - 1 .l. ...

Version 1 (Dec 86) 8.4 Use Clauses

package body P is
-- (2)

h end P;

Although the scope of P.X includes (1), the scope of the use clause does not. Hence, the A
names made visible by use LIB 0 are not also made visible at (1), but are visible at (2).

S7. Consider the following declarations: "4'.3

procedure QI (X : STRING);
package R1 is

procedure Q1 (X : STRING):
end R1;

package R2 is
procedure Q1 (X : FLOAT);

end R2;
use Rl; -- (1)
use R2; -- (2)

procedure Q1 (Y : FLOAT); -- R2.Ql no longer visible

The use clause at (1) does not make R1.Q1 visible since (1) is within the immediate scope of
the first declaration of 01, and R1.01 is a homograph of this declaration (RM 8.415). Moreover, ...

RM 8.4/6 does not apply since there is only one potentially visible 01. The use clause at (2),
however, makes two declarations of 01 potentially visible, and since both are declarations of
subprograms, RM 8.4/6 says that both declarations are made visible. But RM 8.4/5 still forbids
making R1.01 directly visible; hence, QI("AB") will be an unambiguous call. R2.Q1 will be
made visible, however, until the later declaration of a homograph for R2.Q1.

S8. A renaming declaration is not treated any differently from any other declaration with respect
to a use clause, even if the same entity is renamed with the same identifier:

package P1 is
USE_ERROR exception renames TEXTIO.USEERROR;

end P1:

package P2 is
USE ERROR exception renames TEXT IO.USE ERROR;

end P2;

use P1, P2;

The use clause does not make USEERROR visible, even though P1.USEERROR and ,
P2.USEERROR denote the same exception.

SQ. RM 8.4/3 requires consideration of the set of packages named in use clauses. If a
package is renamed, use of the new name has the same effect as use of the original name: P

package NP renames P;
use NP, P; -- equivalent to use P, P; ."

Since the set of named packages is considered, and since sets do not contain duplicates, use
NP, P is equivalent to use P, P, which is equivalent to use P.
S1O. Since entries are not declared immediately in the visible part of packages, they are not

8-29
II

8.4 Use Clauses Version 1 (Dec 86)

among the potentially visible entities that can be made visible by a use clause. Of course, if an
entry is renamed as a procedure in the visible part of a package, the new name becomes a
potentially visible entity.

S1 . Use clauses combined with derived ,")es can have some possibly surprising effects:

package MATRIX OPS is '?
type MATRIX is array ...
function "+" (L, R : MATRIX) return MATRIX;

end MATRIXOPS; 4.,

procedure P is
type MY MATRIX is new MATRIXOPS.MATRIX;
package Q is

procedure INVERSE (X in out MY MATRIX);
end Q;
X : MATRIX;
use Q;
package body Q is ... end Q;

begin
INVERSE (X); -- calls Q.INVERSE

end;

Now suppose we add a declaration of INVERSE to MATRIX OPS and recompile. The call to NO
INVERSE in P will now call the derivation of P.INVERSE that is implicitly declared as an
operation of MY MATRIX. Since this implicit declaration declares a homograph of Q.INVERSE, 41
the use clause no longer makes Q.INVERSE directly visible.
S12. If a use clause names an enclosing package, it is important that none of the declarations in A.-\'
the named package be considered potentially visible:

package P is
X : FLOAT;

end P;

package Q is
X : INTEGER;
use P; -- P.X potentially visible
use Q; -- Q.X still visible

Since the use Q is, in effect, ignored, Q.X is not in the set of potentially visible declarations
together with P.X, and hence Q.X remains directly visible. (If Q.X were considered potentially
visible, then RM 8.4/6 would imply that neither P.X nor Q.X would be directly visible.)

Changes from July 1982

S1 3. Potentially visible subprograms declared by a renaming declaration, a generic instantiation,
or an implicit declaration are now covered by the rules for making such subprograms visible.

Changes from July 1980

S14. The scope of a use clause is defined.

Si5. The rules now consider the set of packp.ges named in use clauses rather than the set of
package names, so renamed packages are handled correctly.
S16. Enumeration literals are made directly visible just like subprograms.

8-30

8-30 p.,

--..-... ,4-

Version 1 (Dec 86) 8.4 Use Clauses p

S17. Two subprogram homographs can now be made visible by a use clause.

S18. Consideration of the effect of a use clause is no longer delayed when resolving overloaded
names. I

Legality Rules

L1. The names given in a use clause must denote packages.

1-2. If a use clause appears in a context clause, the names must be simple names denoting
library packages named in previous with clauses of the context clause (RM 10.1.1/3).

Test Objectives and Design Guic'.lines

T1. Check that the name in a use clause must be the name of a library package named in a
previous with clause of the context clause.
Implementation Guideline: In particular, check that it cannot be the name of a library subprogram, the name of
a generic package, or the name of a package made visible by a use clause. Nor can it be the name of a
package in a with clause that applies to the unit.
Implementation Guideline: Check that use clauses can name packages declared by package declarations.
generic instantiations, and renamings of packages. .-.

Check that when a use clause appears in a context clause, it must name library packages
only, and the names must all be simple names (see IG 10.1.1/TI). V

T2. Check that if a use clause names an enclosing package, the use clause has no effect. .

Implementation Guideline: In particular, check that previously visible declarations remain visible.
Implementation Guideline: Check the effect within a subunit of the named package.

Check that if a declaration is directly visible prior to the occurrence of a use clause, and is
not in the set of potentially visible declarations, it remains directly visible after the use
clause.
Implementation Guideline: In particular, check that if a subprogram, 0, is already directly visible and a group of
potentially visible subprograms includes a homograph for 0, the homograph for 0 is not made visible. Include
a case where the homographs have different formal parameter names.

Check that if a homograph for a potentially visible subprogram or object is declared after a
use clause, the potentially visible entity is no longer visible.

Check that the effect of use P can be to make P invisible.

T4. Check that if the set of potentially visible declarations includes a mixture of subprogram or
enumeration literal declarations together with a declaration of some other kind of entity,
none of the declarations are ,nade visible.
Implementation Guideline: Include cases in which a single use clause makes all the declarations visible, and a p
case in which a sequence of use clauses makes some of the declarations visible first, and later use clauses
retract the visibility.

T5. Check that two potentially visible homographs of a subprogram identifier can be made
directly visible by a use clause.
Implementation Guideline: Visibility can be checked by providing the subprograms with differently namedformal parameters. "

T6. Check that if two renaming declarations (in different packages) declare the same identifier %
and both declarations rename the same entity, a use clause cannot make the identifier
visible.
Implementation Guideline. In particular, check exception names declared by TEXT_10 and an instantiation of
SEQUENTIAL_10 or DIRECT_10.

17. Check that the names made visible by a use clause are not made visible until after the end
of the use clause.

.5'.

13-31

-r- L-S . f-, , ',r ., 'r -

8.5 Renaming Declarations Version 1 (Dec 86) 0

T8. Check that the scope of a use clause in the visible part of a package does not extend
outside the package except for the package body.

T9. Check that a use clause makes irr: licitly and explicitly declared operators visible except
when there is a homograph of an operator already directly visible. P

8.5 Renaming Declarations
Semantic Ramifications '

Si. In an object renaming declaration, the evaluation of the object name determines which
object is denoted by the new name. Subsequent assignments to the renamed object will .
change the value associated with the new name:

type ACC STR is access STRING;
XAS ACC STR new STRING' ("ABCD");
I INTEGER : 2;
Xl STRING renames XAS (I.. 4); -- X1 = "BCD"

-- note use of an unconstrained array type STRING as the type mark

Yi CHARACTER renames XAS(2)- -- Yi = 'B'

XAS.all := "EFGH";

After the assignment, X1 = "FGH" and Y1 ='F'. Similarly,

XI := "JKL"-

implies that XAS.all = "EJKL" and Y1 = 'J'. Since the object name is evaluated when the . ..

renaming declaration is elaborated, subsequent changes to I do not affect the value associated
with X1. Even after I is changed to 1, for example, XI'LENGTH will still equal 3, and X1 'FIRST
will equal 2. Similarly, the object denoted by X1 depends on the value of XAS at the time Xl's
declaration is elaborated; subsequent changes to XAS do not affect the object denoted by X1
and Yl:

-- Xl "JKL"
XAS := new STRING' ("WXYZ");
-- X1 is still "JKL"

S2. A function call yields a value (RM 4.4/3), not an object, and a subcomponent of a function
value is also a value. Hence, a subcomponent of a function result cannot be renamed.
However, a function call can appear in the prefix of a renamed entity's name if a portion of the
prefix containing the call denotes an access value, so the name itself denotes an object
designated by an access value, or a subcomponent of such an object:

function F returns ACCSTR;
. .. -- assume F.all = "ABCD"
X2 STRING renames U.all: -- X2 = "ABCD"
Y2 . CHARACTER renames F(2); -- Y2 = 'B' 6

S3. Any constraint in the type mark of a renaming declaration is ignored; the new entity has the
subtype of the renamed object:

subtype S1_3 is STRING(l..3):;
X3 : SI_3 renames XAS(2..4): -

X3'FIRST is 2, not 1, since XAS(2..4)'FIRST = 2.

8-32

Version 1 (Dec 86) 8.5 Renaming Declarations
I

S4. It is possible for more than one object to have the required type if the prefix of an object
name contains an overloaded function call:

function F return ACCSTR;
function F (X : INTEGER :=-1) return ACCSTR;

X4 : STRING renames F(2..4); -- illegal

The function call, F, is ambiguous since F can denote either the parametedess F or the F with a
single default parameter. Either function returns a suitable access value. Now consider the
following functions:

function G return ACC STR: -- G1
function G return STRING; -- G2

X5 : STRING renames G(2..4); -- illegal

The object name is illegal since either G1 or G2 can be sliced and both slices have type %
STRING. It is irrelevant that G2(2..4) does not denote an object, but instead denotes a value, "
and so is illegal. Such information cannot be used to resolve the function call (RM 8.7/7-13).
S5. The properties of a new object name are, generally speaking, those of the renamed object.
In particular, a formal parameter of a subprogram, entry, or generic unit can be renamed within
the unit. If the parameter is of mode In, then the new name is treated as a constant. Similarly,
a renaming of an In out parameter is a variable. A renaming of an out parameter is also a
variable, but the new name has the properties of an out parameter, i.e., it cannot be passed as
an in out actual parameter, cannot be read, etc. (see IG 6.2/S). If a renamed constant is static,
however, the new name is not static, since RM 4.9/6 explicitly limits static constants to those
declared by a constant declaration.

S6. If the restrictions on the renaming of a subcomponent dependent on a discriminant did not
exist, it would be possible to assign a value to the containing variable that eliminates the
renamed object:

type REC (D INTEGER :- 1) is
record

S STRING (1..D);
case D is

when 4 =>
A INTEGER range 0 10;
AS STRING(1..3);

when others =>
B FLOAT;

end case;
end record;

X REC := (4, "ABCD", 5, "DEF");
XR INTEGER renames X.A; -- illegal "d

XS STRING renames X.S; -- illegal
XSC CHARACTER renames X.S(4)- -- illegal
XASC CHARACTER renames X.AS(3), -- illegal

X := (3, "XYZ", 1.5),
After the assignment to X, X.A, X.S(4), and X.AS(3) no longer exist. No problems arise since
XR, XSC, and XASC are not declared legally. XS is also illegal since an implementation may
choose to store components like X.S in physical locations that change when the discriminant

8-33

W"%"" *""" -% " """ -"" . -"% . '. - % ,% . ". - "% % " " . *. " .

8.5 Renaming Declarations f~c86)

value changes. These restrictions allow an implementation to represent i .r-amrv js o, -,hjects in
terms of an address pointing to the renamed object, where the "addres.s' soec -, siartIing ., *

bit of the renamed object. (Note that spe."'fving an address less precise thv'i t a.r.ng bit will
not, in general, be adequate for renati-:r 3 packed array or record components. sinc?, for
example. such components might not be aigned on byte boundanes. N,--,(r3 1r n 'h,"e Offset
within an addressable unit cannot always be computed at compile tim,,o. a oacked
BOOLEAN afray component A(l).)
S7. A vanable having an unconstrained type with default aiscnminants can. ne oe re .rectly -

in an object declaration or indirectly as a component of a record or array vanable:

type RFC2 is
i~, ord

V :REC;
end record;

ty~ P-Ris array (1.-2) of REC;
Y PEC,2;

The vana ,e~. K' and Z(1) can be renamed, but no subompon.e7rit of les~- ;n' can bie
renamed. p g. /v.A and Z(I).A cannot be renamed.
ss. Ar- c7 .. Yorient can be renamed if the object containing the s.clicompnentis a
constant OW is au; -Tject designated by an access value. In addition, any suocaomoonent of a

nongne. : .oiecan be renamed if discriminants of the containing varnaoe -o nlot have
defaults, se objects cannot have their discriminant values changed (! I -, treins ot the

-' RM, suc-. - .c annot be declared with an unconstrained type in an ol jr~c! deciaaon. a
component '+ i:,,t~on (of a record), or a component subtype indication (of r i

sq. A rea ~,cckage acts like the original package namei exceot thatl -,v .";e cannot
* be usci in pK refix of an expanded name (see IG 4,1.3/S for fur~npr i.;anof this

restriction?
slc. One (At the rriteria determining whether an expression)S v, cc.~c or
operator r*i * h xrsion must denote - finen >r:tv *vi

C ons aoed operator cannot .- -

*expressio-,E A

f P~~LUS (L, R INTEGER) retirn :N'7 1 -l.-
-i (L, R INTEGER) retcar. n~x.s -

Pi5(3, 4) . .. -- not static ;.

-still static
(3, 4) . .. -- still static 0)

(1) is no,. >':!:, PLUS is not an operator symbol '2' and 13', " re is an
operator trdie- -aw '+" denotes STANDARD."+". (The evailuatior cn
renaming decia'tlion determines that PLUS denotes the entity STANDA-C[does
the new",

* ~si 1. RM 6 . . ',in effect, that the normal overloading resoLior? ~'o *..
*subprogra-- cr c-trv name in a subprogram renaming deciaration. except e of the
* formal pa i~t- are not considered. If the parameter and reult, ;u~' ~ * 't ufice

to reso~V:, rce nnrogramn name, the renaming dleclaratio-n i5 1:eq,11 5 ti t, the
formal ;Da . ~cs the presence or absence of detai iLA(3~ > .ve
modes. ar., !c.a solve the name (RM 6.6/6). After tth rar!, o hIs *a5o
the pararr,4.tr n-c cocs must be the same at corresponding paran-E<, ;7o: tir

8-34

%, % *.."V

Version 1 (Dec 86) 8.5 Renaming Declarations

k procedure P (X INTEGER);
e,.; procedure P (X FLOAT);

procedure NPI (Y in INTEGER) renames P; -- legal 0
procedure NP2 (Z in out INTEGER) renames P; -- illegal; mode

To show that modes are not used to resolve the names, two subprograms or entries with -

identical parameter and result type profiles must be visible:

package P1 is
procedure Q (X : INTEGER); '_

end P1;

package P2 is
procedure Q (X in out INTEGER);

end P27

use P1, P2;

procedure NQ (X : INTEGER) renames Q; -- illegal

Although only one of these Q's can legally serve as the renamed entity, this fact cannot be used
to decide which subprogram is to be renamed.

Similar examples can be constructed for entries:

task type Ti is
'5en'.T'entry Q (X INTEGER);

end Ti;

task type T2 is
entry Q (X in out INTEGER);

end T2;

function F return TI;
function F return T2; I

procedure NQ (X : INTEGER) renames F.Q; -- illegal

In this case, F cannot be resolved on the basis of Q's required parameter and result type profile.
S12. If a generic formal In out parameter is renamed, the constraints associated with the new
name are those of the corresponding actual parameter, since any constraint associated with a
formal In out generic parameter is ignored in the instantiated unit (RM 12.1/4).

Changes from July 1982

S13. A subprogram or package can now be renamed within the subprogram or the package
itself.

Changes from July 1980

S14. Single tasks (i.e., tasks that do not have a user-defined task type) can no longer be
renamed.

S15. Any constraints associated with the type mark in an object renaming declaration are
ignored. In particular, the renamed object need not have the constraints of the type mark.

8-35
S

% %- " %-' , ', % '. J -o"." - ". . " ". . '. ". -. -j " '. - , . .- . .- . . ", ., , . ,. .

8.5 Renaming Declarations Version I (Dec 86)

SS16. The restriction on renaming components dependent on a discriminant is relaxed: such
components can be renamed if the discriminants do not have defaults or if the renamed object ..

is a constant, or is constrained. The restriction is extended to include formal generic in out ,..
parameters (whether constrained or not', n addition, the restriction now includes components
that mention an enclosing discriminant in a: index or a discriminant constraint.

S17. Formal parameter constraints and the return subtype, if any, in the specification of a
renaming declaration need not be the same as those of the renamed subprogram or entry.
SiB. The mode of a formal parameter is not used to decide which subprogram or entry is being
renamed.

Sig. A renamed entry cannot be used in contexts where only an entry call or an entry name is
allowed.

Legality Rules

LI. An object r;=,ming declaration must rename an ubject. (In pai cCU.ar. r rame in an
object renaming declaration must not denote a value returned by a function cail or a
subcomponant of such a value.)

L2. In an object renaming declaration, the renamed object must have the base type of the type
mark.

L3 If a variable, Vi. has discriminants:

- and is , generic formal parameter of mode in out, or

a the discriminants have defaults, V1 has an unconstrained subtype, and VI:

.3 " declared as a formal In out or out parameter of a subprogram or

• declared by an object declaration:

• is a component of an array variable, V2;

• i a component of a record variable, V2;

an.i . . " .ject is a subcompone, i 0? V1, thc- subcompc;,ent mu.ch :,. Le:

,, a co .impone-tt of Vi's variant part (it anly).

u;'r.1)n3ert declared with an index cnstra;Jn oi a discnim'nant cons,,ent f
the constraint uses a discriminant of VI;

• a subcomponent of one of the above components.

L4. An exception renaming declaration must rename an exception.

L5. A package renaming declaration must rename a package.

L6. A function declared by a renaming declaration must rename a function having the same
parametd and result type profile.

L7. A procedure declared by a renaming declaration must rename a procedure or an entry
having the same parameter and result type profile.

L8. Correpo;dong parameters in a subprogram renaming declaration mus have the same
moci

L9. A renarmngu eciaration with the designator "=" is only allowed to rename anothei equality .-
operatc r j RM 6.",'5).".. '"

8-36

.. - . . , ."

Version 1 (Dec 86) 8.5 Renaming Declarations

Test Objectives and Design Guidelines

T1. Check that only an object can be renamed in object renaming declarations.
Implementation Guideline: Check that a subcomponent of a function value cannot be renamed as an object.

Check that the base type of the type mark and the base type of the renamed object must •
be the same.

Check that a subtype indication with a range constraint, accuracy constraint, index
constraint, or discriminant constraint cannot be used in place of the type mark in an object
renaming declaration.

T2. Check that a renaming declaration is illegal if the renamed object is a:

" component of a variant part;

" a component declared with a discriminant constraint or an index constraint
using a discriminant of an enclosing record type; or

" a subcomponent of the above kinds of components,

and the containing object has an unconstrained subtype with default discriminant values
and is declared:

" in a nonconstant object declaration, or

" as a formal In out or out parameter of a subprogram or entry, or -"

" as a component of a record or array variable.

(Note: generic formal parameters are checked in T3).
Implementation Guideline: Include cases where the variable is a renaming of a suitable variable. 1

T3. Check that a renaming declaration is illegal if the renamed object is

" a component of a variant part;

" a component declared with a discriminant or index constraint using a
discriminant of an enclosing record type; or

" a subcomponent of the above kinds of components,

and the containing object is a formal generic parameter of mode In out having a:

" formal generic type (declared in the same or an enclosing generic unit); 0.
" unconstrained nonformal type;

" constrained nonformal type.

Implementation Guideline: Try cases where the discriminants do and do not have default values.
Implementation Guideline: Include a case where the containing object is a renaming of a formal generic
parameter.

T4. Check that a renamed constant is considered a constant. Check constants declared as: .

" a constant object,

s an in parameter of a subprogram or an entry,

" an In parameter of a generic unit,

e a discrminant of a record, %
Implementation Guideline Include a discriminant of a record variable declared with an
unconstrained type. including a variable designated by an access value.

,%,

8-37

N % %V %

8.5 Renaming Declarations Version I (Dec 86)

* a loop parameter,

- a deferred constant (after its full declaration),

a renamed constant.

Implementation Guideline: Include checks that a subcomponent of a constant is a constant.
Implementation Guideline: Confirm constancy by attempting to assign to the new name or by passing the new
name as an in out or out parameter of a subprogram or as an in out parameter of a generic unit. Note that the
value of a renamed loop parameter or record discrminant can change even though such objects cannot be 0
assigned to directly.

Check that renamings of the above forms of constant have the correct value.
Implementation Guideline: In particular, check that when a component of a generic array in parameter is
renamed, the correct value is obtained for instantiations with different component types.
Implementation Guideline: Include checks that components dependent on a discriminant can be renamed (see
T3 for further cietaii),

T5. Check that a ariable created:

a by an object declaration,
Implementation Guideline: Include a variable declared in a package. %

a as a subprogram or entry In out formal parameter (out parameters are
checked in T7), %

* as a generic In out formal parameter, and

* by an allocator,

can be renamed and has the correct value. Check that the new name can be used in an
assignment statement and passed as an actual subprogram or entry In out or out ,
parameter, and as an actual generic in out parameter.
Implementation Guideline: Use scalar, composite. access, private, and task objects.
Implementation Guideline: Include cases where the type mark is an unconstrained array type or an %
unconstrained type whose discriminants do not have defaults.

Check th,,.t ;f the value of the renamed variable is changed, the new value is reflected by
the valie ot tha new name.

For a renamed variable designated by an access value, check that a change in the access
value does not affect which variable is denoted by the new name.
Irmpl9re,?t:, t3 , J'deline: Check that the prefix of the renamed variable can be a function call.

Check that any subtype constraint imposed by the type mark used in the renaming
declaration is ignored, and the subtype constraint associated with the renamed variable is
used instead.
Implementation Guideline: The type mark should impose constraints both wider and narrower than those of the
renamed variuanh.
Implementahon Guideline: For renamings of a generic formal in out parameter, check that the new name has
the constraint of the actual parameter, not the formal parameter.

T6. Check that a component or a slice of a variable created:

9 by an oinect declaration,

* as a subprogram or entry In out formal parameter (out parameters are
,":'~- ,,o e;n T7),

a .:> 4 rcteric In out formal parameter.

* Ly in ianlcator,

,°.

8-38

Z'"

Version 1 (Dec 86) 8.5 Renaming Declarations p

can be renamed and has the correct value. Check that the new name can be used in an
assignment statement and passed as an actual subprogram or entry in out or out
parameter, and as an actual generic in out parameter.
Implementation Guideline: Check components having a scalar, composite, access. private, and task type.

Check that if the value of the renamed variable or component is changed, the new value is
reflected in the value of the new name. .

Check that a renamed slice can be sliced and indexed for purposes of assignment and to
read the value.

Check that any constraint imposed by the type mark used in the renaming declaration is
ignored, and that the subtype constraint associated with the renamed variable is used
instead.
Implementation Guideline: The type mark should impose constraints both wider and narrower than those of the
renamed variable.
Implementation Guideline: For renamings of a generic formal In out parameter, check that the new name has -
the constraint of the actual parameter, not the formal parameter.

17. Check that any renaming of an out formal parameter of a subprogram or entry satisfies the
usual rules for out parameters, namely: .,
Implementation Guideline: Include renamings of components of an out parameter.
Impiementation Guideline: Include renamings of renamings in some cases.

Check that a renamed out parameter, an out parameter component, or an out parameter
slice can be assigned to.

T8. Check that an exception renaming declaration can only rename an exception.

T9. Check that exceptions can be renamed.

Check that renamed exceptions cannot be used together with the original exception in the
same exception handler (see IG 11.2/T2).

T10. Check that only packages can be renamed in a package renaming declaration.
Implementation Guideline: Check that generic packages cannot be renamed.

Ti 1. Check that packages can be renamed, and that the new name for a package can be used
in a renaming declaration.
Implementation Guideline: Check that a package can be renamed inside itself. Include a renaming of a ,
generic package inside itself.

Ti 2. Check that an entry or procedure cannot be renamed as a function.

Check that an entry family cannot be renamed.

Check that a function cannot be renamed as a procedure.

Check that a parameterless function cannot be renamed as an object.
".,%

Check that a renaming is illegal if the parameter modes are not the same, and check that
the modes are not used to help resolve which subprogram or entry is being renamed. "

Check that a subprogram or an entry must have the correct number of formal parameters.
Imolementation Guideline: In particular, check that the renaming is illegal even if omitted or extra parameters "''
appear at the end and have default values,..M

Check that corresponding parameters (or the result type) cannot have different base types .,

(even if the types are convertible).

Tl3. Check that a subprogram or an entry can be renamed with:

, ,3

-:--::"

• "%, ' -~~~~~~~~~~~~~. o . .,.-.. .. .-.-...-.- •... -... -.

0.0 1 dIIKdWW WIanuau .-

o different parameter names;

* different default values; ._,

* different parameters having default values;

and that the new names/defaults are used when the new name is used in a call.
Implementatbon Guideline: Include a case where the formal parameter names are just reordered, to ensure that
the new formal names are not assoiated with the old parameter positions.

Check that formal parameter constraints (or result type constraints) for the new name are
ignored in favor of the constraints associated with the renamed entity.

Check that a subprogram or an entry can be renamed within its own body.
ImpIementabon Guideline: Include a renaming within a generic unit.

Check that the new name can be used In a renaming declaration.

Check that when default expressions are aggregates, the legality of the aggregate
depends on the type mark used in the renamed program, not the type mark used in the
renaming declaration. For example, check that use of others in a named association
requires a static index subtype in the renamed subprogram's formal parameter.

Ti 4 Check that the number of formal parameters is used to determine which subprogram or
entry is being renamed.

Check that the base type of the formal parameter and the result type (if present) is used to
determine which subprogram or entry is being renamed.

Check that the presence or the absence of a result type is used to identity which ..-...

subprogram or entry is being renamed.

TI 5. Check that a renamed entry cannot be used in a conditional entry call, a timed entry call, or
as the prefix to the 'COUNT attribute.

T16. Check that the attributes 'SUCC, 'PRED, 'IMAGE, and 'VALUE can be renamed.

T17. Check that a renaming of a predefined operation cannot be used in a static expression if
the new name is an identifier (see IG 4.9/T8).

Check that a further renaming as an operator symbol allows the new name to be used in a
static expression.

8.6 The Package Standard
Semantic Ramifications

Si. RM 8.6/2 says that the declaration of a library unit Is assumed to occur immediately within
STANDARD. Suppose we compile library packages LIB UNIT and NEXTUNIT, in that order.
The wording of RM 8.6/2 might seem to suggest that after compilation, both units would be
included in STANDARD, e.g.:

package body STANDARD iL
package LID ONIT is

P : INTEGER:
end LID-UNIT;

8.4) ,.

o.

..

.I .

Version 1 (Dec 86) 8.6 The Package Standard

W,

package NEXTUNIT is

°.*, end NEXT UNIT;

package body NEXT-UNIT is
begin

STANDARD.LIB_UNIT.P 3; -- not legaland;"'

end STANDARD;

h'STANDARD were truly a normal package, the reference to variable P would be legal. But RM
8.6/2 imposes special visibility rules so units like LIB UNIT are not visible from within NEXT-
_UNIT. In particular, LIB_UNIT is not visible because no with clause naming LIBUNIT applies
to NEXTUNIT. Since no with clause applies to NEXTUNIT's body, it is best to think of
STANDARD as not even containing LIBUNIT when NEXTUNIT's body is compiled.
S2. Now consider the difference between dependence on a library unit and the applicability of a
with clause to a library unit:

package P is -- library unit
OBJI INTEGER 5;

end P;

with P;
package Q is -- library unit

OBJ2 : INTEGER P.OBJI;
end Q;

package body Q is -- with P is applicable
OBJ3 INTEGER STANDARD.P.OBJ1

end Q,

with Q;
package R is -- only depends on P

OBJ4 : INTEGER STANDARD.P.OBJI; -- illegal
end R:

The with clause given for package 0 applies to P's body, so the use of the name STANDARD.P
is allowed there. Package R depends on package P (in the sense that recompilation of package
P will make package R obsolete), but there is no with clause for P that applies to R. Hence the
name STANDARD.P is not allowed in package R.

S3. The predefined package STANDARD is not a library unit (RM C/22), so a library unit having
the name STANDARD can be compiled. If such a unit is a package, it does not replace the
declaration of STANDARD; it is merely a library unit named STANDARD that is declared within
the predefined STANDARD package. Of course, the usual visibility rules apply within such a
user-defined library unit, I.e., within the unit, the name STANDARD refers to the unit, not the
predefined package. Similarly, with clauses that mention STANDARD refer to the library unit,not to the predefined package. For example:

package STANDARD is -- library unit
OBJI : INTEGER 5:
OBJ2 : INTEGER STANDARD.OBJ1: -- user-defined STANDARD

end STANDARD;

8-41

-.4S .-...

8.6 The Package Standard Version 1 (Dec 86't

with STANDARD; -- user-defined STANDARD
package Q is -- library unit

OBJ2 INTEGER STANDARD.OBJ1;
OBJ2A STANDARD.BOOLEAN; -- illegal
OBJ2B • STANDARD.STANDARD.BOOLEAN; -- illegal

end Q:

package body Q is
OBJ3 INTEGER : STANDARD. OBJI; 1;

end Q;

with Q;
package R is

OBJ4 INTEGER STANDARD.OBJI; -- illegal
OBJ5 STANDARD.BOOLEAN; -- predefined package

end R:

In the declaration of Q.OBJ2A, STANDARD.BOOLEAN is illegal because no declaration of the
identifier. BOOLEAN, occurs in the user-defined package STANDARD. Similarly, the name
STANDARD.STANDARD.BOOLEAN is illegal because STANDARD is not an identifier declarea
in user-defined package STANDARD. In the declaration of OBJ4 and OBJ5, STANDARD
denotes the predefined package since the user-defined library unit is not visible.

S4. STANDARD is not a reserved word. Hence, within a declarative part, the fo!lowing
declarations are permitted:

package P is -- library unit

type T is
record

INTEGER FLOAT:
end record;

STANDARD : T,
end P;

Within P ' decY!rative region and after the declaration of the object, STANDARD, X ,ai7-e
STANDARD INTEGER refers to the component of the record object.
STANDARD.P.STANDARD.INTEGER is an illegal name, since 1) the first identifier in a selected
component name refers to a directly visible identifier, 2) only the record object STANDARD is
directly visible, and 3) there is no P component in the record object.

S5. Since the name of a library unit is Implicitly declared in STANDARD, the name cannot be a
homograph (see RM 8.3/15) of a name that is already declared in package STANDARD. i, -

particular, a library unit cannot have the name BOOLEAN, INTEGER, FLOAT, CHARACTER,
ASCII, NATURAL, POSITIVE, STRING, DURATION, CONSTRAINT ERROR, NUMERIC-
_ERROR. PROGRAMERROR, STORAGEERROR, or TASKING_ERROR. Similarly. no
library unit package can have the name TRUE or FALSE, but a library unit subprogram can
have the name TRUE or FALSE as long as it is not a homograph of the enumeration ... ak,
TRUE or FALSE (i.e., as long as it is not a parameterless function with return type
STANDARD. BOOLEAN).

S6. Since the names of nongraphic characters are given in italics in Appendix C cf the RMY
these names are not considered to be declared in STANDARD, so a library unit ha',.:o ,,o
name NUL, for example, can be declared.

ST. Operators cannot be declared as library units because the designator of a library ur,!* mu.t -
% "

be an identifier (see RM 10.1/3).

8-42

V:'V

Version 1 (Dec 86) 8.6 The Package Standard I

S8. When compiling a subunit, the RM states (RM 10.2/6) that "visibility within the proper body
of a subunit is the visibility that would be obtained at the place of the corresponding body stub."
Consequently, the ancestor library unit is implicitly declared in STANDARD. Hence, within the
subunit, unique selected component names starting with STANDARD can be used to designate
identifiers in any ancestor unit (if there are no visible user declarations of STANDARD). For
example:

with Q;
procedure P is

I : INTEGER;
procedure Q is separate;

begin

end;

separate (P)
procedure Q is... end Q;

Within procedure body 0, the name STANDARD.P refers to the parent procedure, the name
STANDARD.P.I refers to the variable declared in P, and the name STANDARD.P.Q.x could be
used to refer to an identifier declared within Q. If library unit 0 is a package, then
STANDARD.Q.x would refer to an identifier declared in package Q, whereas Q.x would refer to
an identifier in subunit 0.
sq. A subunit can have the same name as some identifier declared in STANDARD, since .-..

subunit names are not implicitly declared in STANDARD.

S10. See IG 8.2/S for a discussion of what it means for one library unit's scope to include
another library unit.

Changes from July 1982

Si 1. There are no significant changes.

Changes from July 1980

S12. Visibility rules take advantage of the fact that library units are implicitly declared in package
STANDARD.

s13. PRIOR!TY and SELECTERROR are no longer declared in the predefined package
STANDARD, so these can now be names of library units.

Legality Rules t
Li The identifier of a library unit cannot be identical with a predefined identifier declared in

STANDARD except that a library unit subprogram can have the identifier TRUE or FALSE
if it is not a parameterless function with return type STANDARD.BOOLEAN (RM 8.6/2, RM
8.3/15, and AI-00330).

Test Objectives and Design Guidelines-.

T1 Check that the name STANDARD.M is illegal if a with clause for library unit M is not
applicable to the unit being compiled.
Implementation Guideline: Include a case where M is the name of a previously compiled library unit on which
the unit being compiled depends.

Check that a library unit cannot have a name identical to a type, exception, or package
,* . . declared in STANDARD, namely, BOOLEAN, INTEGER FLOAT, CHARACTER, ASCII,NATURAL, POSITIVE, STRING, DURATION, CONSTRAINTERROR, NUMERIC-

8-43

-%' % " % " % % -. % % "" • " •" "- " " " " ° " • • - • • -- ,' "• "

W- . f'.
8.7 The Context of Overload Resolution

Version 1 (Dec 86)

ERROR, PROGRAMERROR, STORAGEERROR, or TASKINGERROR, plus any
implementation-defined numeric type name (e.g., SHORT FLOAT, LONG FLOAT,
SHORT INTEGER, and LONGINTEGER).

Check that a library unit can have the name PRIORITY or SELECTERROR.

Check that a library package or generic unit cannot have the name TRUE or FALSE.

Check that a library subprogram can have the name TRUE or FALSE if the library unit is
not a parameterless function returning type BOOLEAN, and cannot have the name TRUE
or FALSE if it is a parameterless function returning type BOOLEAN (AI-00330)

T2. Check that a library unit can be given the name STANDARD without replacing the
predefined STANDARD package.
Implementation Guideline: Try compiling both a STANDARD package (with redefinitions of some predef;ned
types and operators) and a subprogram called STANDARD. Check that the predefined STANDARD package
is not repiaced by this new unit.

T3. Check that STANDARD is not treated as a reserved word in selected component names,
Implementation Guideline: Declare records and packages with the name STANDARD and attemot to reveal
errors by using names such as STANDARD.INTEGER or STANDARD.NUMERICERROR when these names
do not refer to the predefined entities.

T4. Check that the name STANDARD.M is legal if a with clause for library unit M is applicable
to the unit being compiled.
Imp(e,-nentation Guideline: Check for all forms of library units and secondary units. including subunits. (Library
units can be declared as subprogram declarations, package declarations, subprogram bodies, generic package
declarations. generic subprogram declarations, and generic instantiations.)

T5. Check that a library package, generic unit, or parameterless function returning predefined
type CHARACTER can have the same name as one of the nongraphic characters, namely.
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, BS, HT, LF, VT, FF, CR, SO, SI, DLE. DC!. OF

DC2. DC3, DC4, NAK, SYN, ETB, CAN, EM, SUB, ESC, FS, GS, RS, US, and DEL.
Implementation Guideline. It is not necessary to test all forms of library unit declaration for each rane bht
each form should be used at least once in this test (see guideline for T1 for forms of library unit declarationsi

Check that these identifiers are not directly visible in STANDARD.

T6. Check that each of the required declarations is actually declared in package STAN DRr
and can be accessed by an expanded name, STANDARD.xxx.
lmpfe.,ntation Guideline: Include checks for implicitly declared operators.
lmrlemeritaion Guideline: Check exception names in handlers and raise statements.

17 Check that an expanded name for an entity declared in the visible part of a library packace
can start with the name STANDARD.

8.7 The Context of Overload Resolution
Semantic Ramifications
st. The RM allows certain constructs to be overloaded, i.e, have more than one pote tiai
interpretation. The process of determining a unique interpretation for an overloaded construct is
called overloading resolution. An Ada program is illegal unless overloading resolution can
determine a unique interpretation for every construct in the program.
S2. This section is divided into two parts. The first part describes overloaded and 3the'vi'." e
ambiguous constructs, and provides a general algorithm for resolving these ambiguities. The
second part gives specific rules for resolving potential amb';uities.

8-44

".'... .p " .." -.".N. "- '" ..'-..-' .-'.--, ..' - . . -- .- - . -., . -
-- m m N -N ',. . N . . l' (.,. lf(M m , ' W _, P

Fill Y

V n I (c 8

Version 1 (Dec 86) 8.7.a General Rules for Overloading Resolution

8.7.a General Rules for Overloading Resolution

Semantic Ramifications

Si. The RM allows the following constructs to be overloaded: subprograms (RM 6.6/2), single
entries of tasks (HM 9.5/5), enumeration literals (RM 3.5.1/5), and basic operations (RM 8.7/1)
(in particular, assignment, aggregates, string literals, and allocators). A construct is overloaded
if the syntax rules and the visibility rules do not suffice to provide a unique interpretation. The
meaning of an overloaded occurrence is the declaration of the entity denoted by the occurrence
(RM 8.3/1). The declaration may be either implicit or explicit. The interpretation of an
occurrence determines how the entity contributes to the overall effect of a program. For
example, if F is a function returning a record with component X, the interpretation of F in the
name F.X could 'le that F is invoked. But if F.X occurs inside the body of F, F is interpreted as
the name of the enclosing unit, and is not invoked (RM 4.1.3/19). Under either interpretation,
however, F denotes the same declared entity, i.e., has the same meaning.
S2. The following constructs may be overloaded:

" names of user-defined functions and procedures that have identifiers as
designators (RM 6.6/2).

" names of user-defined operations that have operator symbols as designators
(RM 6.6/2, and RM 6.7/1),

" predefined operators and their operator symbols (RM 6.7/1), •

" names of single entries (RM 9.5/2, RM 6.6/2),

" enumeration literals with the form of an identifier (RM 3.5.1/5),

e enumeration literals that are character literals (RM 3.5.1/5),

" basic operations as follows:

" assignment: for every nonlimited type (RM 7.4.4/1),

" allocators: for every access type (RM 3.8.2/1),

" membership tests without ranges: for every type (RM 4.5.2/10),

* membership tests with ranges: for every scalar type (RM 4.5.2/10),

" short-circuit control forms: for every boolean type (RM 3.5.5/1),

• selected component notation: for discriminants (RM 3.7.4/1), record
components (RM 3.7.4/1), task single entries (RM 9.5/4), task entry
families (RM 9.5/4), and objects designated by access values (RM .
3.8.2/2),

indexed components: for entries of entry families and for components of
arrays (RM 4.1.1/3),

. slices: for all one-dimensional array types (RM 3.6.2/1),

" qualification (in a qualified expression): for every type (RM 3.3.3/6),

" explicit conversion: for all types (see RM 4.6),

%implicit conversion: for literals, named numbers, and attributes of type
universalinteger and universalreal (RM 3.5.5/1, RM 3.5.8/1, and RM
3.5.10/1), 0

*aggregates: for every nonlimited composite type (RM 3.6.2/1 and RM
3.7.4/1),

-...

I "--

8.7.a.1 Nonoverloadable Constructs Version 1 (Dec 86)

language-defined attributes often apply either to all types, or to all types
of a certain class (RM Ar. ix A),

" implementation-defined attibutes may apply to any class of types (RM
4.1.4/4),

" names of some language-defined attributes are overloaded, and names
of implementation-defined attributes may be overloaded.

a literals as follows:

" character literals may belong to more than one enumeration type (RM
3.5.1/5),

" the literal null belongs to every access type (RM 3.8.2/1),

* string literals may belong to more than one array-of-character type iFM
3.6.21).

s3. Numeric literals, named numbers, and attributes that return universal integer or
universalreal are not really overloaded (because the visibility rules provide a single
interpretation); it is their implicit conversion to a nonuniversal type that is overloaded. Since
implicit conversions have no notation whatsoever, it is convenient to consider implicitly
convertible operands as denoting a potential implicit conversion. Thus, although the name of a
named number is not overloadable, there are multiple interpretations of a named number as a
primary; the set of potential interpretations must include every possible implicit conversion as
well as the possibility of no implicit conversion.

S4, In many cases, the syntax and visibility rules alone are sufficient to determine that a
particular occurrence denotes a particular declaration, or that a particular occurrence is llecai
because no applicable declaration exists. In some cases (listed above) more than one
declaration might be denoted, or more than one interpretation might apply. Overloain.g
resolution rules are used to disambiguate overloaded notations.

S5. Overloading resolution is performed at compile time. Every overloaded constitut ,.
program unit must be given a unique interpretation whether or not it will ever be evaluated.
example, constituents of generic units must be resolved whether or not the unit is ever
instantiated. This resolution uses the declarations visible inside the genenc declaraiion and
body. An instance uses the resolutions determined when the unit was compiled: the only ".
overloading resolution performed at an instantiation is for generic actual parameters tincludin,"'
default subprograms specified with a box, but excluding all other default parametersi (see
12.3.6/S).

8.7.a.1 Nonoverloadable Constructs
Semantic Ramifications

Si. The visibility rules only allow overloading for operations. therefore, these rijtes trsu.,
there is a unique interpretation for nonoverloadable constructs. In particular. simple names ,'S

denoting declared objects (including named numbers, constants, variables, discrimnants and
other record componants, formal parameters, loop parameters, and deterred constant-;. types.
subtypes, packages, tasks, exceptions, entry families, loops, blocks, and statement 1ei, art,
not overloadable. Names of generic units are not overloadable except insd- genenr"'
subprograms, where the name of the genenc unit is the name of a subprogram.
s2 Although certain simple names are not overloadable, expanded names car cor-tn:n
prefixes with overloaded names:

8-46'-'

Version 1 (Dec 86) 8.7.a.2 Syntactic Ambiguity

type R is
record

X INTEGER;
end record; 9

function F return R is ... end F;
function F return INTEGER is

X INTEGER 0;
Y INTEGER F.X;

The name, F.X, contains a prefix, F, that is overloaded since two declarations of F are visible.
The overloading resolution process determines that in the above case, F denotes the enclosing
function and is not invoked (hence, F.X denotes the variable X, not a record component). So
although a simple name denoting a named number, object declaration, formal parameter, loop
parameter, deferred constant, type, subtype, package, task unit, entry family, exception, generic
unit, loop, block, and statement label cannot be overloaded, an expandedi name denoting such --

an entity can contain a prefix having an overloaded constituent.

s3. Prefixes of selected components using rules (a) through (d) of RM 4.1.3 are also
overloadable, since these prefixes may be function calls. Similarly, the prefixes of indexed
components and slices may be overloaded (see RM 4.1), and the indexed component basic-4
operations are themselves overloaded. Therefore, constituents of prefixes of names denoting
objects (including task objects), entries, and entry families may be overloaded. Constituents of
piefixes of attnbutes may be overloadable, depending on the attribute (see RM 4.1.4, RM 4.1,
and RM A).

8.7.a.2 Syntactic Ambiguity
Semantic Ramifications

s1. Overloading resolution depends partly on the syntactic structure of an Ada program. For
example, in a conditional entry call:

s elect
E; J

else '
null;

end select;

E can only be parsed as an entry_callstatement. This implies that the only possible
interpretations of E are as an entry call. For example:

task T is
entry E; .

end T;

task body T is
procedure E (X : INTEGER := 0) is
begin ... end E;

begin
select

E; -- unambiguous; entry E
else

null; S
end select;
E: -- ambiguous

8-4

8-47

•S * ' . .4.%4" _S . *'.-. ,,' ,.p . a', 4" , a-E -'.-- 4,4'', ;%.* S '.'.:".. ',%,t '.t %'. . ':tl,'w ,
T .

,.,, -... ,.,-, '.,,., -.- . .-

8.7.a.2 Syntactic Ambiguity Version 1 (Dec 86)

The second call to E is ambiguous because it can be parsed as either a procedure call
statement or as an entry call statement, and there exist a visible procedure E and a visible entry
E that can be called with no parameters (RM 8.7/13). In the first call, the only syntactic - ,"
alternative is entry call statement, and h.s suffices to resolve which declaration is denoted by ,-, .
this occurrence of E.

S2. The RM's context-free syntax rules define the syntactic structure that affects overloading
resolution. However, the context-free syntax given in the RM is ambiguous in ways that interact
with overloading resolution, at least conceptually. In practice, it is not important that overloading
resolution helps to resolve syntactic ambiguities that occur in the RM grammar. An actual
implementation will use an unambiguous, context-free grammar such as that given in Volume II,
Number 2, of Ada Letters.

S3. For example, consider the name F(X) when the following declarations of F are visibie:

9 type ARR is array (1..2) of INTEGER;
function F return ARR; -- F1
function F (Y : INTEGER) return CHARACTER: -- F2

Given these declarations, F(X) can be parsed as either an indexed component whose prefix is
the parameteriess function call F, or as a function call with actual parameter X. The choice of
syntactic structure, and the interpretation of F, is determined by the context in which F(X)
appears, i.e., overloading resolution determines the correct parse:

Y INTEGER F(l); -- calls Fl and indexes return value
Z CHARACTER F(l); -- calls F2

In the grammar given in Ada Letters, F(X) is parsed as an indexed component. and later
analysis determines whether the "indexed component" is really a function call or not.

* Note that F(1) = F(1), however, is ambiguous because equality is visible for both type INTEGER
and type CHARACTER, and so it cannot be determined whether F(1) is an indexed component -"

or a function call. However, if we write:

F(Y => 1) = F(1)

there is no :mbguiy, because F(Y => 1) can o:nly be parsed as a function call ,d hen,'e
yields a result of type CHARACTER.

,4. There ire only a few situations in which the syntax rules play a cntical role in overloading
resolution. These cases are:

" the parse of a conditional entry call or a timed entry call serves to distinguish
between calls to an entry and calls to a procedure or function.

" the parse of a procedure call statement or an entry call statement eliminates the
possibitity of a call to a function, e.g., consider the call P;. Even if there is a
visible function P that can be called without any actual parameters. suctr a
function is not a possible interpretation of P In the above statement. On tne
other hand, if P Is overloaded between an entry call and a procedure call. the
above context is insufficient to resolve the call if both the entry and the
procedure can be called without parameters. .r1'

" the parse of a name as a function call eliminates possible interpretations as a
procedure call or an entry call.

"t e parse of an actual parameter as an aggregate, a string literal, or
allocator can affect overloading resolution (see examples below).

8-48

% V.

Version 1 (Dec 86) 8.7.a.2 Syntactic Ambiguity

* the use of a named parameter association syntactically distinguishes a function
call from an indexed component whose prefix is a parameterless function call.

* a slice can always be distinguished from a function call or an indexed
component by using syntax and visibility rules: F(X..Y) is syntactically a slice;
F(Z) is a slice if and only if Z denotes a type mark (which is determined by the
visibility rules); and F(T'RANGE) is a slice (T must denote a type mark or
array).

the prefix of the attribute A'ADDRESS and A'SIZE cannot be a function call
(since the prefix cannot be a value; RM 13.7.2/2, /6), and hence the
interpretation of F'ADDRESS is syntactically unambiguous (and completely
unambiguous if there is only one visible F).

S5. There are cases where the context-free syntax of the RM is insufficient to disambiguate
constructs that seem unambiguous to a programmer. In these cases, context-dependent syntax
rules are used to resolve the ambiguity. In particular, consider the following:

type ARR is array (1..2) of CHARACTER; N

procedure P (X ARR): -- P1
procedure P (X CHARACTER); P2

P(('A', 'B')); -- unambiguous; calls P1
P(('C'))-- unambiguous; calls P2

The first call is unambiguous because ('A', 'B') can only be parsed as an aggregate; hence, the
only interpretations of P that can be considered are those that require a composite type as P's
first argument. This eliminates P2 as a possibility. In the second call, P(('C')), the context-free
syntax of the RM allows ('C') to be parsed as either a parenthesized expression or as an
aggregate. There is, however, a context-dependent rule that disallows one-component ..
positional aggregates (RM 4.3/4); this rule is used to eliminate the parse of ('C') as an
aggregate. Note that if ('C') were considered an aggregate, then all Ps taking composite and
scalar types as first arguments must be considered possible interpretations of P, and the
second call to P could not be resolved.

S6. Since context-dependent rules are used only to resolve ambiguities in the RM's context-
free syntax, structures that may seem unambiguous to a programmer are not always resolved
by the RM's syntax. For example, the form of a choice in an aggregate cannot be used to
resolve a call. If we take the preceding example and add the following declarations:

type REC is 4

record
A, B : CHARACTER:

end record;
procedure P (X REC):

Then the call

P((I..2 => 'A'));

is ambiguous, since (1..2 => 'A') is parsed simply as an aggregate; the fact that it can only
legally be an array aggregate because of the form of the choice is not taken into consideration
in the RM's syntactic structure. Hence, the syntactic structure provides no useful information for
overloading resolution. However, the call

P CAB')

8-49

,ij

8.7.a.2 Syntactic Ambiguity Version I ,Dec 86

is unambiguous, because "AB" is syntactically a string literal, i.e., a one-dimensional array ot a 1P-%

character type, and this information can be used to resolve the call (RM 8.7/12 and RM 42/4.,-'-

S7. The visibility rules are also used , resolve ambiguities in the context-free syntax. For -'-" '

example, given a declaration of the form:
X : T (F); >

the structure, (F), is an index constraint if F denotes a type mark and is otherwise a disc -iinant
constraint. Similarly, U(1) is potentially an indexed component, a function call, or a type
conversion. If U is the name of an array object or type, the visibility rules uniquely determne
that U is an indexed component or a type conversion, respectively, since array and type names
cannot be overloaded.

S8. After using the context-free, context-dependent, and visibility rules to determine a syntactic
structure, there are still some syntactic ambiguities resolved only during the cverloading
resolution process. This interaction between overloading resolution and the determination of a
syntactic structure is of no practical consequence as long as an implementation does not use
the RM's context-free syntax as its implementation syntax. Resolving these syntactic *.

ambiguities provides no additional information beyond that produced by the resolution process
itself. For example, the name F appearing as an actual generic parameter can be parsed as
either a function call or as the name of a function; the decision is determined by the nature of
th9 corresponding formal parameter. If the formal parameter is a formal subprogram, then F is
parsed as a name; if the formal parameter is an object, then F is parsed as a function call: .-

generic
X : INTEGER;
with function FF return INTEGER; .-.

package P ... end P;

package NP is new P(F, F):

The first parameter is parsed as a function call; the second is not. The resolution of tnis
syntactic ambiguity is secondary to deciding which function is denoted by each occurrencc C-
F. An actual implementation could parse both occurrences of F as names, and could .ater

decide wiether the interpretation of a particular name is that it is a parameterless function cir -

sq. There are some cases where syntactic information is ignored during the resolution process.
For examote, consider:

procedure P (X : INTEGER);
procedure P (X in out INTEGER;

Y INTEGER 0);

P(3): -- ambiguous

Here the parse of P(3) unambiguously indicates that the actual parameter is an expression, not
a variable name. The visibility rules say that both declarations of procedure P are visible The
overloading resolution process ignores the mode of formal parameters in resolv!nq .9

subprogram name (RM 8.7/13 and RM 6.6/3). Hence, the syntactic information is not used, and
the call is considered ambiguous.

sio. In short, the context-dependent and visibility rules are used to resolve ambiguities e
context tree parse of an Ada program. To the extent that these rules eliminate syntacui..,.
alternatives, the resulting syntactic structures (sometimes more than one) provide informatl) _,
that can be used by the overloading resolution process, but not all syntactic iniormation ,s.... "
necessarily used. "4,'., "

8-50

%I

"'pW

Version 1 (Dec 86) 8.7.a.3 Ambiguities Regarding Visibility

S1 i. The following is a list of the contexts in which the visibility rules and the syntax rules (both
context-free and context-dependent) do not suffice to determine a unique interpretation of an
overloaded name:

" Aggregate choices that may be either simple names of components or simple
expressions, e.g., for (F => 1), is F a parameterless function call or the name of
a record component?

" Parameterless function calls vs. simple names in prefixes of selected
components, e.g., for F.C, is F a parameterless function call or the name of an
enclosing unit (in which case, F.C is an expanded name and F is not invoked)?

" Parameterless function calls vs. simple names as generic actual parametcrs,
e.g., F as an actual generic parameter is a call if the formal parameter is an
object and it is a name if the formal parameter is a subprogram.

" Positional function calls with parameters vs. indexed components, e.g., is F(X)
a function call or an indexed array? (Note: F(X) is syntactically a slice if X is the
name of a discrete type (or is the range attribute, Y'RANGE); this interpretation
of F(X) is resolved by the visibility rules. Also, F(L => X) is unambiguously a
function call according to the context-free syntax.)

" S,:ng literals vs. operator symbols as generic actual parameters, e.g., "+" is the
name of a subprogram if the formal parameter is a subprogram and it is a string
literal if the formal parameter is an object. .

Each of the above potential ambiguities must be resolved by the overloading resolution process.
The sets of resolutions constructed during the bottom-up phase of the algorithm given below
must consider all possible syntactic interpretations of the above ambiguous constructs in
parallel. Note that a parameterless function call need not call a parameterless function, if each
parameter has a default expression.

8.7.a.3 Ambiguities Regarding Visibility
Semantic Ramifications

S1. Although the visibility rules are sometimes used to resolve syntactic ambiguities, thereby
eliminating certain possibilities for overloading resolution, overloading resolution also
determines which identifiers are visible in certain contexts. In particular,

" In a selected component, the visibility of the selector depends on the resolution
of the prefix.

" In a subprogram call or an entry call with named parameter associations, the

visibility of the simple names of formal parameters depends on the resolution of
the name of the subprogram or the entry.

" In a record aggregate with named component associations, the visibility of Z.
component simple names depends on the resolution of the aggregate.

The specific overloading resolution rules listed in IG 8.7.b/S determine how the visibility rules . -

are applied during the overloading resolution process.

S2. In addition, within a task body an occurrence of the name of a task unit may denote either
the task unit or the task (value) executing the body (RM 9.1/4 and RM 4.1.3(f)). In this case, the
name of the unit is always interpreted as the value of the innermost task object executing the
statements of the task body unless the name is used as a prefix of an expanded name; in that
case, the name denotes the unit.

A,-. A J%-_*. .-

4.

8.7.a.4 Complete Contexts for Overloading Resolution Version 1 Dec 86)

S3. Note that a task name is not overloaded in the sense that such a name can be associated
with more than one declaration. The only ambiguity involving a task name is its interpretation as
a task object or as the name of an enclosing unit. Resolving this interpretation is not a part of *,,. .

overloading resolution as conceived and defined by the RM, since task names are not
overloaded. But we consider it part of overloading resolution in our discussion here.

8.7.a.4 Complete Contexts for Overloading Resolution
Semantic Ramifications

-. 1. It can be shown that every overloaded occurrence occurs inside one of the following
constructs (the difference between expression and simple expression is ignored here):

-Object declaration (in a range constraint, an index constraint, a discriminant
constraint, an initial expression, or a range in the index constraint of a
constrained array definition) (see RM 3.2 and RM 3.6).

• * • Number declaration (in an expression) (see RM 3.2).

. Subtype declaration (in a subtype indication) (see RM 3.3.2).

* Derived type definition (in a subtype indication) (see RM 3.4).

& Integer or real type definition (in an expression of a range or accuracy
definition) (see RM 3.5.4, RM 3.5.6, RM 3,5.7, and RM 3.5.9).

9 Array type definition (in either a subtype indication or a range in the index
constraint of a constrained array definition) (see RM 3.6).

e Record component declaration (in a subtype indication or a default expression)

(see RM 3.7).

o Discriminant specification (in a default expression) (see RM 3.7.1).

e Record type definition (in a choice in a variant) (see RM 3.7.3 and RM 3.7).

* Access type definition (in a subtype indication) (see RM 3.8).

* Prefix of an attribute (see RM 4.1.4).

* Operand of a type conversion (see RM 4.6).

* Entry declaration (in the discrete range of an entry family) (see RM 9.5).

e Parameter specification (in a default expression) (see RM 6.2).

* Generic parameter declaration (in the default expression for an object or a
subprogram parameter) (see RM 12.1 and RM 12.1.2).

*Renaming declaration (in an object name, a subprogram name, or an ertn-
name) (see RM 8.5).

Generic instantiation (in a generic actual parameter that is an expression, an
object name, a subprogram name, or an entry name) (see RM 12.3).

Representation clause (in an expression, an array aggregate, or a range) (see
RM 13.1, RM 13.2, AM 13.3, RM 13.4, and RM 13.5).

Assignment statement (both sides) (see RM 5.2).

. If statement (in a condition) (see RM 5.3). -..-.

.Case statement expression (see RM 5.4 and RM 8.7).
•8-5

,U, .4-

• -- 52

d""

• .S , - --"4 ." 4.-. - -% ". % -% -.. -.-.-. -.-.- -. , = =~ - ° % . % * . % " - - . o . . -

• P d'° 4 - ' p. ' ' .." ' '* - ' ' 4""' %" 4"-" N<%° '." ' 4 -" - .. 4" 4"""' -' ,"J " " 4 =o

Version 1 (Dec 86) 8.7.a.5 A Model tor an Overloading Resolution Algorithm

" Case statement (in a choice) (see RM 5.4).

" Loop parameter specification (in the discrete range) (see RM 5.5). 0"

" Loop statement (in a while condition) (see RM 5.5). ",4"

" Exit statement (in a condition) (see RM 5.7).

" Return statement (in the expression) (see RM 5.8).

• Procedure or entry call (in an actual parameter or in the name of the procedure
or entry) (see RM 6.4 and RM 9.5).

" Accept statement (in an entry simple name or an entry family index expression)
(see RM 9.5).

" Delay statement (in the expression) (see RM 9.6).

* Select statement (in a condition of a selective wait) (see RM 9.7.1).

" Abort statement (in a task name) (see RM 9.10).",

" Code statement (in the aggregate) (see RM 13.8).

* Type conversion operand (in an explicit type conversion primary or actual
subprogram or entry parameter of mode In out or out) (see RM 4.6, RM 6.4,
RM 6.4.1, and RM 8.7).

S2. The constructs listed above serve as "complete contexts" for overloading resolution of
constituents. If more than one such construct encloses an overloaded occurrence, the
innermost construct defines the "complete context." The information for overloading resolution
is supplied by the complete context, the visibility rules, and the syntactic structure. Specific
overloading resolution rules (in IG 8.7.b/S) define exactly what contextual information is used.
In general, the entire context must be used to resolve any constituent, so overloading resolution
of a constituent may depend on other constituents that occur far away (they must occur in the
same complete context). The only information provided from outside the complete context is
the set of possible meanings provided by the visibility rules and by the syntactic structure.

S3. Since a statement Is a complete context, the context for overloading resolution of entry call
statements is identical to that of procedure call statements, except in a conditional or timed
entry call. In such statements, the syntactic structure indicates that the statement following
select must be an entry call statement, and this syntactic information is used to eliminate
possible resolutions as procedure calls. Hence, procedures and renamings of entries are not
considered as possibilities In this syntactic context.

8.7.a.5 A Model for an Overloading Resolution Algorithm
Semantic Ramifications
si. Overloading resolution can be performed by a bottom-up traversal of the syntax tree
followed by a top-down traversal (a syntax tree is sometimes called a dependency tree or a
parse tree). The bottom-up phase first propagates information about the constituents of
constructs to resolve enclosing constructs. The top-down traversal then propagates information
from an enclosing construct (the "context") in order to completely resolve each constituent

• , construct. This model is purely conceptual; an implementation may use a different (but
equivalent) algorithm.

S2. A construct is a node in the syntax tree. A syntax rule may contain embedded constructs.

A

%,,%-,-.-.

8.7.a.5 A Model for an Overloading Resolution Algorithm Version 1 (Dec 86)
.

here called constituents. The constituents are the children of the constructs in a syntax tree.
The root of the syntax tree is a compilation (see RM 10.1). Irrelevant syntax rules will be %..,'
ignored throughout the following discussion. %','--...,

83. The information propagated between levels of the syntax tree takes the form of resolutions.
The resolution of a construct is defined in the table below. For example, resolutions of the
expression X + Y are specified in terms of the type of the result of "+". Similarly, resolutions of
the primary X are the possible types of X. Resolutions of the simple-name, X, however, are the
various visible declarations of X. One goal of the resolution process is to associate each simple
name, operator symbol, operator, literal, or basic operation in a complete context with a single
declaration. If no such unique association can be found, the construct is illegal.

* Syntactic category: Resolution:

Primary => Declaration of the type of the result value
Expression => Declaration of the type of the result value
Relation => Declaration of the type of the result value
Simple expression => Declaration of the type of the result value
Term => Declaration of the type of the result value
Factor => Declaration of the type of the result value

Simple name => Declaration of the simple name
Character literal => Declaration of the character literal
Operator symbol => Declaration of the operator symbol
Operator => Declaration of the operator symbol

.J.

Assignment => Declaration of the basic operation
Allocator => Declaration of the basic operation
in, not in => Declaration of the basic operation
and then, or else => Declaration of the basic operation
Selected component => Declaration of the basic operation
Indexed component => Declaration of the basic operation
Slice => Declaration of the basic operation
Attribute => Decla" tion of the result tvpe
Qualified expression => Declaration of the basic operation
Type conversion => Declaration of the basic operation
typemark(name) => Declaration of the conversion operation
Numeric literal => Declaration of the literal's type

declaration of implicit conversion's 4..

result type (see below)
null => Declaration of access type
String literal => Declaration of array of character type
Aggregate => Declaration of the basic operation
Choice => Declaration of the type of the choice
Actual subprogram or

entry paranwter => Declaration of the type of the parameter

Prefixes:

Function call => Declaration of the type of the result value
Object name => Declaration of the base type of the object
Entry of family => Declaration of the entry faimily
Other prefix => Declaration of the name or of t.- 7. .5

attribute denoted by name "

8-54

Version 1 (Dec 86) 8.7.a.6 An Algorithm for Overloading Resolution

8.7.a.6 An Algorithm for Overloading Resolution

Semantic Ramifications

S1. The following two-phase algorithm can be used to determine the interpretation of a ,
complete context by propagating sets of resolutions and matching them against potential
interpretations. The steps are performed in the following order: %

1. The bottom-up phase constructs a set of possible resolutions for each
construct. The set of possible resolutions for a construct depends only on the
syntactic structure, the visibility rules, the sets of resolutions of constituent
constructs, the specific overloading resolution rules listed in IG 8.7 b/S, and a
special rule for selecting resolutions requiring the fewest implicit conversions
of universalreal or universalinteger values (see later discussion). Each set
of resolutions is saved until the top-down phase (when a unique resolution is
selected, if one exists).

2. Upon reaching a complete context (i.e., a statement, a declaration, or a 0.
representation clause), the rules for complete contexts (also in IG 8.7.b/S) are
applied to eliminate possible resolutions of constituents that are incompatible
with the complete context or with each other. If there is no unique resolution
in the complete context, then the program is illegal.

3. The top-down phase provides each construct with a unique resolution, if
possible. All meanings of a construct that are incompatible with this required
resolution are discarded. The program is illegal unless the construct has --

exactly one resolution. This resolution determines a unique required
resolution for each constituent of the construct. Each resolution is propagated
downwards to the next lower level in the syntax tree. In this manner 0.
information from the context is used to determine the actual interpretation of
each construct from a set of possible interpretations. This completes the
algorithm.

S2. The set of resolutions constructed during the bottom-up phase must comprise exactly the
resolutions allowed by the specific overloading resolution rules listed in IG 8.7.b/S. This set
must include separate resolutions for every syntactic or semantic ambiguity, and must consider
every combination of resolutions of constituents of each construct. For each operator, and for
each name that is a simple name, an operator symbol, or a character literal, every directly
visible declaration must be considered.

S3. For example, the statement F.all := G; is resolved as follows, given that only the following
declarations of F and G are visible: p

package P is
type LP is limited private:

end P;
use P:

type ALP is access LP:
type REC is

record X : CHARACTER: end record;
type AS is access STRING;
type AF is access FLOAT:

"" function F return AS; F1

(3-55 I1
- - . . - . - -'-- "3.

8.7.a.6 An Algorithm for Overloading Resolution Version 1 (Dec 86)

function F return INTEGER; -- F2
function F return AF; -- F3 - .**'

function F return REC; -- F4
function F return ALP; -- F5
function F (X : INTEGER) return FLOAT; -- F6

function G return STRING; -- G1
function G return INTEGER; -- G2

.4. The bottom-up phase begins by constructing the resolution sets for the simple name F and
for the simple name G. All directly visible F's and G's are included. We will use the notation:

FLOAT <- F(INTEGER)

to distinguish between overloadings of a particular operation. This notation indicates that result
type FLOAT is returned by the visible F operation that requires an operand of type INTEGER.
For each resolution set, we will indicate the syntactic category associated with the set and the
elements of the set:

simple name; F S1 = {AS <- F,
INTEGER <- F,
AF <- F,
REC <- F,
ALP <- F,
FLOAT <- F(INTEGER))

simplename; G S2 = (STRING <- G,
INTEGER <- GI

S5. The resolution set for F considered as a function call is obtained by attempting to apply
each operation in S1. We indicate this by the notation Sx(Sy, Sz), where Sx is the resolution set
for an operation, and Sy and Sz are the resolution sets for the parameters of the operation. We
indicate the source of the operation and the operands by appropriate subscription, e.g., F[S1 1]
indicates the F that is the first element in set S1 (i.e., the resolution that F denotes F1) Since
all the functions in Si except S1.6 can be invoked witnout any actual parameters, and since P.M

r. 8.7/13 and RM 6.6/3 allow us to consider the number of actual parameters in resolving a call,
we can exclude S1.6 as a possible interpretation of F when F is considered as a function call.
Hence, the result type FLOAT does not enter into the resolution set for F considerea as a
function call.

call: S1 S3 (AS - F[SI.I],
INTEGER <- FISl.2],
AF <- F[Sl.3],
REC <- F[S1.4],
ALI <- F(Si.511

call; S2 S4 = (STRING <- G[$2.1], ,a-
INTEGER <- G[S2.2])

s6. The next syntactic construct to be considered is the selected component, Fall. We hrst
consider what component selection operations are visible:

selection; S $5 = (STRING <- select (AS, all), a.

FLOAT <- select (AF, all),

INTEGER <- select (REC, X),
LP -- select (ALP, all) } "a,'..

8-56

L', ",. - , : . .. , . . -., " , .. , , . . . , -. ., .- , , . . i.

Version 1 (Dec 86) 8.7.a.7 Implicit Conversions of Numeric Types

The notation "STRING <- select(AS, all)" means that there is a component selection operation
declared for a prefix of type AS and a selector having the form all. This component selection
operation returns a result of type STRING. By considering the form of the name F.all and the
visible component selection operations, we can determine the resolution set for F.all. In
particular, since the only select operation for type REC does not allow a selector of the form all, ,
resolution of F.all to type INTEGER is not possible. Similarly, since no selector operation is
defined for F2's result type, the resolution S3.2 is not further considered. Hence, the resolution
set for F.all is:

selected component; select(S3, all)
S6 = {STRING <- select[S5.1] (AS[S3.1], all),

FLOAT <- select[S5.2] (AF[S3.31, all),
LP <- select[S5.4] (ALP(S3.51, all)}

S7. The next relevant node in the syntax tree is the assignment statement itself. We first
consider all visible assignment operations:

operation; := : S7 = {:= (STRING, STRING), .

(INTEGER, INTEGER),
(FLOAT, FLOAT),

Note that assignment is not visible for type LP. Given the resolution sets for F.all and the
function call G (namely, sets S6 and S4), and the requirements of the visible assignment
operations, the only possible resolution for := is the resolution that takes arguments of type
STRING:

assignment statement; :=(S6, S4)
S8 = {:=[$7.1] (STRING[S6.1, STRING[S4.1])}

Since the assignment statement is a complete context, the bottom-up phase stops propagating
information at this point.

S8. The top-down phase begins by checking that there is exactly one resolution in the
resolution set for the complete context. This resolution determines the required resolutions of
the immediate constituents of the assignment statement; hence, resolutions S4.2, S6.2, and
S6.3 are discarded from sets S4 and $6. Since this leaves both sets S4 and S6 with unique
resolutions, the top-down propagation of information can continue. Since the only resolution
now present in S6 was derived from S3.1, all resolutions in S3 except the first are discarded.
Similarly, only S2.1 is retained. S2 and S3 now contain unique resolutions. The resolution in
S3 was derived from S1.1, so all other resolutions in S1 are discarded, and the process has
determined a unique interpretation for F, G, component selection, and :=.

8.7.a.7 Implicit Conversions of Numeric Types

Semantic Ramifications

Si. A numeric literal, named number, or attribute returning type universalinteger or
universal-real can be implicitly converted to an integer or real type, respectively. Implicit
conversions are applied if, and only if, there is no legal interpretation of an expression without
the implicit conversion (RM 4.6/16). This rule is a preference rule. It says that when an
ambiguity arises due to implicit conversions, the Implicit conversions are not to be performed.
S2. As a simple example, consider the following:

if 5 = A' LENGTH then

I)

- ~-,~ ~~ WU W\~WVWV W~ W W - WW . -WV 'K J 4' (Y , V_ W ,W w ., r j ,. , .. , ., ., ._ .,. , . .-

8.7.a.7 Implicit Conversions of Numeric Types Version 1 (Dec 86/,

Both 5 and ALENGTH have type universal integer (RM 2.4/1 and RM 3.6.2/10). An implicit
conversion to INTEGER can be applied to both operands. If the conversion is applied, then the ,-..
resolution of "=" can be either the equa!t , operator taking arguments of type INTEGER or the ..- , .,,
operator taking operands of type universa'.nteger. Because of the preference rule given in RM
4.6/16, this potential ambiguity is resolved in favor of the interpretation not requiring an implicit
conversion.

S3. In terms of the overloading resolution algorithm, the bottom-up resolution step must take
into account the possibility of implicit conversions and must record for later use whether any
implicit conversions have been performed lower in the syntax tree. For example, consider the
following resolutions for 5 = A'LE IGTH (where UI stands for universalinteger and "cony" -

represents the operation for converting values of type universalinteger):

literal: 5 S1 = {UI,
INTEGER:1 <- conv(UI)}

primary; A'LENGTH S2 = {UI,
INTEGER:I <- conv(UI)}

Here we assume that the only nonuniversal integer type whose scope includes the expression is
the type INTEGER. We use the notation INTEGER:I to indicate that the result type INTEGER
has been obtained by an implicit conversion. We will see later that it is necessary to keep track C.
tof iow many implicit conversions have been performed, so the :1 indicates that a singleconversion was needed to produce the result type INTEGER.

s4. S3 specifies the set of visible equality operators:

operator; "=" S S3 = {BOOLEAN <- "=" (UI, UI),
BOOLEAN <- "=" (INTEGER, INTEGER),
BOOLEAN <- "="(FLOAT, FLOAT),

The resolution set for the relation 5 = ALENGTH is obtained by attemptirg to apply each
operation in S3 to the operands in S1 and S2, respectively.

relation; S3(S1, S2,

S4 = (BOOLEAN <-
"="[S3.1] (UI[SI.1], UI[S2.1]),

BOOLEAN:2 <-"="[S3.21 (INTEGER:I[SI.2], INTEGER:I[S2.2])}

Note that application of "="[S3.2] produces a BOOLEAN result, but requires two impicit
conversions in the underlying syntax tree. Since both applicable operators in S3 produce the
same result type, and since one of the operators requires more implicit conversions than the
other, the second resolution In S4 can be discarded at this point; S4 really contains just the
result of applying S3.1.

S5. Since the If statement is a complete context, and since the condition of an if statement
requires a boolean type, and since S4 contains a unique boolean type, the relation can be
completely resolved, and so is unambiguous. It is only unambiguous, however, because the
preference rule in RM 4.6 allows S4.2 to be discarded.

S6. The reason for keeping track of the number of implicit conversions is illustrated by the
fol!owing example (inspired by an example originally given by Peter Belmont). Consider the
following declarations:

8-58

•.............................- - . ° . ._... Z......

Version 1 (Dec 86) 8.7.a.7 implicit Conversions of Numeric Types

function F (X INTEGER) return INTEGER;
function F (X BOOLEAN) return INTEGER;
function F (X INTEGER) return FLOAT;

function "1<1 (L, R :INTEGER) return INTEGER;

X INTEGER F(3**4 < 5); 4.

Y FLOAT F(3**4 < 5)

S7. Now let us consider the resolution sets produced for 3**4:

primary; 3 Si = (Ut,
INTEGER:i1 < - conv (UI))

primary; 4 S2 = (Ul,
INTEGER:1 <- conv(UI))

operator; S*' 3 = (UTi "< (UI, INTEGER),
INTEGER <~- ~"(INTEGER, INTEGER))}

Note that the second operand of the exponentiation operator must have type INTEGER (RM
4.5.6/5), so we obtain the following resolution set for the factor, 3**4:

f actor; S3 (S1, S2)
S4 = UI:i <-

"**tS3iJ(UI(Si.1], INTEGER:i(S2.1J),
INTEGER:2 <-

'**11(S3.21 (INTEGER:i(Si.2], INTEGER:i[S2.2]))

Note that two implicit conversions are required to achieve the result type INTEGER, and even
the result type universal integer can only be achieved by applying an implicit conversion to the
second operand of "**". We now proceed to develop the resolution set for the relation 3**4 < 5:

primary; 5 :55 = (Ut,
INTEGER: I < - conv (UI))

operator; "1<" S6 =(BOOLEAN <- "1<"(Ut, Ut),
BOOLEAN <- "<"(INTEGER, INTEGER),
INTEGER <- "<"(INTEGER, INTEGER),

relation; S6(S4,S5)
S7 = {BOOLEAN:i <-

"1<"[56.1] (Ut:1[S4.1], UICS5.1]),
INTEGZR:3 <-

11<11S6.31 (tNTEGER:2[S4.21, INTEGER:i(S5.2J)

Note that application of S6.2 would produce the resolution:

BOOLEAN:3 <- "1<1[86.21 (INTZGER:2[S4.21, INTEGER:1[SS.2J)

but since S7 already contains the result type BOOLEAN, and this result type is obtained with
fewer implicit conversions, the BOOLEAN:3 resolution can be discarded immediately.

S8. We now proceed to resolve the function call:

8-59

%S

WWWWW IMPT M M -7-YTY'"N.

8.7.a.7 Implicit Conversions of Numeric Types Version 1 (Dec 86)

nlane; F S8 (INTEGER <- F(BOOLZAN),
INTEGER < - F (INTEGER) ,
FLOAT < - F (INTEGER)} -

call; S8(S7) 89 (preliminary)V
{INTEGER:1 <- F[S8.2] (BOOLEAN:1[S7.1])
INTEGER:3 <- F[S8.1J (INTEGER:3[S7.2]),
FLOAT:3 <- F(SS.3J (INTEGER:3(S7.21))

Since S9.1 and S9.2 have the same result type, but S9.1 requires fewer implicit conversions in
its subtree, S9.2 is discarded from the resolution set. Hence, the final version of S9 only
contains the result types INTEGER:1 and FLOAT:3. The context of the call to F determines
which result type is appropriate. Hence, in the initialization of X, F[S8.11 will be chosen as the
resolution of F, whereas in the initialization of Y, F(S8.31 will be chosen. Note in particular that
the FLOAT:3 resolution cannot be discarded when forming S9, simply because it requires more
implicit conversions than the INTEGER:1 resolution.

S9. Another case requiring special attention is the use of a range in a constrained array -

* definition, an iteration rule, or a declaration of an entry family. In this case, if each bound is
either a numeric literal, a named number, or an attribute, and the type of both bounds prior to
implicit conversion is universal integer, then an implicit conversion to INTEGER is assumed
(RM 3.6.1/2). The effect of this rule Is shown by the following example:

* for I in INTZGZR'POS(F(3**4 < 5)) .. 6

sio. Using the resolution sets developed above for the analysis of the function call, we arrive at
the following resolution sets:

attribute; INTEGER'POS S10 = {UI <- 'POS(INTEGER)}

*primary; S1O(S9) S11 = UI:1 <- 'POS[SIO.1] (INTEGER:1(S9.11),
INTEGER:2 <- conv(UI:1[S11.1]))

*Note: Si 1.2 represents the implicit conversion from the universal integer result type delivered
by the 'P05 attribute.

primary; 6 S12 (U1,
INTEGER:1 <- conv(UI))

S1 1. Although a range is not defined as an operation by the RM, it is convenient for purposes of
* this discussion to treat .. as an operation taking two arguments of the same scalar type (RM

3-5/4) or two arguments that are both integer types or bath real types (RM 3.5.4/3, RM 3.5.7/3,
and RM 3.5.9/3):

operation; .. S13 = .. (01, 01),
.(INTEGER, INTEGER),
.(FLOAT, FLOAT),
.(Ul, INTEGER),
.(INTEGER, 01),

range; S13(Sl1, S12)
*S14 = . .[Sl3.1] (UI(S11.1], UI(S12.1]),

.-[4113.21 (INTEGER:2(Sll.21, INTEGER:l(SI2.2]),

..(813.3) (UIfS11.lI, INTEGER:1[S12.21),

..[513.4j(INTEGER:2(Sl1.2], UI(S12.1])}

8-60

% N.

Version 1 (Dec 86) 8.7.a.7 Implicit Conversions of Numeric Types

S12. S14 is the complete context. If there were no special rule, RM 4.6/15 would require that I
.," 514.1 be chosen as the interpretation of the range, since it requires the fewest implicit

conversions. But RM 3.6.1/2 specifies, in essence, that when a range is a complete context, its
bounds cannot have type universalinteger. Hence, S1 4.1 is ruled out of consideration, leaving
S14.2 as the only interpretation. It LONGINTEGER were also defined in STANDARD, then

LONGINT:2 <- conv(UI:1[S11.1])

would be added to S 11, S12 would be

S12 = (UI,
INTEGER:1 <- conv(UI),

4LONGINT:1 <- conv(UI)}

S13 would include the following elements:

S13 = {..(UI, Ul),
(INTEGER, INTEGER),

.. (LONGINT, LONGINT),

.. (INTEGER, LONG INT),,-

.. (LONG INT, INTEGER),

and the resolution set for S14 would have been:

S14 (..[S13.1] (UI:1[S11.1J, UIS12.1J),
..[S13.2] (INTEGER:2[Sll.2], INTEGER:l[S12.2]),
.[S13.3] (LONG INT:2[S11.3], LONG INT:1[S12.3]),

. . .. [S13.4] (INTEGER:2[S11.2J, LONG_-INT:I[S12.3]),

, RM 3.6.1/2 requires us to discard S14.1. If we now just used the rule that both bounds must be
the same discrete type (RM 3.6.1/2), S14 would contain two elements, S14.2 and S14.3, and
the range would be ambiguous. But RM 3.6.1/2 also specifies that when the bounds have a
particular syntactic form and can be resolved to type universa/_integer (see S11.1 and S12.1),
then only resolutions for ..(INTEGER, INTEGER) are to be considered. Since the bounds in the
example have the required form and can be resolved to have type universalinteger, this rule
allows us to discard S1 4.3 from the set, giving the range an unambiguous interpretation.
S13. If the lower bound had the form, -1, and LONGINTEGER or some other integer type had
been declared in STANDARD, the range would be illegal. The resolution set for -1 would be:

-1 S15 = (0I <- -(uI),
INTEGER: 1 <- -(INTEGER: I),
LONG INT:1 <- -(LONGINT:1)}

In this case, although -1 has universal integer as a possible result type, -1 is not one of the
forms specified by the rule In RM 3.6.1/2 (since -1 Is not a literal, but is an expression) but S14
has the same members as before. Since we can no longer discard S14.3, the range -1..6 is
illegal. If, however, the only visible unary minus operators are those used in S15.1 and S15.2
(e.g., because LONGINTEGER Is not declared in STANDARD), then -1..6 is legal because
S14.1 is discarded and S14.2 is the only remaining resolution.

8,,18-61 i

8.7.b Specific Overloading Resolution Rules Version I (Dec 86) L

8.7.b Specific Overloading Resolution RulesVro D 6

Semantic Ramifications ...

Si. During the bottom-up phase of overioading resolution, the resolutions of constructs are
those specified by the following rules. The bottom-up phase starts with the leaves of the syntax
tree whose resolutions are determined solely by the visibility rules. For higher levels of the
syntax tree, the set of resolutions is constructed from all possible combinations of resolutions of
constituents, eliminating resolutions that do not conform to these rules.

s2. The leaves of the syntax tree consist of numeric literals, string literals, character literals,
operators and operator symbols, the literal null, the reserved word all, names that are simple
names, and simple names In accept statements and address clauses. Other constructs (such
as parentheses and other punctuation) may be considered leaves, but have no effect on the
algorithm.

S3. Universalinteger is included among the integer types, and universalreal is considered a
real type, although it is neither a fixed nor a floating point type. In this description, as in the RM.
note that the name of a type may denote either a private type or some other type, depending cn
the location of the occurrence (and depending on the scope rules). Similarly, the interpretation
of a resolution that is a type declaration may depend on the scope rules (for example, whether a
type is private or not). Note also that the existence (i.e., the visibility) of the basic operations
depends on the scope rules.

S4. 2.4 Real literals are literals of type universalreal. Integer literals are literals of type
universalinteger.

Note that resolutions of real and integer literals include both those with and
without potential implicit conversions.

S5. 3.2.1 The type of the initial expression in an object declaration must be the base type
of the type mark.

S6. 3.2.2 The type of the static expression in a number declaration must be either
universalinteger or universal real.

$7. 3.5 If a range constraint is used in a subtype indication, either directly or s part of a
floating point constraint or a fixed point constraint, the type of the expressions (or
'RANGE attribute bounds) must be the same as the base type of the type mark
of the subtype indication.

S8. 3.5.4 If a range constraint is used as an integer type definition, each bound must have
some integer type, but the two bounds need not have the same type.

S9. 3.5.5 For an attribute of the form T'POS(X), the operand X must have type T. For an
attribute of the form T'VAL(X), the operand X may have any integer type, and the -
result type of the expression is T. For an attribute of the form T'VALUE(X), the
operand X must have the predefined type STRING, and the result type is
T. Attributes of the form T'SUCC(X) or T'PRED(X) require an operand of type T,
and return a result of type T. For an attribute of the form T'IMAGE(X), the
operand X must have type T, and the result Is of the predefined type STRING.

S10. 3.5.7 The value in the expression after DIGITS, in a floating accuracy definition, must
have an integer type. (The fact that the expression must be static is not used in
overloading resolution.)

S11.3.5.7 If a floating point constraint is used as a real type definition and includes a range
constraint, then each bound of the range must be defined by an expression of
some real type, but the two bounds need not have the same type.

.",,

8-62

JI

Version 1 (Dec 86) 8.7.b Specific Overloading Resolution Rules

S12. 3.5.9 The value in the expression after DELTA in a fixed accuracy definition must
belong to some real type.

S13. 3.5.9 If a fixed point constraint Is used as a real type definition, then each bound of the A

range must be defined by an expression of some real type, but the two bounds
need not have the same type.

S14. 3.6.1 RM 3.6.1/2 gives the following rules for overloading resolution of discrete ranges
used in constrained array definitions, iteration rules, and declarations of entry
families.

The type of the bounds must not be universalinteger.

If each bound is either a numeric literal, a named number, or an attribute and the
type of each bound is allowed to be both universalinteger and predefined
INTEGER by other rules of the language, then the type of each bound is assumed
to be INTEGER.

Otherwise, both bounds must have the same discrete type (other than
universalinteger).

S15.3.6.1 In an index constraint in a subtype indication, the type of each discrete range
must be that of the corresponding index of the base type of the type mark.

S16.3.6.2 The argument N used in the attribute designators for the attributes 'FIRST (N),
'LAST (N), 'RANGE (N), and 'LENGTH (N) must be an expression of type
universal integer.

S17. 3.7 The defauft expression for a record component must have the type of the
component.

S18. 3.7.1 The default expression for a discriminant must have the type of the discriminant.

S19.3.7.2 Each expression in a discriminant constraint must have the type of the
associated discriminant.

S20. 3.7.3 Each choice in a variant in a record type definition must have the type of the "/-
discriminant.

S21.4.1 A name that is a simple name, a character literal, or an operator symbol must be
directly visible (RM 8.3 and RM 8.4), except in a context clause (RM 10.1.1), in
the parent unit name of a subunit (RM 10.2), or in a pragma argument
association (RM 2.8 and RM 8.3).

The set of resolutions of such a name is the set of corresponding declarations %

that are directly visible at the occurrence of the name. 0

S22. 4.1.1 An indexing operation is declared for each array type and access type whose
designated type Is an array type (RM 3.6.2/1 and RM 3.8.2/1). When the prefix '-

of an indexed component is overloaded, the number and the types of the index
expressions as well as the array component type can be used to help resolve the
prefix. Similarly, the type of the prefix can resolve the type of the indexes. For
example: S

type Al is array (1. •2) of INTEGER;
type A2 is array (1..2, 1. .2) of INTEGER;
type C1 is array (1. 2) of CHARACTER;
function F return Al; 'V .
function F returni A2; 0
function F return Cl;

, %..

8-63
0

V ~ .,, ~'* ,* ~ %~ ~ • %

8.7.b Specific Overloading Resolution Rules Version 1 (Dec 86)

-.-

X : INTGER:= F() -- unambiguous
Y : INTEGER : (1, 2); -- unambiguous -)

Z : CHARACTER :=F(); -- unambiguous

Each index expression must have the corresponding index type. This
requirement can be used to resolve overloadings within the index expression.

If the prefix denotes an entry family, the type of the index expression must be the
type specified for the family.

Consider F.E(1) when the following declarations are visible:

task type T1 is
entry E(1..2);

end TI;

task type T2 is
entry E('A' ..'B');

end T2;

function F return T1;
function F return T2;

Even though the declaration of an entry family cannot overload the entry family
identifier, the prefix In F.E(1) can be overloaded, and the resolution of the prefix
in this case is determined by the type of the index. In general, the resolutions
also depend on the number and types of the actual parameters.

S23.4.1.2 The prefix of a slice must have as its type either a one-dimensional array type or
an access type designating such a type. The bounds of the discrete range musthave the type of the Index.

The syntax and visibility rules determine whether a name is a slice or not, e.g., F(X Y) is
syntactically a slice, since X..Y can only be parsed as a range (not as an expression);
similarly, F(X) is a slice if and only if X is a type mark, and this is determined by the
visibility rules. For example:

type Al is array (1..2) of INTEGER;
type A2 is array (1. .2, 1. .2) of INTEGER;
type A3 is array ('A'. .'C') of INTEGER;
subtype SMALL is INTEGER range 1.. 1;

function F return Al;
function r return A2;
function F return A3;
function F (X : INTEGER) return INTEGER;

Xl BOOLEAN : F(l..2) - F(l..2); -- unambiguous
X2 WOOLEAN :-F(1) -F(2); -- ambiguous
X3 BOOLEAN :-F(SMALL) - F(SMALL); -- unambiguous

S24. 4.1.3 The prefix of a selected component must either denote a package or an
enclosing entity (rules RM 4.1.3 (e) and (f)), or it must have an access type (rule
RM 4.1.3 (d)), or else it must be appropriate for a type with discriminants or a
record type (rules RM 4.1.3 (a) and (b)) or a task type (rule RM 4.1.3 (c)). For
rules (a), (b), (c), (e), and (I), the selector must be visible by selection after the %... ,
dot.

8-64
A

Version 1 (Dec 86) 8.7.b Specific Overloading Resolution Rules

Rule RM 4.1.3 (f) may only be applied inside the construct denoted by the prefix.
In the case of an enclosing accept statement, the prefix must be the simple or
the expanded name of a single entry or entry family (and not a renaming of the
entry). If the prefix can denote more than one enclosing unit according to just
the visibility rules, then the program is illegal regardless of the selector or the
context.

If there is at least one possible interpretation of the prefix of a selected
component as the name of an enclosing subprogram or an accept statement,
then the prefix must not be a function call (regardless of the selector or context).

For rule (d), the prefix must be the name of an access value. For rules (a), (b), and (c), the
prefix can be a name that denotes a value having a record, private, or task type, or a value
of an access type that designates such a type. Note that, in general, prefixes can be
either objects or function calls, or they can be names with prefixes that are objects,
function calls, or names of values.

Note also that if any potential interpretation exists using rule RM 4.1.3 (f), that is the only
possible interpretation (because (c) and (e) mean the same thing as (f), in case more than
one applies).

Names declared by renaming declarations may be denoted using expanded names
(A 1-00187)• ,,.

S25.4.1.4 The declaration denoted by the prefix of an attribute must be determinable
independently of the attribute designator and independently of the fact that it is
the prefix of an attribute.

The rule above requires that the identity of the prefix be determinable independently of its
context, and In particular, using only the fact that it is parsed as a prefix.

The following predefined attributes require a prefix that denotes either a type or a subtype.
Therefore, the prefixes of these attributes (in a legal application) must be either type marks
or expanded names. The visibility rules and the preference rule for expanded names (RM
4.1.3/19) fully determine the interpretation of the prefix for these attributes. The same
would apply to Implementation-defined attributes that always require the prefix to denote a
type or subtype.

'AFT 'MACHINEEMAX 'SAFE EMAX
BASE 'MACHINE EMIN 'SAFE LARGE
'DELTA 'MACHINE MANTISSA 'SAFE SMALL
'DIGITS 'MACHINE OVERFLOWS 'SMALL
'EMAX 'MACHINE RADIX 'SUCC
'EPSILON 'MACHINI-ROUNDS 'VAL
'FORE 'MANTISSi 'VALUE
'IMAGE 'POS 'WIDTH
'LARGE 'PRED

All of the other predefined attributes may (in certain contexts) have a prefix that is not an
expanded name or a simple name and that contains an overloaded constituent. These are
listed below:

'ADDRESS 'FIRST BIT 'POSITION
'CALLABLE 'LAST 'RANGE

'CONSTRAINED 'LAST(N) 'RANGE(N)
'COUNT 'LAST BIT 'SIZE
'FIRST 'LENGTH 'STORAGE SIZE
'FIRST (N) 'LENGTH (N) 'TERMINATED

If the prefix is overloaded, resolution may not make use of the identity of the attribute, the

8.65

- - . . .-. , - .. - , - -... ,-....- , - .. - - - .-- - '

8.7.b Specific Overloading Resolution Rules Version 1 (Dee 86)

type of value or object required to serve as the prefix, the argument of the attribute (if any), .-
or the fact that the prefix Is the prefix of an attribute. In essence, the prefix of an attribute
serves as a complete context for purposes of overloading resolution. .''".

Of the second group of attributes, several are defined for prefixes that denote objects or
components of objects:

'ADDRESS 'FIRST BIT 'p

'CONSTRAINED 'LAST BIT
'SIZE 'POSITION
'STORAGESIZE

The prefixes of such attributes cannot be function calls, since function calls return values,
not objects. Since this rule determines the syntactic structure of a program, it is applied
independent of overloading resolution:

function F return INTEGER is
X : SYSTEM.ADDRESS := F'ADDRESS; -- unambiguous

F'ADDRESS is unambiguous because the parse of F as a function call is rejected. If there
are two visible Fs, however, the prefix would be ambiguous:

function G (X : INTEGER) return INTEGER is

function G return STRING;
Y : SYSTEM.ADDRESS :- G'ADDRESS; -- ambiguous

If a function F returns an access value, then Fall denotes an object (see RM 4.1.3/11). If
F is overloaded, every interpretation of F whose type is an access type must be
considered. If there is more than one such interpretation, the prefix is illegal.

'FIRST BIT, 'LASTBIT, and 'POSITION require a prefix that denotes a component of a
record object, rather than just an object. For these attributes, the selected component , -.

must be part of the prefix, so that the form may be F.Component or F.all.Component.
With either form, the set of possible resolutions of F contains every access-to-record type "

in scope, and, in the case of F.Component, every record type, too (even though a
component of a record value is not allowed as a prefix of these attributes.) For example:

% type PINT is access INTEGER;

type REC is
record

C1 : INTEGER;
end record;

type PREC is access REC;

function F return PINT; -- Fl
function F return P REC; -- F2

function F return REC; -- F3

A INTEGER :- F.ai' SIZE; -- ambiguous; F1, F2

B INTEGER -INTEGER' (F.all'SIZE); -- ambiguous; F1, F2

X INTEGER :-F.Cl'POSITION; -- ambiguous; F2, F3

Y INTEGER :-F.all.Cl'POSITION; -- unambiguous

The declaration of A is ambiguous since there is more than one F that returns an access '

type. In the declaration of B, no more type information is present than is present in the
declaration of A. X's declaration is ambiguous since there is no unambiguous use of F C
in any context (overloading resolution does not use information about whether a name
denotes a value or a variable). The declaration of Y is legal, however, since only one F
returns an access-to-record type.

8-66

--. J N

Version 1 (Dec 86) 8.7.b Specific Overloading Resolution Rules

Of the remaining attributes, 'CALLABLE and 'TERMINATED are defined for prefixes
appropriate for a task type; 'FIRST(N), 'LAST(N), 'LENGTH, 'LENGTH(N), 'RANGE, and
'RANGE(N) are defined for prefixes appropriate for an array type or prefixes denoting a

constrained array subtype; 'FIRST and 'LAST are defined for prefixes denoting scalar
subtypes and constrained array subtypes, as well as prefixes appropriate for an array
type. The following example illustrates some of the potential difficulties involved with these
attributes.

type ARR is array (1. .. 2) of INTEGER;
type ARR2 is array ('A' .. 'C') of INTEGER;
type ARR3 is array (1 . 2, 1 2) of INTEGER:
type AR3 is access ARR;
type CHAR is new CHARACTER;

function F1 return ARR;
function F1 return PARR:

function F2 return ARR;
function F2 return CHAR;

function F3 return ARR; .%
function F3 return ARR2; ,

function F3 return ARR3;
function F3 (X INTEGER) return ARR;

A INTEGER Fl'FIRST; ,ambiguous

B INTEGER : F3(2)'FIRST; -- ambiguous

C CHARACTER F3'FIRST; -- ambiguous

D INTEGER := FI.all'FIRST; -- unambiguous

E INTEGER : F2'FIRST; -- ambiguous

F: INTEGER := INTEGER' (F2'FIRST); -- ambiguous
G CHARACTER :-F2'FIRST; -- ambiguous

H INTEGER F3'FIRST(2); -- ambiguous

Since the identity of the prefix must be resolved independently of the context, the
requirement that the prefix of 'FIRST be appropriate for an array type may not be used for
overloading resolution. The same holds true for the other array attributes. Similarly, for
'CALLABLE and 'TERMINATED (attributes that require a prefix appropriate for a task
type), the requirement that the prefix be appropriate for a task type cannot be used for
overloading resolution.

The prefix in A's declaration is ambiguous. since the parameter and the result type profile
are insufficient to determine which F1 is being called. The prefix in B's declaration, too,
cannot be resolved, since there is one F3 that can be called with a single parameter of
type INTEGER. and another F3 whose result can be indexed with a single index of type
INTEGER. Note that even though the result of subscripting F3's call yields a nonarray
value, the prefix is considered ambiguous, since the appropriateness of the prefix for the
attribute is not considered in resolving the prefix. F3'FIRST is ambiguous even though
only one F3 can be called that will return an array whose first index is of type
CHARACTER, i.e., the required result type for 'FIRST cannot be used to resolve the prefix.
The prefix in D's declaration is unambiguous because there is only one F1 that returns an
access type.

The expressions in the declarations of E, F, and G are ambiguous, even though only one
F2 yields a result appropriate for an array type. The prefix in H's declaration is ambiguous,

W. even though there is only one F3 that returns a two-dimensional array value.

S26.4.2 The type of a string literal must be determinable solely from the context in which

8-67

z)

8.7.b Specific Overloading Resolution Rules Version 1 (Dec 86)

the literal occurs, using only the fact that the string literal is a value of a one-
dimensional array type whose component type is an enumeration type containing
one or more character literals. . -

During the bottom-up phase, the set of resolutions of a string literal is the set of array
types whose component type is a character type. The visibility of the character literais
themselves is not used for overloading resolution. Even the identities of the characters in
the string are irrelevant. This is significantly unlike the case for character literals, where
the visibility rules are used to determine the set of potential resolutions. For example:

type Al is array (1..2) of INTEGER:
1 : BOOLEAN :- "A" - "B"; -- unambiguous (1)

package P is
type Cl is ('C'):

end P;

type A2 is array (1..2, 1..2) of P.CI:
B2 : BOOLEAN :- "C" - "C"; -- unambiguous (2)

type A3 is array (2..2) of P.CI;
B3 : BOOLEAN :- "A" - "C"; -- ambiguous (3)

(1) is unambiguous because there is only one one-dimensional array type in scope whose
component type is a character type, namely, the predefined type STRING. Hence, "A" and
B are uniquely resolved to the type STRING. (2) is unambiguous because there is still
only one one-dimensional array type in scope. (2) would be unambiguous even it we
wrote 'use P' before 82's declaration, thereby making Cl's character literal directly
visible. (3) is ambiguous because there are now two one-dimensional arrays in scope that
have character component types and the equality operation for both types is directly .
visible. The fact that "A" and "C" are illegal string literals of type A3 is not relevant. (Note:
'A" is an illegal string literal of type A3 since 'A' is not a value of type C1 'C" is illegal
since 'C' is not directly visible.)

Note the difference between the treatment of string literals and array aggregates. If we
replaced "A*, "B', and "C" in the above example with their corresponding aggregates (e .,
if we wrote "A" as (1 -> 'A')), then (1) is r ill unambiguous because there is oi one,,
nonlimited composite type in scope, namely, the type STRING. (2) is ambiguous,
however, because there are now two composite types in scope and !.,e equality operator -

is directly visible for both types. Hence, the context is not sufficient to determine the type ,I"
of the aggregates.

S27.4.2 The type of the literal null must be determinable solely from the context in which
the literal appears, using only the fact that the literal null is a value of an access
type.

The set of potential resolutions for the literal null includes every access type. .a

S28.4.3 The type of an aggregate must be determinable solely from the context, using
only the fact that the aggregate is a value of a nonlimited composite type.

The set of potential resolutions of an aggregate includes every nonlimited array or record
type. The component simple names of a record aggregate must be visible by selection,
but this fact is not used to resolve the aggregate, nor is the form of the choices The
names are used to resolve components of the aggregate during the fop-down pilase: ,

type RECM is record
X : INTEGER;

end record: .Z .

8-68

%

",pA

Version 1 (Dec 86) 8.7.b Specific Overloading Resolution Rules

type REC2 is record

.P-% P. Y : INTEGER:
end record;

type REC3 is record
Z : FLOAT;

end record; ,

function F return INTEGER; -- F1
function F return FLOAT: -- F2
function F return RECI; -- F3
(X _> 1) = (X => 2) -- ambiguous (1)

F - (X => F) -- unambiguous (2): F3 = (X => Fl)

(1) is ambiguous because neither

* the component name used as the choice, nor

" the form of the name, nor

" the type of the expressions comprising the aggregate

can be used to determine the type of the aggregate. Hence, (X => 1) can have type
RECI, REC2, REC3, or STRING, and since equality operators are visible for each of
these types, the expression cannot be resolved. The second expression is unambiguous
because (X => F) can only be a composite type, and there is only one visible F returning a
composite type, namely, the type REC1. Hence, (X => F) must have type RECt.
Because the type of component X in REC1 is INTEGER, the call to F within the aggregate
can also be resolved.

S29. 4.3.1 Each expression in a record aggregate must have the type of the associated
record component(s). ,

Note that, conceptually, this rule is applied by the algorithm during the bottom-up phase.
The sets of resolutions for each expression (and choice) of the aggregate are saved until
the top-down phase, where one resolution is selected to resolve the component
expressions. During the bottom-up phase, the set of resolutions of the aggregate must
include all nonlimited composite types in scope, even those incompatible with the types of
the component expressions.

S30.4.3.1 In an array aggregate, each choice must have the corresponding index type, and -7

each expression must have the component type.
Note that, conceptually, this rule is applied by the algorithm during the bottom-up phase.
The sets of resolutions for each expression (and choice) of the aggregate are saved until
the top-down phase, where one resolution is selected to resolve the component
expressions. During the bottom-up phase, the set of resolutions of the aggregate must
include all nonlimited types in scope, even those incompatible with the types of the
component expressions.

S31.4.4 The only names allowed as primaries are named numbers, attributes that return
a value, and names denoting objects or values.

The only attributes that do not return a value are 'BASE, 'RANGE, and 'RANGE
(N). -.

The type of an expression depends only on the type of its constituents and on
the operators applied: for an overloaded constituent or operator, the
determination of the constituent type, or the identification of the appropriate
operator, depends on the context.

8-69

8.7.b Specific Overloading Resolution Rules P S..
0

In an expression (or a simple expression), an operator must be ac-,.;te
(as for the corresponding operator symbol - see RM 8.3/18).

Names denoting subprograms an rntries are not allowed as primaries Furct ,i -ii
though, are allowed. Primaries thv: are names of enumeration literals are , r,,.'
parameterless function calls. Note .hat the resolution of a primary, factor. term -L.. -
expression, relation, or expression is defined as its result type,

S32.4.5.1 The short circuit control forms and then and or else are ,_1e -- '-'
operands of the same boolean type and deliver a result of the sam -
are directly visible throughout their scope (RM 8.3/18).

S33. 4.5.2 The membership tests In and not In with a type mark are d ..: 'C'aii

(nameable) types. The membership tests In and not in with a range .-

for all scalar types (including universalinteger, and universalrean. .
type is predefined BOOLEAN, and the left operand must have tr , -
type mark or the type of the bounds. Membership test- ar- , :.-
throughout their scope (RM 8.3/18). •

Note that for the membership test X In Y.. Z, the result type is BOOLEAN, ard ,
resolution of the membership test operation is possible only if the resolution sets to:
and Z have a single scalar type in common.

S34. 4.5.5 Predefined multiplication and division of operands of the same or df<.-.... -

point types deliver a result of type universal fixed.

These operators are always directly visible. Note that extra parentheses are alloweer .dc ."
ignored).
Type conversions such as C(F * 1.1) are always ambiguous if F has a fixed type, ;
1) univeisal real is not a fixed point type, and hence, the 1.1 must be implicitly -,veqe • -
and 2) there are always at least two fixt d types in scope (RM 3.5.9/7 and RM 9 L :I .
unique implicit conversion cannot be found. Conversions such as C(2 * 1k ,
C(2.0 1 11 are always ok, however, because nonuniversal resolutions are discard_, ,J --,,
4.6/15).

S35.4.6 The type of an operand of an -&.4s-it !,o-, ro..,erson must I, , > ,4-
inoependently of the target typ-?. This als: appites to actual s,,: -
entry parameters of mode In out r out that have the form of a tv:e oc.version.

S36.4.6 An !m1licit conversion can onl,, ' (,directly) applied ;f the cp< .. *.

numrenc literal, a named number, or an attribute returninq ..'au , typ.
universal integer or universal real. An implicit conversion is or-v acr '! tl V re
is no interpretation of the context without such a conversion. The cot. p
determine a unique result type for the conversion.

S37. 4.7 The operand of a qualified expression must have the tye of the type yi, The
result of a qualified expression has the base type of the t;,pe marek.

S38.4.8 The type of the access value returned by an allocator must -e f"
solely from the context, but using the fact that the value returnel , . .: •
type having the named designated type.

The set of potential resolutions constructed during the bottom-up phas, is .-
access types in scope designating the named type Any corlstranis on t-; ,..
subtypes are ignored.

S39.4.10 The predefined operations for the type unhversai inreger are the .
for any integer type. The predefined operations for the tvo : , v. ,

8-70

." % % % % " ,

Version I (Dec 86) 8.7.b Specific Overloading Resolution Rules

the same as those for any floating point type. In addition, the operators for
multiplication of universal real and universal integer (in either order), and for
division of universal real by universalinteger, are included. The formal
parameter names of the universal operators are LEFT and RIGHT (or just
RIGHT) (RM 4.5).

S40.5.2 In an assignment statement, the named variable and the expression must have
the same nonlimited type.
Although the left side of an assignment operation must be a variable, this

requirement cannot be used in overload resolution. For example, given F.l as
the target of the assignment and assuming that F returns either a record value or
an access value that designates a record, F.1 is ambiguous if the type of
component I is not sufficient to resolve the ambiguity.

S41.5.3 An expression specifying a condition in an if statement, while loop, exit
statement, or selective wait must have a boolean type.

S42. 5.4 The expression in a case statement must have a discrete type, but must
otherwise be determinable independently of the context. Each choice must have
the same type as the expression.

S43. 5.8 The type of an expression in a return statement must be the base type of the
type mark given in the function's specification.

S44. 6.1 The default expression in a parameter specification must have the type of the
corresponding formal parameter.

$45. 6.4 The name in a procedure call must be the name of a procedure. The name in a
function call must be the name of a function.

S46.6.4.1 In a subprogram call, each actual parameter must have the same type as the
corresponding formal parameter.

S47.6.6 A call to a subprogram is illegal if the name of the subprogram, the number of
parameter associations, the types and the order of actual parameters, the names
of formal parameters, and the result type for functions, are not sufficient to
identify exactly one subprogram or entry (see RM 9.5/5) declaration.

Note that the mode of a parameter is not relevant. Hence P(X+Y) would be ambiguous it
the following declarations were visible:

procedure P (X INTEGER);
procedure P (Y : in out INTEGER;

Z INTEGER :- 0);

S48.8.5 In an object renaming declaration, the renamed object must have ,,- ',t=
type mark.

$49. 8.5 In a subprogram or entry renaming declaration, the r,".- - F
entry must have the same parameter and resuft Wrryc
subprogram specification.

$50.9.1 Within a task unit that declares a task type a na,, 10

used as a type mark.

S51. 9.5 In an accept statement, the name of in e.-,
indexed component; the type of the nj *,,
of the discrete range in the entry/ far,,r o .. i "

,, -,.

ftl9I 54? THE AN (TRAK NME) COMPILER YNLZDATZON COWMILITY /
IMPLEMENTERS' GUIDE VERSION 1(U) SOFTECH INC IMLTNH NAEOM E

UICLESIFIED F/O 2/3 5

lmhmmhhhmmhhlm

IL

,= II ':i
row I ii

M/COCPYIEO *40 TEST!H 2R

111 M22,.

11111.

1_!.25 . . 6

MICROCOPY RESOLUTIONg TEST CHART
NATIONAL OUREAU OF ST AOfS-1961 -

J

% A,*

-NU -W N

-d,% S

8.7.b Specific Overloading Resolution Rules Version i (Dec 86)

S52.9.5 A call to an entry is illegal if the name of the entry, the number of parameter
associations, the types and the order of actual parameters, and the names ot
formal parameters, are not sufficient to identify exactly one procedure or entry
declaration (when the entry call occurs in a conditional call or a timed wait onlv
entry declarations are considered).
The name in an entry call must be the name of an entry.

Overloading resolution is the same for procedures and entries.

S53.9.5 The declaration of the single entry or the entry family named by a c,-v' -
statement must have the same parameter and result type profile as the fwmr,,-
part of the accept statement, and the simple name must be directly vw.'rse

S54.9.6 The argument of the delay statement has the predefined tixe d .r, .
DURATION.

$55.9.10 The determination of the type of each task name in an abort state;-*, .5e
fact that the type of the name is a task type.

S56.12.1.1 The default expression for a generic formal in parameter must have t t.
the parameter.

S57. 12.3.1 A generic actual parameter of mode In or in out must have tho -
*corresponding formal parameter.
" 558. 12.3.6 A generic actual subprogram parameter must be a subprogram. an e- t, i ,

literal, or an entry with the same parameter and result type protit '.
corresponding formal.

S59.12.3.6 If a generic unit has a default subprogram parameter specified by ia -
name must denote a subprogram, an enumeration literal, or an entry trct -t,
same parameter and result type profile as the formal parameter

S60. 12.3.6 If a generic unit has a default subprogram parameter specified by a r,-
must be exactly one directly visible subprogram. enumeration it,-ri .
the same designator and parameter and result type profi!e at any .
that omits the corresponding actual parameter.

S61.13.2 In a length clause that specifies 'SIZE or 'STORAGESIZE. the expre ,
have some integer type.
In a length clause that specifies 'SMALL, the expression must na.e
type.

S62.13.3 The aggregate used in an enumeration representation clause mus: *.ntar,
expressions of type universalinteger, and any choices must have :"it. tr
enumeration type.

S63. 13.4 Any expression contained in a record representation clause must have sorpt'_
integer type. The bounds of a range in a component clause need not Kiav" !.
same type.
The component name must be the name of a component oi the recoro.

S64. 13.5 The expression in an address clause must have the type SYSTEM ADDRESS
*" S65. 13.5 An address clause is only legal if exactly one declaration with the simple name is"'-.

directly visible.

Note that this rule makes overloaded occurrences of the simple name illegal The set of

8-72
J.

Version 1 (Dec 86) 8.7.b Specific Overloading Resolution Rules

meanings is the single meaning of the unique, directly visible declaration denoted by the
simple name.

Change from July 1962
S6S. The RM now requires that overloading resolution provide a unique interpretation for every

constituent of a complete context (not just a unique interpretation for a complete context).
S67 A formal part is no longer listed as a complete context because the declarations

comprnsng a formal part are already considered complete contexts.

SO The rules specifying how the expression in a case statement and the operand of a type
conversion are treated are now given in RM 5.4/3. RM 4.6/3, and RM 8.7/12).

AG Syntax. scope, and visibility rules are to be used in resolving overloaded constructs.

5 70 Rules reqtAnng a type to be nonimited are to be used in overloading resolution.

S Rules reqmnng the type of the prefix of an attribute to be determined independently of its
-wfwt arte now ctd explcitly.

'2? A rlefence to AM 6.4.1 ensures that when an actual in out or out parameter has the
orn of a type conversion, the variable's name must be resolved independently of the

S es in RM 4. 1.3'18, /19 are referenced without restricting the reference to enclosing

:jA C'gS from July 10

- *4 %,Vmfous ambots regarding what contextual information was to be used in
*solving overloaded constructs have now been cleared up.

LaJty V Ruls

JnoaO ng resolution must provide a unique interpretation for every constituent of a
.sogram n i t.I

Tet OOMectives and Desin Guidelines
W2 Check that because the type of the initialization expression in an object declaration must

be the same as the object's base type (RM 8.7/8 and RM 3.2.1/1), an overloaded construct
appeanring n the initialization expression can be resolved.

73 C ," :lat because the type of the expression in a number declaration must be either
UnIr'ersaIntoger or universalreal (RM 8.7/9 and RM 3.2.2/1), an overloaded construct in
the expression can be resolved.

T4 Check that because the expressions in a range used in a range constraint, fixed point
constraint, or floating point constraint of a subtype Indication must have the base type of
the subtype indication's type mark (RM 8.7/8, RM 3.5/4, RM 3.5.7/14, and RM 3.5.9/13), an
overloaded construct in the expressions can be resolved.

T5 Check that because the bounds in the range of an integer type definition must have an
integer type (RM 8.7/9 and RM 3.5.4/3), an overloaded construct appearing in the bounds
can be resolved.

Check that for purposes of overloading resolution, an overloaded bound need not be static.

Check that for purposes of overloading resolution, the bounds need not have the same

integer type.

8-73

8.7.b Specific Overloading Resolution Rules Version 1 (Dec 86)

T6. Check that because there exists an implicit conversion that converts a universal integer
value into the corresponding value of an Integer type (RM 8.7/13 and RM 3.5.5/1), an
overloaded call can be resolved (see also T37).

17. Check that an overloaded construct can be resolved because:

" for an attribute of the form T'POS(X), the operand X must have type T, and the
result is of type universal_integer (RM 8.7/8 and RM 3.5.5/6).

" for an attribute of the form T'VAL(X), the operand X may have any integer

type, and the result is of type T (RM 8.7/8 and RM 3.5.5/7).

" for an attribute of the form T'VALUE(X), the operand X must have the
predefined type STRING, and the result is of type T (RM 8.7/8 and RM
3.5.5/12).

*for attributes of the form T'SUCC(X) and T'PRED(X), the operand X must
have type T and the result is of type T (RM 8.7/8 and RM 3.5.5/8, 9).

for an attribute of form T'IMAGE(X), the operand X must have type T, and the
result is of the predefined type STRING (RM 8.7/8 and RM 3.5.510).

T8. Check that because there exists an implicit conversion that converts a convertible operand
of type universalreal into a value of a real type (RM 8.7/13 and RM 3.5.6/5), an
overloaded call can be resolved.

T9. Check that an overloaded construct can be resolved because:

" in a floating point type definition or subtype indication, the digits expression
must have some integer type (RM 8.7/9 and RM 3.5.7/3); check that for
purposes of overloading resolution, it is irrelevant whether the overloaded
construct is static or not. -

* in a fixed point type definition or subtype indication, the delta expression must
have some real type (RM 8.7/9 and RM 3.5.9/3); check that for purposes of
overloading resolution, it is irrelevant whether the overloaded construct is
static or not.

T1O. Check that because both bounds of a range constraint of a floating point type definition
must have some real type (RM 8.7/9 and RM 3.5.7/3), an overloaded construct appearing iJ'
in a bound can be resolved.

Check that for purposes of overloading resolution, it is irrelevant whether an overloaded
bound is static or not.

Check that for purposes of overloading resolution, both bounds need not have the same
real type.

Check that the bounds of the range may not have type universalfixed.

Ti 1. Check that because the delta expression in a fixed point type definition must have some
real type (RM 8.7/9 and RM 3.5.9/3), an overloaded construct in the expression can be
resolved; check that for purposes of overloading resolution, it is irrelevant whether the
overloaded construct is static or not.

Check that the delta expression may not have type universal fixed.

T12. Check that because both bounds in a range constraint of a fixed point type definition must
have some real type (RM 8.7/9 and RM 3.5.9/3), an overloaded construct appeanng in one
of the bounds can resolved.8'"

8-74

_ W . . .w, , ! FM ,.. WWV WV WV W = , , j.. , ', % r.r

Version 1 (Dec 86) 8.7.b Specific Overloading Resolution Rules

Check that for purposes of overloading resolution, it is irrelevant whether a bound is static
or not.

Check that for purposes of overloading resolution, both bounds do not have to have the
same real type.

Check that the bounds of the range may not have type universalfixed.
T1 3. Check that an overloaded construct contained in the bounds of a discrete range used in a

constrained array type definition, an iteration rule, or an entry family declaration can be
resolved because:

" the bounds of the discrete range must have the same type and the type must
be discrete (RM 8.7/8, RM 8.7/9, and AM 3.6.1/2).",
Implementation Guideline: Include the use of overloaded enumeration literals. %

" if both bounds of the discrete range are either integer literals, named numbers, l.

or attributes, both are potentially of type universal integer, and there is more
than one integer type whose scope includes the discrete range, then an
implicit conversion to predefined INTEGER type is assumed for both bounds
(AM 8.7/8 and RM 3.6.1/2).

Check that when the operations for more than one integer type are visible, the implicit
conversion of bounds to the predefined INTEGER is not permitted if the bounds are not £

integer literals, named numbers, or attributes returning nonuniversal values (e.g. 'SUCC).
In particular, check that static expressions using predefined operators are not allowed.

T14. Check that because the type of each discrete range of an index constraint used in a .

subtype indication must be the same as that of the corresponding index of the base type of
the type mark (RM 8.7/8 and AM 3.6.1/3), an overloaded expression in the index constraint
can be resolved.

Check that universal integer literals, named numbers, and attributes are converted to the
index base type.

T15. Check that because the argument N used in the attributes 'FIRST(N), 'LAST(N),
'RANGE(N). and 'LENGTH(N) must have type universal Integer (AM 8.7/9 and AM
3.6.2/2), an overloaded construct appearing in the argument can be resolved.

T1 6. Check that because the default expression for a record component must have the type of
the component (RM 8.7/8 and AM 3.7/5), an overloaded construct used in the default
expression can be resolved.

T17. Check that because the default expression for a discriminant must have the type of the
discriminant (RM 8.7/8 and AM 3.7.1/4), an overloaded construct appearing in the default
expression can be resolved.

T18. Check that because each expression in a discriminant constraint must have the type of the
associated discriminant (AM 8.7/8 and AM 3.7.2/4), an overloaded construct appearing in , .
the expression can be resolved.

T1 9. Check that because the simple expressions and range bounds of variant choices in record
type definitions must have the type of the discriminant used for the variant part (AM 8.7/8
and AM 3.7.3/3), an overloaded construct appearing in a choice can be resolved.

Check that for purposes of overloading resolution, it is irrelevant whether the overloaded
construct is static or not.

T20. Check that overloading resolution does not use the fact that the 'CONSTRAINED attribute

8-75
- ": ,

8.7.b Specific Overloading Resolution Rules Version 1 (Dec 86)

is defined only for objects with discriminants and private types. The identity of the prefix %
must be determinable independently of the context. .--.

T23. Check that an overloaded prefix or i vlex expression can be resolved because:

" the prefix of an indexed component must either denote an entry family, or its
type must be an array type or an access type whose designated type is an
array type (RM 8.7/9 and RM 4.1.1/3).

" for entry families, there must be a single expression having the type of the
family index (RM 8.7/9 and RM 4.1.1/3).

" for array types, there must be as many expressions as array dimensions, and
each expression must have the corresponding index type (RM 8.7/8 and RM
4.1.1/3).
Implementation Guideline: In at least one case. both the prefix and index types should be
ambiguous when considered independently.

" the required type of the Indexed component.

T24. Check that an overloaded prefix or bound of a discrete range can be resolved because:

" the type of the prefix of a slice must be a one-dimensional array type or an
access type whose designated type is a one-dimensional array type (RM
8.7/10 and RM 4.1.2/3).

* the bounds of the discrete range must have the index type (RM 8.7/8 and RM
4.1.23).

" the required type of the slice value. .*.,

T25. Check that an overloaded prefix of a name that is a selected component can be resolved
because:

e the type of the prefix has a discriminant or is an access type whose
designated type has a discriminant, and the selector is the name of the
discriminant (AM 8.7/10 and RM 4.1 .3!5.

* the type of the prefix is a record type or an access type whose designated
type is a record type, and the selector is the name of a component of the type
(RM 8.7/10 and RM 4.1.3/7).

" the type of the prefix is a task, a task type, or an access type whose
designated type is a task type, and the selector is the name of a single entry
or an entry family of the task (RM 8.7/10 and RM 4.1.3/10).

" the type of the prefix is an access type and the selector is the reserved word
all (RM 8.7/8 and RM 4.1.3/12).

" the prefix of an expanded name cannot denote a name declared by a
renaming declaration (RM 8.7/13 and RM 4.1.3/18).

" it the prefix can be interpreted as the name of an enclosing unit, then all other
possible interpretations are rejected (RM 8.7/13 and RM 4.1.3/19).

Check that a prefix of a selected component cannot be resolved based on the selector if
the prefix potentially denotes two or more enclosing entities (RM 4.1.3/18).
Implementation Guideline: Check for enclosing subprograms and accept statements.

T26. Check that the meaning of the prefix of an attribute must be determinable independently of, .-'

8-76

Version 1 (Dec 86) 8.7.b Specific Overloading Resolution Rules
S

the attribute designator and independently of the fact that it Is the prefix of an attribute. In
particular, check that the following legality constraints are not used for overloading
resolution:

" Check that for 'SIZE, 'FIRSTBIT, 'LAST-BIT, and 'POSITION, the
requirement that the prefix denote an object rather than a value is not used for
overloading resolution.

* Check that for 'CALLABLE and 'TERMINATED, the requirement that the prefix
be appropriate for a task type is not used for overloading resolution.

" Check that for 'FIRST, 'FIRST(N), 'LAST, 'LAST(N), 'LENGTH, 'LENGTH(N),
'RANGE, and 'RANGE(N), the requirement that the prefix be appropriate for
an array type is not used for overloading resolution.

'...

" Check that even though the prefix of the attribute 'COUNT must denote an p.

entry of a task, this information is not used to resolve any overloaded
constituents of the prefix (RM 8.7/12 and RM 4.1.4/3). P

" Check that 'ADDRESS can have a parameterless function as its prefix, and
this use is considered unambiguous if the function is not overloaded.

T27. Check that because a string literal is a value of a one-dimensional array type whose
component type is an enumeration type containing at least one character literal (RM 8.7/11 i
and RM 4.2/4), an overloaded call can be resolved. ,,-
Implementation Guideline: Use a case where the corresponding array aggregate would not be resolvable.

Check that the character literals comprising the string literal are not used to resolve the
type of the literal (RM 8.7/12 and RM 4.2/4).

IwoT28. Check that because the type of the literal null must be an access type (RM 8.7/11 and RM
4.2/4), an overloaded call can be resolved.
Implementation Guideline: Use a case in which there is only one access type declared.

Check that if more than one access type is declared, the literal null is ambiguous and its
type must be determined from the context In which it appears (RM 8.7/12 and RM 4.2/4).

T29. Check that because an aggregate must be a composite, nonlimited type (RM 8.7/12 and
RM 4.3/7), an overloaded call can be resolved.
Implementation Guideline: Check that the form of choices in an aggregate and the type of the choice or the
expression is not used to resolve the type of the aggregate. '.

Check that because single-component aggregates must use named associations, an
overloaded call can be resolved (RM 8.7/7 and RM 4.3/4).
Check that because a private type with discriminants is not a composite type (RM 3.3/2),
an overloaded call with an aggregate can be resolved.

T30. Check that because the expression of a record component association must have the type
of the associated record components (RM 8.7/8 and RM 4.3.1/1), an overloaded
expression In a record aggregate can be resolved.

T31. Check that because the type of each choice in an array aggregate must be the same as
the type of the corresponding Index (RM 8.7/8 and RM 4.3.2/1), an overloaded expression
used as a choice in an array aggregate can be resolved.
Check that an overloaded expression used as a value in an array component association
must have the type of the array component (RM 8.7/8 and RM 4.3.211).

T32. Check that an overloaded expression used as the parameter of certain attributes can be ,.
resolved because:

8-77

8.7.b 1S1)pcIfi Overloading Reolutlon Rules Version 1 (Dec 86)

" for attributes of the form T'SUCC(X), T'PRED(X), T'POS(X), and T'IMAGE(X),
the expression must have type T (RM 8.7/8 and RM 3.5.5/8,/9,/6, and /10).

" for an attribute of the form T'VAL(X), the expression must have an integer type ";,
(RM 8.7/8 and RM 3.5.5/7).

" for an attribute of the form T'VALUE(X), the expression must have the
predefined type STRING (RM 8.7/8 and RM 3.5.5/12).

Check that an overloaded construct can be resolved because:

" attributes of the form T'SUCC(X), T'PRED(X), T'VAL(X), and T'VALUE(X)
deliver a result of type T (RM 8.7/11 and RM 3.5.5/8,/9,/7, and /12).

" the attribute T'POS delivers a result of type universal_integer (RM 8.7/11 and .'

RM 3.5.5/6) (which can be implicitly converted to any integer type; RM 4.6/15). del
" the attribute T'IMAGE delivers a result of type STRING (RM 8.7/11 and AM

3.5.5/10).

T33. Check that an overloaded construct can be resolved because the short circuit control forms
and then and or else

* are defined only for two operands of the same boolean type (RM 8.7/8 and
RM 4.5.1/4);

" deliver a result of the same type as the operands (RM 8.7/11 and RM 4.5.1/4).

T34. Check that an overloaded construct can be resolved because:

" the result type of the membership tests In and not In is predefined BOOLEAN
(RM 8.7/11 and RM 4.5.2110).

" in a membership test with a range, both bounds of the range and the left
operand of the test must have the same type (RM 8.7/8 and RM 4.5.2/10), and '-p
this must be a scalar type (RM 8.7/9 and RM 4.5.2/10). *..

" In a membership test with a type marl, the type of the left operand must be
the base type of the type mark (RM 8.7/8 and RM 4.5.2/110),

T35. Check that an overloaded construct can be resolved because it one operand of a .

predefined multiplication operator has a fixed point type, the other operand:

" must have the predefined type INTEGER if the result of the multiplication is V.

not explicitly converted to some numeric type (RM 8.7/8 and RM 4.5.5/7); 1

" must have a fixed point type or the predefined type INTEGER if the result of
the multiplication is explicitly converted to some numeric type (RM 8.7/8, RM
4.5.5/7, and RM 4.5.5/10,/11). "

Check that an overloaded construct can be resolved because, if the first operand of a _

predefined division operator has a fixed point type, the second operand:

* must have the predefined type INTEGER if the result of the division is not
explicitly converted to some numeric type (RM 8.7/8 and RM 4.5.5/7);

e must have a fixed point type or the predefined type INTEGER if the result of
the division is explicitly converted to some numeric type (RM 8.7/8, RM
4.5.5/7, and RM 4.5.5/10, 11).

8-78
I

" '% *% %' '%' %'%' '0 - , % .'% % , % . . %.. .. -.. *.. . ."..

Version 1 (Dec 86) 8.7.b Specific Overloading Resolution Rules

Check that an overloaded expression used as the exponent operand of an integer or a
floating point exponentiation must have the type predefined INTEGER (RM 8.7/8 and RM
4.5.6/5).
Check that because there are always two fixed point types in scope, fixed point
multiplication or division cannot have an operand of type universal real (since there is no
unique implicit conversion to a fixed point type) (RM 4.5.6/5 and RM 4.6/15) (see IG
4.5.5.bIT38).

T36. Check that the type of an operand of an explicit type conversion must be determinable
independently of the target type. This also applies to actual subprogram and entry
parameters of mode in out or out that are type conversions (RM 8.7/12, RM 4.6/3, and RM
6.4.1/3).

T37. Check that an overloaded construct can be resolved because an implicit conversion of a 6

value of the type universaL integer to another integer type, or of a value of type IN
universalreal to another real type, can only be applied if the operand is either a numeric
literal, a named number, or an attribute, and if and only if the innermost complete context P
determines a unique (numeric) target type for the implicit conversion, and there is no legal ;
interpretation of this context without this conversion (RM 8.7/13 and RM 4.6/15).

T38. Check that because the operand of a qualified expression must have the type of the type
mark (RM 8.7/8 and RM 4.7/3), an overloaded construct appearing in the operand can be
resolved.

T39. Check that because an allocator returns an access type whose designated type has the
same base type as the base type named in the allocator (RM 8.7/11 and RM 4.8/3), an
overloaded call can be resolved.

Check that if the name of the designated type is not sufficient to resolve the type of the
allocator, the type must be determined by the context (RM 8.7/11 and RM 4.8/3).

T40. Check that because the same operations are predefined for the type universal integer as
for any integer type (RM 8.7/8 and RM 4.10/2), an overloaded construct can be resolved.

Check that because the same operations are predefined for the type universalreal as for
any floating point type (RM 8.7/8 and RM 4.10/2), an overloaded construct can be
resolved.

Check that because the operations predefined for universalinteger and universal real
include multiplication of universalinteger and universalreal (in either order), and division
of universal real by universal integer (RM 8.7/8 and RM 4.10/2), an overloaded construct
can be resolved.

T41. Check that because the named variable and the expression in an assignment statement
must have the same nonlimited type (RM 8.7/8 and RM 5.2/1), an overloaded construct
appearing in the variable or the expression can be resolved.

T42. Check that because an expression specifying a condition in an if statement, while loop, exit
statement, or selective wait must have a boolean type (RM 8.7/8 and RM 5.3/3), an
overloaded construct appearing in the expression can be resolved.

T43. Check that because the expression in a case statement must have a discrete type (RM
8.7/9 and RM 5.4/3, an overloaded construct appearing in the expression can be resolved.

Check that the type of the choices cannot be used to resolve the type of the case
expression (RM 8.7/12 and RM 5.4/3).

Check that the fact that the choices in a case statement must be static cannot be used to
resolve the type of the choices or the type of the case expression (RM 8.7/7).

8-79

A

8.7.b Specific Overloading Resolution Rules Version 1 (Dec 86)

Check that because each choice must have the same type as the expression (RM 8.7/8
and RM 5.4/3), an overloaded construct in a choice of a case statement can be resolved.

T44. Check that because the type of an (;;'pression in a return statement must be the base type
of the type mark given in the specification of the function (RM 8.7/8 and RM 5.8/5), an
overloaded construct appearing in the expression of a return statement can be resolved.

T45. Check that because the default expression in a parameter specification of a subprogram or
an entry must have the type of the corresponding formal parameter (RM 8.7/8 and RM
6.1/4), an overloaded construct appearing in the expression can be resolved.

T46. Check that the name In a procedure call, entry call, or function call can be resolved
because (RM 8.7/7):

" the name in a procedure call must be the name of a procedure (rather than the
name of a function);

" the name in an entry call must be the name of an entry (rather than the name
of a function);

" the name in an entry call appearing in a conditional or timed entry call must be
the name of an entry (rather than the name of a procedure or function); and

" the name in a function call must be the name of a function (rather than the
name of a procedure or entry).

Check that the use of a named actual parameter in a function call allows a function call to
be distinguished from an indexed component (RM 8.7/7).
Implementation Guideline: Check that when F(X) is either an indexed component or a function call, F (PARAM
=> X) is unambiguously a function call. e

T47. Check that because each actual parameter in a subprogram call must have the same type
as the corresponding formal parameter (RM 8.7/8 and RM 6.4.1/1), an overloaded actual
parameter or subprogram name can be resolved. .P
Implementation Guideline: Note that the combination of possible actual parameter types might serve to resolve
the name of the subprogram, and hence, the type of each actual parameter.

T48. Check that a call to a subprogram is illegal if the name of the subprogram, the number of
parameter associations, the types and the order of actual parameters, the names of formal
parameters, and the result type for functions are not sufficient to identify exactly one
subprogram declaration (RM 8.7/13 and RM 6.6/3).
Check that the order of named associations in a subprogram is not significant to the
process of overloading resolution.
Check that the mode of a parameter is not used to resolve an overloaded call of a
subprogram or an entry.

T49. Check that because the renamed object in an object renaming declaration must have the
type of the type mark (RM 8.7/8 and RM 8.5/4), an overloaded prefix in the name for the
renamed object can be resolved.

T50. Check that because a renamed subprogram or entry must have the same parameter and
result type profile as the given subprogram specification (RM 8.7/8, RM 8.7/19, and RM
8.5/7), an overloaded subprogram or entry name can be resolved.
Implementation Guideline: Check this is so even when the renamed subprogram is an attribute or an "

enumeration literal.

Check that attributes that have a parameter or result of a universal type cannot be .-..-
renamed in a renaming declaration.

8-80

M- L

Version 1 (Dec 86) 8.7.b Specific Overloading Resolution Rules

Check that multiplication and division operators for fixed point types cannot be renamed in
a renaming declaration.

T51. Check that because the type of the index expression in an accept statement for an entry of
a family must be the same as that of the discrete range in the entry family declaration (RM
8.7/8 and RM 9.5/4), an overloaded construct appearing in the index expression can be ,
resolved.

T52. Check that an entry call is illegal if the name of the entry, the number of parameter

associations, the types and the order of the actual parameters, the names of the formal
parameters, and the result type (if any) are not sufficient to identify exactly one entry
declaration (RM 8.7/8, RM 8.7/19, and RM 6.6/3).

Check that the occurrence of an entry call in a conditional or timed entry call statement
determines that an entry is being called rather than a procedure (see IG 8.7.b/T46).

T53. Check that because the single entry named by an accept statement must have the same
parameter and result type profile as the formal part of the accept statement (RM 8.7/8 and
RM 9.5/7), it can be determined which entry is denoted by the entry name in an accept
statement.
Implementation Guideline: Note that since entry family names cannot be overloaded, there is no potential
ambiguity in deciding which entry family Is denoted by an accept statement for an entry family member.

T54. Check that because the argument of a delay statement must have the predefined fixed
point type DURATION (RM 8.7/8 and RM 9.6/3), an overloaded construct appearing in the .
delay expression can be resolved.

T56. Check that because each name in an abort statement must denote an object of a task type
(RM 8.7/9 and RM 9.10/3), an overloaded constituent in a name can be resolved.

T57. Check that because the default expression for a generic formal in parameter must have .=
the type of the parameter (RM 8.7/8 and RM 12.1.1/2), an overloaded construct appearing 0

in the default expression can be resolved. %

T58. Check that because a generic actual parameter of mode In or In out must have the type of
the corresponding formal parameter (RM 8.7/8, RM 12.3.1/1, and 12.3.1/2), an overloaded
construct appearing in the actual parameter can be resolved.
Implementation Guideline: In particular, check string literals that are identical to operator symbols. 0

T59. Check that because a generic actual subprogram parameter must be a subprogram, an
enumeration literal, or an entry with the same parameter and result type profile as the
corresponding formal parameter (RM 8.7/8, RM 8.7/19, and RM 12.3.1/1), an overloaded
name appearing as an actual parameter can be resolved.
Implementation Guideline: In particular, check string literals that are identical to operator symbols.

T60. If a generic unit has a default subprogram parameter specified by a name, check that
because this name must denote a subprogram, an enumeration literal, or an entry with the
same parameter and result type profile as the formal parameter (RM 8.7/8, RM 8.7/19, and
RM 12.3.6/2), an overloaded default name can be resolved.

T61. If a generic unit has a default subprogram parameter specified by a box, check that S

because there must be exactly one directly visible subprogram, enumeration literal, or
entry with the same designator the same parameter and result type profile as the formal
subprogram at any instantiation that omits the corresponding actual parameter (RM 8.7/8,
RM 8.7/19. and RM 12.3.6/3), the appropriate default name can be found when more than %
one name is visible.
Implementation Guideline: Include a check for names made visible by a use clause.

8-81

6P..

8.7.b Specific Overloading Resolution Rules Version 1 (Dec 86)
I

T62. Check that an overloaded construct can be resolved because:

" in a length clause that specifies 'SIZE or 'STORAGESIZE, the expression
must have some integer type (RM 8.7/9, RM 13.2/5, and RM 13.2/8). ." ,

* in a length clause that specifies 'SMALL, the expression must have some real
type (RM 8.7/9 and RM 13.2/12).

T63. Check that because the aggregate used In an enumeration representation clause must
contain expressions of type universaLlnteger, and any choices must have the given
enumeration type (RM 8.7/8 and RM 13.3/3), an overloaded construct appearing in the
aggregate can be resolved.

T64. Check that because any expression contained in a record representation clause must have
some integer type (RM 8.7/9 and RM 13.4/3), an overloaded construct appearing in such
expressions can be resolved.

Check that the bounds of a range in a component clause need not have the same type
(RM 13.4/3).

'-.,

T65. Check that because the expression in an address clause must have type
SYSTEM.ADDRESS (RM 8.7/8 and RM 13.5/3), an overloaded construct appearing in an
address clause can be resolved.

8-82

i j

I%.

-'p

%' ~~~ %'%'%v %. -,~~~ D' ~'.4 -'. ' * %* w .*. w.

Version 1 (Dec 86) 9.1 Task Specifications and Task Bodies

Chapter 9
Tasks

9.1 Task Specifications and Task Bodies
Semantic Ramifications

s1. Within the body of task type T, the identifier T cannot be used as a type mark denoting the
task type, i.e., T cannot be used as the type mark in a conversion, a qualification, a membership
operation, a generic actual type parameter, a declaration of a formal parameter of a subprogram
or generic unit, a renaming declaration, an access type declaration, an allocator, an array or
record component definition, a derived type definition, an object declaration, or a subtype
declaration. Although the use of the type mark is forbidden in these contexts, a different
identifier denoting the task type is allowed, e.g.:

task type T;
type ACCT is access T;

P'.

subtype ST is T; -- now identifier denoting T

task body T is
X : T; -- illegal
Y : ST; -- legal, but recursive

, . Z : ACC T;' begin -
bei if ... then

* Z new T; -- illegal
Z neo ST -- legal

a" !S2. Although a task unit's name cannot be used as a type mark within its own body, it can be
used as the prefix of an expanded name, e.g., T.X is a !egal name within T's body in the
previous example. The task unit's name can also be used as the name of a task object in an
abort statement, as an actual In or In out parameter to a subprogram or a generic unit, as the
prefix to the 'CALLABLE and 'TERMINATED attributes, and as the expression value in a
membership test.
S3. If a subtype declaration declares a new name for a task type, the new name denotes a
type, not a task unit (RM 3.3.2/1). For example, in the above program segment, ST.X would not
be a legal expanded name within (or outside) the body of T.

s4. The only representation clause allowed in a task specification is an address clause for an
entry. The only other representation clauses that apply to tasks or to task types are the
'STORAGE SIZE and 'SIZE length clauses, but these cannot be used inside a task
specification, since they and the entity to which they apply must both occur immediately within
the same declarative part (or package specification) (RM 13.1/5).

S5. Neither a task declaration nor a task body can be a library unit (RM 10.1/2). A task body,
however, can be a subunit (see RM 10.2/2) and thus can be a compilation unit.

s6. Only the following predefined pragmas may appear in a task specification: LIST, PAGE,
and PRIORITY.

! ,,~ S7. The main program is considered a subprogram called by some environment task. This rule
allows the main program to suspend its own execution by executiq a delay statement.

9-1

-'= a-
"*.". J".,",:. - = . %

"
"""""".""".""•• •""•" "P'

9.1 Task Specifications and Task Bodies Version 1 (Dec 86)

Changes from July 1982

sa. Use of the name of a task unit as a type mark is not allowed within the task unit itself. -

Changes from July 1980 A

sq. There are no significant changes.
Legality Rules

Li. A task body must be declared for every task or task type declared by a task specification
(RM 9.1/1).

L2. A task body cannot be declared unless the corresponding task specification was given
previously in the same declarative part (RM 3.9/9), or, if the task body is given in the
declarative part of a package body, the corresponding task specification was given as a
declarative item in a corresponding package specification (RM 7.1/4) or earlier in the same
declarative part (RM 3.9/9).

L3. If an identifier is given at the end of a task body or specification, it must be the same as the
identifier for the task unit (RM 9.1/4).

L4. Within a task unit, the name of the task cannot be used as a type mark (RM 9.1/4).

L5. An address clause is the only form of representation clause allowed in a task specification
(AM 13.5/7). Such a clause must name an entry declared earlier in the task specification
(RM 13.5/7).

Exception Conditions

El. CONSTRAINTERROR can be raised when the discrete range of an entry declaration is
elaborated. Specifically, for a discrete non-null range of the form ST range L.. R, -"-"
CONSTRAINTERROR is raised if L or R is outside the range of ST but within the range of
ST's base type (see RM 3.6.1/4, RM 3.5/4, and RM 3.3.2/9).

E2. If an entry declaration has a discrete range of the form L .. R, where L and R are integer
literals, named numbers having type universal integer, or attributes returning a value of
type universalinteger, NUMERICERROR is raised if either L or R lies outside the range
of INTEGER (RM 4.6/15 and RM 3.6.1/2).

p.'

Test Objectives and Design Guidelines

Ti. Check that P

* a parameter list may not follow the identifier in a task specification.

* a task specification cannot be a compilation unit.
,the identifier at the end of a task specification or body cannot be differernt from

the identifier serving as the name of the task.
* two entry declarations cannot be separated by an address clause that applies

to the first entry declaration.
* a task specification is allowed to have no entry declarations (2 ways).
9 a length clause is not allowed in a task specification (for 'SIZE, 'STORAGE- ,.a

SIZE, or 'SMALL).

T2. Check that inappropriate declarations are not allowed in a task specification, namely, a
declaration of a variable, constant, access type, subtype, array type, record type.
procedure, function, package, task, or exception is not allowed.

9-2

Version 1 (Dec 86) 9.2 Task Types and Task Objects

Check that inappropriate pragmas are ignored, namely, CONTROLLED, INLINE, .".
INTERFACE, MEMORYSIZE, OPTIMIZE, PACK, and STORAGEUNIT.

T3. Check that if a task specification is given in a package specification, a corresponding task
body must be provided in the package body. !
Implementation Guideline: Try providing a body in a nested package body as well as simply omitting a body.

Check that if a task specification is given in a declarative part, a corresponding body must
be provided in the same declarative part.

Check that a task body cannot be provided in a declarative part of a package or
subprogram if there has been no preceding task specification.
Implementation Guideline: Include a check that the task specification cannot follow the task body.

T4. Check that the name of a task type cannot be used within its own body in a conversion, a
qualification, a membership operation, a generic actual parameter (corresponding to a
formal type parameter), a declaration of a formal parameter of a subprogram or generc
unit, a renaming declaration, an access type declaration, an allocator, an array or record I
component definition, a derived type definition, an object declaration, or a subtype
declaration.
Implementation Guideline: For the generic actual parameter case, use a subtype name to declare the
corresponding formal parameter.
Implementation Guideline: Include some checks in a nested task body.

Check that within a task type's body, the name of the enclosing task unit refers to the
object whose designated task is executing the body, and that a different identifier denoting .1
the task type cannot be used as the name of task object.
Implementation Guideline: Declare a new identifier for a task type by using a subtype declaration. (A new
identifier cannot be created for a unit that declares a single task.)
Implementation Guideline: Check the use of a task's name within its own body in an abort statement, a
membership test, and in the attributes 'CALLABLE and TERMINATED.

Check that a subtype name denoting a task type can be used inside its own body as a type
mark, but not as the prefix In an expanded name.

T5. Check that the identifier of a single task cannot be used as a type mark.

T6. Check that entry declarations are elaborated when the task specification is elaborated (not
when the task is activated), and are elaborated In the order given in the source code. %

T7. Check that if the elaboration of an entry declaration raises CONSTRAINTERROR, no
tasks are activated and TASKINGERROR is not raised.

9.2 Task Types and Task Objects
Semantic Ramifications

S1. For most purposes, it is convenient to think of a task object as holding a pointer whose
value gives access to the code of a task. It is partly for this reason that a task object is said to
designate a task.

S2. Access types can be declared whose designated types are tasks:

task typo T;
type ACC T is access T;
X :ACCT;

The object designated by X is a task object, which in turn designates a task. X.all denotes this
task object.

9.3

"WL '=r"L~,J , " .., ,,, ,J ., ,,,' ,%.',o ,, - -,-.- -, ., ,-.-.. . . .-..° .-., ,-.- - .-"I "- . '."". . "" "" -"". "" .''- "" -""- ";% "','

9.2 Task Types and Task Objects Version 1 (Dec 86)

S3. Functions can return task objects as values, e.g.:

ARR : array (1 10) of TASKS; "U'

function SELECT (FROM : ITEGER) return TASKS is
begin 0ereturn ARR(PRO) ;
end SELECT;

The function can be used in an entry call, e.g., SELECT(5).E;.

s4. Task objects may be components of other objects, and may be objects (or components of
objects) designated by access types. Task objects and objects having subcomponents of a task
type may be actual In or In out parameters of subprograms and entries. There is no semantic
difference between passing a task as an In or as an in out parameter. In both cases, the task
serving as the actual parameter Is accessible via the formal parameter. In particular, such a
task is not reactivated:

task type T is
entry STATE1;

entry STATE2;
end T;

OBJ : T;

task body T is -"

begin
accept STATE1;
accept STATE2;

end T;

procedure P (X T) is
begin

X.STATE2; -- accepted if task X not just activated
end P;

OBJ.STATE1;

P (OBJ);

Because the formal and the actual parameter designate the same task, X.STATE2 will be
accepted when P is called. The same effect occurs for mode In out.

S5. The mode out is disallowed for task types and for types having a subcomponent of a task
type since RM 7.4.4/4 says, in effect, that if an out parameter is limited, it must be a limited
private type whose full declaration is not limited. In short, because of RM 7.4.4/4, it is not
possible to create a subprogram or an entry with an out parameter that is either a task type, a
composite type with a subcomponent having a task type, or a limited type whose full declaration
is such a type.

s6. Although assignment is not defined for task types, a function yielding a task value or a task
object can be given as the default initial expression of a formal subprogram parameter, since
the := in such a declaration does not represent assignment, but merely the correspondence
between a formal and actual parameter (RM 7.4.4/10).

s7. The full declaration of a limited private type can be a task type declaration (RM 7.4.1/3). In
such a case, the task entries (if any) are not visible outside the package. .

se. Since predefined equality and assignment are not defined for a task type, a task type is a

9..

". •. %U

Version 1 (Dec 86) 9.2 Task Types and Task ObjeCts

limited type (RM 7.4.4/1), and so is any record or array type having a subcomponent of a task
type (RM 7.4.4/2).

S9. If a type is derived from a task type, the derived type is a task type and Is subject to the
usual rules for task types (RM 3.4/4 and RM 3.4/7).

Si o. The amount of data storage made available to a task is Initially determined when the object
is created, i.e., when an object declaration Is elaborated or when an allocator is evaluated. In
the case of an object declaration, the amount of storage is determined before the task is
activated (although it might change after task activation if the amount of storage for a task is
determined dynamically):

OBJ : TSK TYPE;

package PACK is
STORE : INTEGER := OBJ' STORAGESIZE; -- OBJ not yet activated ,

end PACK;

Changes from July 1982 0,

SI 1. An out parameter of a procedure or an entry cannot have a task type or a composite type p.'

with a subcomponent of a task type.

Changes from July 1980 WI

S12. Task objects are not allowed as generic in parameters.

S1 3. An In out parameter of a subprogram or an entry can have a task type.

Legality Rules

IL1. Neither a task type nor a composite type with a subcomponent having a task type is
allowed to be the type of an out formal parameter (RM 9.2/1 and RM 7.4.4/4).

12. Neither a task type nor a composite type with a subcomponent having a task type is
allowed to be the type of an In formal parameter of a generic unit (RM 12.1.1/3).

Test Objectives and Design Guidelines I',p

T1. Check that task objects and objects having a subcomponent of a task type cannot be
compared for equality (see IG 4.5.2/1T7) or assigned.
Implementation Guideline: Include the use of assignment in an object declaration, in a default expression of a
record component declaration, and in an assignment statement.

T2. Check that a component, X, of a record having a component of a task type can be
assigned to if X's type is not limited. I

T3. Check that a task can be passed as an actual In or In out parameter in a subprogram call.

Check that a task parameter can have a default expression.
Implementation Guideline: Include cases with composite types, and check that the formal and actual
parameter denote the same tasks, i.e., check that formal and actual tasks have the same internal state.

T4. Check that a formal parameter of mode out must not have a task type or a composite type
with a subcomponent of a task type (see IG 7.4.4/1I).

T5. Check that a task object declaration creates a task object prior to its activation.
Implementation Guideline: Check using the 'STORAGE-SIZE attribute, which should return a well-defined
value, although the value may be zero.

T6. Check that task objects designated by access values can be interchanged by exchanging
the access values.

9.5
I

A' j N 2 E W nil R'wWWW -v w~rw W -VP-W

9.3 Task Execution -- Task Activation Version 1 (Dec 86)

9.3 Task Execution - Task Activation
Semantic Ramifications

Si. The activation of a task is different from the elaboration of an object declaration that
declares a task:

task type T;
OBJ : T; -- (1)

When the object declaration is elaborated, a task of type T is created but not activated.
Because the task is not activated at (1), it doesn't matter whether T's body has been elaborated.
In particular, no exception should be raised when the object declaration is elaborated; RM 3.9/6
only applies to the activation of tasks, not to their creation.
S2. To further emphasize the difference between elaborating an object declaration and
activating a task, consider the next example. It contains a function CHECK(I) that updates a
global string variable with the value of I. For example, when a call to CHECK(1) is followed by
CHECK(2), the string "12" is produced. CHECK is used to see whether declarations are
elaborated in the required order:

task type T;

OBJ:T: -- ()
I INTEGER := CSICK(1);

Uo-

task body T is
K INTEGER CiECK (3);

begin
K CHECK(4);

end T;

package P is
J INTEGER := CEECK(2);

end P;

The required sequence of calls to CHECK in the above example will produce the string "1234".
In particular, the declaration of T.K must not be elaborated until OBJ is being activated, which
can only occur after elaborating the whole declarative part.
S3. If some components (or subcomponents) of a record type have task types, any default
initializations for the nontask components are performed before the task components are
activated, since RM 9.3/2 defers the activation of such tasks until the entire declarative part has
been elaborated:

task type T; t

type INNER REC is
record

T1 T; .,
A : INTEGER :- CHECK(1):

end record;

type OUTEZR REC is
record

T2 T;

9-6

)..............
". . kA#

Version 1 (Dec 86) 9.3 Task Execution Task Activation

R INNER RC; .%.

9 INTEGER :C= CHCK(2);
end record;

task body T is
K : INTEGER : CBECK(3);

begin 1,

null;
end T:

package P is
R :OUTERREC;9-,

end P;

The string produced by the CHECK calls must be either "1233" or "2133" since all nontask
component initializations must be evaluated before any tasks are activated. Similarly, tasks
created by allocators are activated last:

type ACC REC is access OUTER REC;
M : INTEGER CHECK (0);
ACC : ACCREC new OUTER_REC;
N : INTEGER := CHECK (4); S

The initialization of components ACC.R.A and ACC.B occur before ACC.R.T1 and ACC.T2 are
activated, so the sequence of calls to CHECK is "012334" or "021334".

s4. If an exception is raised in a declarative part before a task created by an object declaration
is activated, such tasks become terminated, allowing the master containing the task objects to 4-
be left (see RM 9.4/6 and IG 9.4/3):

declare
task type T;

OBJ :T;
I INTEGER 1/0; -- NUMERIC ERROR raised S

task body T is ... end T;
begin ... end;

The task designated by OBJ is terminated before it Was activated. NUMERICERROR is
propagated from the block containing these declarations. TASKINGERROR is not raised even s
though OBJ was not activated successfully.

S5. A similar situation can arse when tasks are created by allocators:

task type T;

type REC is
record

A INTEGER :, CHCK(1);
B T;
C FLOAT range -1.0 .. 1.0 :-FLOAT(CHECK(2));

end record;

type ACC REC is access RC:"

9-7"' .

9.7o.
S= %

9.3 Task Execution -- Task Activation Version 1 (Dec 86)

task body T is
K : INTEGER :- CHECK(3) ", '

begin "
null:

end T;

package P is .%
R : ACCRC new REC; -- CONSTRAINTERROR raised

end P;

The global string produced by CHECK should have the value "12" or "21"; in no case should the
string contain the value 3, since the task designated by R.8 is never activated.

S6. RM 9.3/4 speaks of tasks created "indirectly" by elaborating a declarative part. Indirect
creation can occur as follows:

package P is
task T; ,

end P; ..

-- raise exception here
package body P is

task body T is

end T;
end P;

P.T is a task created indirectly by the elaboration of the enclosing declarative part. P.T is
terminated because of the exception raised in the enclosing declarative part. ,

S7. When an exception is raised while activating a task, TASKINGERROR is to be raised '.. Lwithin the frame (RM 11.2/3) that is causing the task to be activated. Several tasks can be
ready for activation at once (e.g., when activating or allocating an array of tasks), and more than
one of these tasks may raise TASKINGERROR. However, only one TASKINGERROR
exception is raised in the frame.
s8. If a library package P declares a task object and does not require a package body, then an
implicit body is provided by RM 9.3/5. This implicit body must be elaborated prior to executing
the main program (RM 10.5/1), and so all tasks declared by library units are activated before
execution of the main program begins. Similarly, if pragma ELABORATE names P, then P's
implicit body must be elaborated before elaborating the unit specifying the pragma. and so the
task declared by P will be activated (see IG 10.5/S).

sg. Whenever a task becomes completed, the exception TASKINGERROR must be raised in
all tasks awaiting a rendezvous with that task (RM 11.5/2). In particular, TASKINGERROR
must be raised in tasks expecting a rendezvous with a task that does not become activated:

declare
task type T1 is

entry E;
end T1;

NOT ACTIVE : TI; -- will be called when not active

task type T2; -- will call NOTACTIVE.E
type ACCT2 is access T2: .

9-8

- . - * .. ,

., .w ... ,. , .,..u 1 ,

Version I (Dec 86) 9.3 Task Execution -Task Activation

task body Ti is

Or begin
accept E;

end Ti;

task body T2 is
begin

NOT ACTIVE.E; -- call entry of inactive task
FAILED ("no TASKINGERROR raised");

exception
when TASKINGERROR => null; -- okay

end T2:

package P is
T2OBJ : ACC T2 new T2; -- T2 now activated
RAISEEXCP INTEGER := 1/0: -- raise NUIM3RIC ERROR

end P;
begin ... end;

When package P is elaborated, a task of type T2 is activated and waits for its call to NOT-_ACTIVE to be accepted. Elaboration of the RAISEEXCP declaration causes NUMERIC- ,

-ERROR to be raised, so the task NOTACTIVE, which was waiting to be activated, becomes
terminated. TASKINGERROR must be raised in T2_OBJ.all, which allows this task to become
completed. Since T2OBJ.aIl and NOTACTIVE are both terminated, the block containing
these declarations can now be left (RM 9.4/6) by propagating the NUMERICERROR
exception. Note that NUMERIC ERROR is propagated (not TASKING ERROR) because RM
9.3/3 only says TASKING_ERROR is raised when some task raises an exception while being
activated, and no exception has been raised during task activation In the above example.

sio. The above example can be modified by replacing package P with the following:

function ABORT NOT ACTIVE return INTEGER is C-.
begin

abort NOT ACTIVE;
return 3;

end ABORT NOT ACTIVE;

package Q is
T2 OBJ ACC T2 := new T2; -- T2 now activated
DOABORT INTEGER = ABORTNOTACTIVE; -- NOT ACTIVE now aborted

end Q:

T2OBJ.all completes its execution because TASKINGERROR is raised within it. Execution
of the block containing these declarations continues. When execution reaches the begin, no
attempt is made to activate the task NOT ACTIVE since this task is terminated. If no other
tasks are created within the block, the block can be exited when it complete its execution, since
all its dependent tasks are terminated.

Si 1. It is possible to create and activate tasks that cannot be accessed:

declare
task type T,
OBJ array (1..2) of T;

9-9

I%

9.3 Task Execution -Task Activation Version 1 (Dec 86)

type RiC is
record

A INTEGR :- C-ZCK(l);
B, C: T

end record;
type ACC UXC is access REC;
R _OJ : ACC REC;
task body T is

begin ... end T.
begin

R OBJ := new REC;
exception

when TASKING ERROR =>

abort OBJ(l), OBJ(2), R 03J.B, R OBJ.C;
end;

Suppose that when evaluating the allocator, the task created for component B is successfully
activated, but the attempt to activate the task for component C fails because an exception is
raised in T's declarative part. TASKINGERROR Is raised at the point of the allocator (RM
9.3/7). However, even though a REC object has been allocated (component A has received a
value), the execution of the allocator has not been successful, and so ROBJ has not received
a new value. Consequently, A_OBJ - null and evaluation of ROBJ.B will raise
CONSTRAINTERROR when the abort statement is evaluated. This means the task
associated with component B is executing, and there is no way to name it to abort it. The block %
cannot be left until this task terminates its execution. Similarly, if activation of OBJ(1) is
successful, but OBJ(2)'s activation fails, the task designated by OBJ(1) will not be terminated. ." '.
However, in this case, since the tasks designated by OBJ(1) and OBJ(2) were created when the
object declaration was elaborated, abort OBJ(1) is meaningful and will terminate the execution
of OBJ(1). If OBJ(1) were not aborted, then the block could not be exited until OBJ(1)
completes its execution and terminates.

S12. According to RM 3.9/6, PROGRAM ERROR is raised by an attempt to access a tasks
body before it has been elaborated. Such an attempt, however, can only occur during an
attempt to activate a task, and RM 9.3/3 says that if an exception is raised "by the activation" of
a task. then TASKINGERROR is raised instead of the exception that actually occurred dunng
the activation attempt. Consequently, an attempt to access a task's body before it is elaborated
raises TASKINGERROR instead of PROGRAMERROR:

task type T;

package P is
OJ :T;

end P:

package body V is
beginnull; -- TASKING ERROR raised here
exception

when TASKING ERROR -> null;
when PROGRAM EOR -> null; -- cannot occur

end F:

task body T is ... end T: " ..
00

9-10

.. -.-... .. ,-. ,"_ ''. L'..,.*-, .-* -a.. %. .l," € "- -" % " ' "-¢ '-' - '--.-.- ' ''-%%."-"- .•. .

Version 1 (Dec 86) 9.3 Task Execution -- Task Activation
1S

An attempt to activate P.OBJ must be made before the null statement in P is executed. Since
T's body has not yet been elaborated, PROGRAMERROR is raised by the attempt to activate
P.OBJ, but RM 9.3/3 says TASKINGERROR is the exception that is actually propagated to the
handler.
S13. Attempting to activate a task before its body has been elaborated occurs more easily for

access types:

task type T;
type ACCT is access T;
OBJ : ACC T := new T; -- TASKINGERROR raised, not PROGRAMERROR
task body-T is ... end T:

Changes from July 1982

S14. It is explicitly stated that when implicit package bodies are created for packages containing
declarations of task objects, the order of elaboration of these bodies is undefined.

Changes from July 1980

S15. Activation of tasks is explicitly allowed to occur in parallel.
S16. If an exception is raised while attempting to activate one of several tasks, the remaining
tasks are not affected and can be activated.
SI7. When implicit package bodies are created for packages containing declarations of task
objects, the bodies are placed at the end of the declarative part (not just after the associated
task body).
Si8. If an exception occurs while elaborating a task's declarative part, the exception is not
passed to the activating task; instead, TASKINGERROR Is raised.
sig. If a record contains some components with default initializations and some components
having a task type, the nontask components are initialized before any attempt is made to
activate any of the task components.

Exception Conditions

El. If elaborating the declarative part of a task causes an exception to be raised, or if an
attempt is made to activate a task before its body has been elaborated, TASKING-ERROR
is raised in the task that caused the attempted activation to occur. The exception is raised
at the point where the activation is attempted.

Test Objectives and Design Guidelines

Ti Check that declared task objects are not activated before the end of the declarative part.
(For tasks declared in package specifications, check that the tasks are not activated before
the end of the package body's declarative part.)
Implementahon Guideline. Check for sngle task objects and composite objects containing components having
a task type. -r
Implementation Guideline: Use a mixture of blocks, subprograms, packages, and task bodies as examples of
declarative parts.
Implementatbon Guideline: For composite objects with nontask components, check that the nontask
components are initialized when the object declaration is elaborated. Try a case where subcomponents are
also a mixture of task and nontask types.

T2 Check that declared task objects are activated before execution of the first statement

following the declarative part.
Implementatbon Guideline: Check for single tasks and composite objects containing components having a task
type

9-11 "

. .. .' . -, .. . a.• . -, - - . %,..., *. . % -. % .* . l ei-

9.4 Task Dependence -- Termination of Tasks Version 1 (Dec 86)

p

Implementation Guideline: Use a mixture of blocks, subprograms, packages, and task bodies as examples of
declarative parts.

T3. Check that tasks created by allocators evaluated in a declarative part are activated when
the allocator is evaluated.
Implementation Guideline: Check for single task objects and composite objects containing components having
a task type.

For composite objects with nontask components, check that the nontask components are
initialized first when the object declaration is elaborated.

T4. Check that if an exception Is raised when a task's declarative part is elaborated, the task is
completed, and TASKINGERROR is raised in the unit causing the task activation; the

,. activation of other tasks should not be affected.

Check that TASKINGERROR is not propagated until the activation of all tasks has been
attempted.
Implementation Guideline: Check both for tasks created by allocators and tasks created by object declaratior s.

Check that when more than one task raises an exception during activation, only one
TASKINGERROR is raised.

Check that tasks waiting to rendezvous with tasks that fail to be activated receive
TASKINGERROR.
/'npiementation Guideline: This check can only be done for tasks created by object declarations.

T5. Check that if an exception is raised in a declarative part, a task declared in the same
declarative part becomes completed before it has been activated; no TASKINGERROR is
raised within the declarative part being elaborated, but TASKINGERROR is raised in
tasks that were awaiting a rendezvous with those tasks that become completed before
being activated.
Implementation Guideline: Check when both one and several tasks are waiting to be activated when the -
exception is raised.

T6. Check that a task object declared in a library package specification is activated before
executing the main program, even if the package has no body.

Check that when pragma ELABORATE is applied to a package that declares a task obhect
. but has no package body, the task is activated before elaborating the unit containing the

ELABORATE pragma (see IG 10.5/T4).

T7 Check that if an attempt is made to activate a task before its body has been elaborated, the
task is completed and PROGRAM ERROR (rather than TASKINGERROR) is raised
(AI-00149).
Implementation Guideline: Check for tasks created by allocators and tasks created by object declaraior-s

T8 Check that execution does not proceed in parallel with the activation of tasks.
ImplementaftOn Guideline: Check for tasks created by both object declarations and allocators.
Implementafton Guideline: To maximize the chance of such an error being detected, the tasks being activated
shouid execute a delay statement during their activation.

I,3

9.4 Task Dependence -- Termination of Tasks

Semantic Ramifications

St. An object of a limited private type might be. or might contain, a task. Consequently, the
unit in which the object is declared cannot complete its execution until the task is completed. in
particular. a generic unit might be instantiated with a task type: .-

9-12

% %. / r

Version 1 (Dec 86) 9.4 Task Dependence - Termination of Tasks

generic
type T is limited private;

procedure P is
X : T;

If P is instantiated with a task type, a call to the instantiated procedure cannot be completed
until X has completed its execution.
S2. The dependence relations implied by a generic instantiation can be even more complex:

generic
type T is limited private;

package P is
X : T;

After instantiation, X depends on the master containing the instantation. Similarly:

generic
type LP is limited private;
type ALP is access LP;

procedure P is
X :ALP :- no LP;

When this unit is instantiated, the task allocated for X is dependent on the master that
elaborates the access type definition associated with ALP's actual parameter. Neither the
genedc unit nor the instantiation is considered a master, since the formal access type definition
is never elaborated (see RM 12.1/6 and RM 12.3/17).
S3. When a master is a task, dependence is not textually determined by the position of the task -
body, but rather by the manner in which a task object is created: I.

procedure P is p.

task type TT;
task body TT is

task INNER;

end TT:
type ATT is access TT;

begin
B1: declare

X : TT,
Y : ATT : new TT:

begin

The task designated by X depends on block B1. This task is the master of another task called
INNER, which indirectly depends on B1. Block B1 cannot be left until both X and X's dependent
task have terminated. On the other hand, the task designated by Y.all depends on procedure
P, and therefore, the Y.all's INNER task indirectly depends on P.

S4. For an access type, dependence is on the collection associated with the access type:

*W!, ul9 1

9"13 "

-- N.,,.

9.4 Task Dependence -- Termination of Tasks Version 1 (Dec 86)

Bi: declare
task type T; -,
type A T is access T; -- (1)

begin
B2: declare

type DAT isnew A.T; -- (2)
X DAT :=newT -- depends on Bi
Y AT :-nevT -- depends on Bi

X depends on B1 because the declaration of DAT does not contain an access type definition.
The only access type definition related to DAT is the definition used at (1) to declare AT. RM
9.4/2 defines dependence on the master that "elaborates the corresponding access type
definition," and the definition at (1) is the only one related to DAT. It is easy to misread RM
9.4/2 as saying "the corresponding access type declaration" (meaning the declaration at (2)).

S5. When a selective wait with a terminate alternative appears in an inner block that is a
master, the implementation must be careful to evaluate termination conditions correctly:

task body T is
T1, T2 : TASKS;

begin
B: declare

Ta, Th : MORE TASKS;
begin

(1) selective wait with terminate here

end B:. Ta, T must be terminated
endedB -- T1, T2 must be terminated

Execution must be suspended at the end of block B until Ta and Th terminate. If these tasks
are executing a selective wait with an open terminate alternative, the terminate alternative can
be taken. If execution is waiting at (1), then the terminate alternative can be taken only it task T
is able to be terminated, i.e., if all of T's dependent tasks are either terminated or waiting at an
open terminate alternative. In particular, the terminate alternative can only be taken if Ta, Tb,
T1, and T2 are all terminated or are able to select terminate alternatives.
S6. The idea behind the terminate alternative Is that it is selected when no more wor can be
done. But this does not mean the terminate alternative can be selected when tasks are
deadlocked. For example, a terminate alternative cannot be selected when a task is queued for
an entry of a task executing a selective wait with terminate, even if the entry has no accept
statements or is in a closed accept alternative. If such an entry has been called with a timed
entry call, then when the delay has expired, the entry is removed from the queue, and the
conditions for termination may be met if the calling task subsequently terminates.

S7. The definition of completion for a block should have mentioned that a block is completed it
an exception is raised by the elaboration of its declarative part, since this is one way of leaving a
block. In particular, if a task is dependent on a block, and the elaboration of the block's
declarative part raises an exception, the block is not left until the dependent task terminates:

declare
type ACC T is access SOME TASK TYPE;
LOSTTASK : ACC T := new SOMET-ASKTYPE:
I : NATURAL : -; -- CONSTRAINT ERROR raised 5

begin "."

.%
9-14 "

" -,

Version 1 (Dec 86) 9.4 Task Dependence -- Termination of Tasks

LOST TASK.all depends on the block, since the block elaborates the access type definition for
S.V% ACCT. CONSTRAINTERROR cannot be propagated from the block until LOSTTASK.all

has terminated.

SS. Now consider a case where a task object is declared in a block that raises an exception I
while elaborating its declarative part:

-..
declare

OBJ SOMETASKTYPE;
I NATURAL := -1; -- CONSTRAINTERROR raised

begin

RM 9.3/4 applies here: the task designated by OBJ becomes terminated without being
activated, and the block can be left immediately.

sq. A task object designated by an object of an access type may become inaccessible before it
terminates, e.g.: '

declare
task type T is ... end T;
task body T is ... end T;
type T ACC is access T;

begin

declare
MORIBUND: T ACC := new T:

begin
null;

end;
-- now we've done it!

end:

Completion of the inner block does not await completion of the newly created task object.
Although the object designated by MORIBUND is not accessible after execution has left the J%
block, the storage allocated for the task designated by MORIBUND.all cannot be reclaimed until
MORIBUND.all is terminated (RM 4.8/7). Moreover, the outer block cannot be left until S
MORIBUND.all terminates because MORIBUND.all depends on the outer block; it is not
relevant whether a dependent task can be accessed by some name (see also IG 9.3/S).

S1. If a task object is declared in a library package, or if an access to task type is declared in a
library package specification, the library package serves as a master (RM 9.4/1). The RM
allows a main program to complete its execution even though some tasks dependent on a
library package have not completed their execution. In any event, tasks dependent on a library
package must not be aborted when the main program is completed (in the sense of RM 9.4/5);
they must be allowed to continue to run until they terminate. Some Ada applications, for
example, might have a null main program, with all the real work being done by tasks dependent
on library packages. In real-time control systems, such tasks might never be expected to
terminate and their activation would be the equivalent of system startup.

si1. Since completion Is not defined for a library package, a master that is a library package
can never be said to be complete. Consequently, if all tasks dependent on library packages are
waiting on open terminate alternatives of select statements and the main program is complete,
no rule requires that all such tasks be terminated. However, since no further execution is
possible, the tasks might as well be considered terminated, e.g., in a batch job environment, the
next job can begin execution at this time. If a task dependent on a library package is neither
complete nor waiting on an open terminate alternative when the main program completes, then
the task must be allowed to complete its execution.

9-15

'.

V N_ V %

9.4 Task Dependence -- Termination of Tasks Version 1 (Dec 86)
p

S12. The rules allow a task to be accessed from outside its master, even though in such a case,
the task must have terminated: ,.

declare -P
task type T; 0,
type ACC T is access T; 00

function F return T is
LOCALTASK : T;

return LOCALTASK:

end F;

task body T is ... end T;
begin

if F' TERMINATED then -- must be true

The value returned by F can be used as the prefix of the 'TERMINATED attribute. Since F
cannot return until LOCAL TASK is terminated, F'TERMINATED will always yield TRUE. This
example shows that under some circumstances, even after a master is exited, there can be
further references to a dependent task created within the master.

S13. When a select statement contains both a terminate alternative and an accept alternative
for an entry associated with a hardware interrupt, an Implementation is allowed to impose
further requirements for the selection of the terminate alternative in addition to those given in
RM 9.4/7-10 (see RM 13.5.1/3).

Changes from July 1982

s~S14. Indirect dependence is defined for subprograms.

S15. When a master is a task, the task does not depend on the master that activates the task;
instead the usual rules for dependence are used.

Changes from July 1980

S16. For access types, incorrect wording indicating dependence on package bodies has been
replaced with wording indicating dependence on task bodies.

S17. The wording regarding dependence has been clarified by introducing the concept of a
"master."

S1 s. An explicit definition is given of the circumstances under which the execution of a construct
is considered complete.

sig. Task completion is distinguished from task termination so the rules explaining termination
of dependent tasks can be expressed more clearly and correctly.

Test Objectives and Design Guidelines -:

T1. Check that a unit with dependent tasks created by object declarations is not completed
until all dependent tasks become terminated.
Implementation Guideline: Do not use the terminate alternative; this will be checked separately in T8.
Implementation Guideline: Include objects having a limited private type whose full declaration declares a task
type or a type having a component of a task type. ,
Implementation Guideline: Include some indirect dependencies.
Implementation Guideline: Check that a unit is not exited until all dependent tasks are terminated even if an
attempt is made to leave the unit by raising an exception.

9-16
%

Version 1 (Dec 86) 9.4 Task Dependence - Termination of Tasks

T2. Check that a unit that creates tasks by allocators completes pnor to termination of the
allocated task if the unit did not declare the access type; otherwise, it waits until the
created tasks have all terminated.
Implementation Guideline: To ensure that the set of dependent tasks is not determined statically, create a
linked list of records containing tasks.
Implementation Guideline: Use a limited private type and a composite type with task subcomponents.

Check that the master for a derived access type is the unit containing the access type
definition.
Implementation Guideline: Use two levels of derivation to ensure the master is not merely considered to be the
parent of the derived type.

T3. Check that a unit terminates properly if it declares an access type designating task objects
but never actually creates a task.

T4. Check that tasks dependent on a library package continue to execute even after
completion of the main program.
Implementation Guideline: Include task objects declared in a library package specification or body and access
to task types, where the tasks are activated either in the package body or in the main program.
Implementation Guideline: Make the main program of high priority and the tasks of lower priority. The tasks
should contain a delay statement to allow the main program to complete, although there is no way to ensure
that the main program completes.
Implementation Guideline: Check separately whether such tasks are terminated when all of them are waiting at
open alternatives of a select statement.

T5. Check that if a task type is declared in a library package, a main program that declares
objects of that type waits for the termination of such objects.

T6. Check that a declaration that renames a task does not create a new master for the task.
% "Check that a subtype declaration for an access type does not create a new master with

respect to the unit containing the subtype declaration.

-7. Check that a task object declared in a nonllbrary package does not depend on the
package, but does depend on the innermost enclosing block, subprogram, or task body,
i.e., the elaboration of declarations following the package body can continue even If the
task is not yet terminated.
Implementation Guideline: Include a check for leaving a package body by raising an exception. Include
package body subunits in this check.

T8. If tasks directly or indirectly dependent on a master are all either terminated or are P.,
executing a select statement with an open terminate alternative, check that the master is
completed. %
Implementation Guideline: Check that the master is not terminated if only some tasks are at an open terminate
alternative.
Implementation Guideline: Include a case where a terminate alternative is inside a block that has dependent
tasks (see example in IG 9.4/S above).

Ti 0. If a generic unit has a formal limited private type and declares an object of that type (or has
a subcomponent of that type), and if the unit Is instantiated with a task type or an object
having a subcomponent of a task type, check that the usual rules apply to the instantiated
unit, namely:

* if the generic unit Is a subprogram, control cannot leave the subprogram until
the task created by the object declaration is terminated;
Implementation Guideline: Include a check where the subprogram is to be left by raising an
exception.

* if the generic unit is a package, control cannot leave the enclosing master until
the task created by the object declaration is terminated.

9-17

, :,: .,2.2..'..',.:.:...,..-;,'.,',t. .% ,,j'.,% ',,:,, , ' .'%,,,,. ,,,:. o,,...,'..:,,'..:..'.,:. ..:.." .. .",-....',,-,.".':....:.:... ,:.-..:.-:.-'.:: -':-'

9.5 Entries, Entry Calls, and Accept Statements Version 1 (Dec 86)

Implementation Guideline: Include a case where the actual parameter of the instantiation is a limited private ,,

type whose full declaration declares a task type. .

Check that if the generic unit decl,'cs an access type whose designated type is a formal
limited private type, then the appropriate termination rules apply when the unit is
instantiated with a task type or a type having a component of a task type.

Ti 1. Check that if a formal access type of a generic unit designates a formal limited private type, %

then when the unit is instantiated with a task type or a type having a subcomponent of a
task type, the master for any tasks allocated within the instantiated unit is the master
determined by the actual parameter.

T20. Check that if the completion of one task will allow a master to be completed, then the task
can be completed by aborting it, and the master will continue its execution.

T21. Check that a task can be accessed from outside its master.

9.5 Entries, Entry Calls, and Accept Statements

Semantic Ramifications

Si. The scope of a formal parameter in an entry declaration starts at the beginning of the
parameter's declaration (RM 8.2/2). Hence, the identifier of a formal parameter can be used in
an entry declaration prior to the formal parameter's declaration as long as it denotes an entity
other than the formal parameter:

C : constant := 5;
task type T is

entry E (1..C) (X INTEGER C; C FLOAT):
end T"

The above uses of C are legal and refer to the constant declared outside the task type. The
identifier C cannot, however, be used within the formal part to denote a preceding formal
parameter (see IG 6.1/S and RM 6.1/5).

S2. An entry may be called by the main program as well as from another task since a main
program is considered to be called from a task (see RM 10.1/8).

S3. If the discrete range used to declare an entry family has the form L .. R and each bound
has type universal integer and is either a numeric literal, named number, or attribute, L and R
are implicitly converted to the predefined type INTEGER (see RM 3.6.1/2 and IG 3.6.1 a/S).

s4. Control can leave a rendezvous by executing a return statement (see RM 5.8/1), as well as
by raising an exception or simply by normally completing the execution of the sequence of
statements contained by the accept statement. Control cannot leave by executing an exit
statement (see RM 5.7/3) or a goto statement (see RM 5.9/3).

s5. If an entry has a parameter of mode In out or out, assignments to the formal parameter
can immediately affect the value of the actual parameter il the parameter is passed by
reference. In such a case, the value of the actual parameter is updated during the rendezvous.
If the parameter is passed by copy, however, the RM 9.5/14 applies: "[After the accept
statement's sequence of statements has been executed], the calling task and the task owning
the entry continue their execution in parallel." Since the execution of the accept statement's
statements says nothing about the treatment of parameters, this wording implies that any copy
back action occurs after completion of the rendezvous, in the context of the call. Of course, an
implementation must ensure that the formal parameters are not replaced with new values ,.

associated with the next rendezvous until the old values are safely transmitted to the calling -

9-18

V.1- -- " - ,'" "" "" ' ' 2.,.",.".", .-. ":".-," ''' ' . ". .. , ,, .; .' , . " . .". > '. .

Version 1 (Dec 86) 9.5 Entries, Entry Calls, and Accept Statements

task. For example, if the calling task is running on another computer, parameter results can be
given to the calling task, which then is responsible for copying them to the actual parameters
while the called task can proceed to rendezvous with another task.

S6. An entry can be declared even though there is no accept statement for it in the body of the
task. Of course, if such an entry is called, it will never be accepted, and the calling task will
eventually receive TASKINGERROR when the called task terminates.

S7. Evaluation of an entry name is described in RM 4.1/10, RM 4.1.1/3, and RM 4.1.3/9-10. In
particular, if the prefix denotes an access value, no .all is needed:

task T is
entry E;

end T;

type A T is access T;
X : AT;
... X.2; -- legal entry call

X.all.E; -- also legal

S8. Interrupts are treated as entry calls (RM 13.5.1); an interrupt entry is not executed (in
response to the corresponding interrupt) unless a corresponding accept statement is executed.
Although entries can be associated with hardware interrupts (RM 13.5/6), such entries can still
be called directly with entry calls.

sq. An entry can be overloaded either by using the same identifier to declare other entries of
the same task or an enclosing task, or to declare subprograms or enumeration literals in the
task body or in an enclosing unit.

sio. An exception raised inside an accept statement and not handled locally is propagated both
to the unit containing the accept statement and to the calling task (RM 11.5/4). If the called task
is aborted during a rendezvous, TASKINGERROR is raised in the calling task at the place of
call (RM 11.5/5); the rendezvous need not be completed (see RM 9.10/7). On the other hand, if
a calling task is aborted while in a rendezvous, the rendezvous must be completed before the
calling task is terminated (see RM 9.10/6). No exception is raised in the called task (see RM
11.5/6).

si 1. When evaluating a call to a member of an entry family, the entry family index is evaluated
before any actual parameters (RM 9.5/10).

S12. Since an entry family name is neither an object nor a type, the definition of SUPPRESS
does not permit an entry family to be named in a SUPPRESS pragma. Consequently, the only
way to specify that index checks are to be suppressed when calling or accepting a call for a
member of an entry family Is to name the Index type In the pragma.

S13. Most of the rules applicable to subprogram declarations and calls also apply to entry
declarations and calls. These rules are repeated in this section, and tests to check that
subprogram calls are performed correctly are repeated for entry calls (see T61 -T95).

Changes from July 1982

S14. There are no significant changes.

Changes from July 1980

si 5. The syntax of entry calls and accept statements explicitly allows an entry family index to be
declared and specified.

S16. The name of a single entry or entry family in an accept statement is restricted to a simple
name; no expanded names can be used.

9-19

'."I

...,.....T.-..-..-.. ,.-.,..-,.-..-..-,.-.-.. ,.- / :*-.% ; ; . . <.\.,.

-,,..,,.

9.5 Entries, Entry Calls, and Accept Statements Version 1 (Dec 86)

S17. Additional restrictions have been imposed on the use of a task name within its body.

siS. The rule restricting the use of accept statements within a task body has been augmented '.,
to ensure that a task can execute accept sfatements only for its own entries.
sig. Overloading is disallowed for entry family identifiers.

S20. The evaluation of an entry call now explicitly requires evaluation of the entry name, not just
the entry index.

S21. TASKINGERROR is raised if the called task completes execution before accepting the
call.

Legality Rules

Li. If a name of an entry family is given in either an accept statement or an entry call. it must
be followed by an index expression (RM 9.5/3, /4, /7, /10), and the base type of the index in
the name must be the same as the base type of the entry index given in the entry family
declaration (RM 9.5/4).

L2. The name of an entry family cannot be overloaded (AM 9.5/5).

L3 The name of a single entry can be overloaded (RM 9.5/5), i.e., two single entries or a
single entry and a procedure having the same identifier can be declared in the same
declarative region if the number, order, and base types of the parameters are not all the
same (RM 8.3/15,/17).

L4. The formal part of an accept statement must conform to the formal part given in the
declaration of the single entry or entry family named by the accept statement (RM 9.5/7),
i.e.,

" the formal parts must consist of the same sequence of lexical elements,
except that comments are ignored, certain string literals can be replaced by
different string lterals (see below), and simple names can be replaced by
expanded names if the meaning of both names is given by the same
declaration (RM 6.3.1/5).

" corresponding numeric literals must have the same (universa/integer or
universalreal) value (RM 6.3.1/2).

" a character literal or an operator symbol cannot be replaced by an expanded
name denoting the same literal or operator (RM 6.3.1/3).

* corresponding string literals used as operator symbols can differ only with
respect to the case of the letters used in the operator symbol (RM 6.3.1/4).

* corresponding simple names, character literals, operators, and operator
symbols must be declared by the same declaration (RM 6.3.1/5).

L5. A simple name appearing at the end of an accept statement must match the single entry or
entry family name given at the beginning (AM 9.5/7).

L6. An accept statement for an entry of a given task must occur within the corresponding task
body, but not within the body of any task, package, or subprogram that is itself declared
within the task (AM 9.5/8).

L7 An accept statement for an entry of a given task must not occur within another accept
statement for either the same single entry or for an entry of the same family (RM 9.5/8).

The remaining rules derive from the rules for subprogram declarations as applied to entry
declarations, in accordance with AM 9.5/6.

9-20

9-20 "

:...;V •', ,,'.',.'.,,' ',..". .

- ,-1 9 WW %, rL .,, : W1,=- W.f ,, ,.W I.M WVz,

Version 1 (Dec 86) 9.5 Entries, Entry Calls, and Accept Statements

L8. In entry declarations, a default expression is allowed only for formal parameters having
mode In (RM 9.5/6 and AM 6.1/4).

1-9. The base type of a default expression must be the same as the base type of its formal
parameter (RM 9.5/6 and RM 6.1/4).

L10. A simple name is not allowed in a parameter declaration if the name denotes a formal
parameter declared earlier in the same formal part (RM 9.516 and RM 6.1/5)

Li 1. The identifier declared as the name of an entry or an entry family cannot be used within the
entry's formal part except to declare a formal parameter having the same identifier (RM
8.3/16). In particular, its use as a selector in a component selection, as a component
simple name in an aggregate, as a parameter name in a named parameter association, or
as a simple name in a default expression is forbidden.

L12. The formal parameters of an entry must have identifiers that are distinct from each other
and from identifiers declared in the task body's declarative part (RM 8.3/17).

L13. An out parameter of an entry declaration must not have a limited type unless (RM 7.4.4/4):

" the type is a limited private type,

" the declaration of the entry occurs within the visible part of the package that
declares the limited private type (including within any nested packages), and

* the full declaration of the limited private type does not declare a limited type.

L14. A formal In parameter or a subcomponent of a formal In parameter of an entry must not be
used as an actual In out parameter of an entry or a subprogram call (RM 9.5/6 and RM
6.4.1/3), as an actual out parameter (RM 9.5/6 and RM 6.4.1/3), as the target of an
assignment statement (RM 5.2/1), or as a genetic In out actual parameter (RM 12.3.1/2).

Li 5. A format out parameter or a subcomponent of a formal out parameter must not be used as
an actual In out parameter of a subprogram call or an entry call (RM 9.5/6 and RM
6.4.1/3), or as an actual In out parameter In a genetic instantiation (RM 12.3.1/2).

L16. A formal out parameter or a subcomponent of a formal out parameter (other than a -

discriminant subcomponent) must not be used in an expression (RM 9.5/6 and RM 6.25),
except as the prefix of the attribute ADDRESS, CONSTRAINED, FIRST and FIRST(N)
(when the parameter has an array type), FIRSTBIT, LAST and LAST(N) (when the .,1

parameter has an array type), LAST BIT, LENGTH and LENGTH(N) (when the parameter
has an array type), POSITION, RANGE and RANGE(N) (when the parameter has an array
type), or SIZE.

L17. The prefix of an attribute cannot be an out parameter or a subcomponent of an out
parameter if the parameter or subcomponent has an access type (RM 4.1/4).

L18. For an entry call with only positional parameters:

* the number of actual parameters must equal the number of formal parameters
(RM 9.5/6 and RM 6.4/5); or

* the number of actual parameters must be less than the number of formal
parameters, and, if N parameters are omitted, the last N formal parameters
must have default values specified for them (RM 9.5/6 and RM 6.4/5);

" the base type of the ith actual and formal parameter must be the same (RM
9.5/6 and RM 6.4.1/1).

L19. For an entry cal; with both named and positional parameters,

9-21

% %

- -W W - W ~ 0 u W%7 W W ~ W U d 'b W W % W X o r q - LK . N U .
I.

. r N J ' j i v . j -

9.5 Entries, Entry Calls, and Accept Statements Version 1 (Dec 86)

* the total number of actual parameters must not exceed the number of formal
parameters (RM 9.5/6 and RM 6.4/5); "-_ -

* omitted actual parameters must correspond to formal parameters for which
default values were specified (RM 9.5/6 and RM 6.4/5);

• positional parameters must appear first (RM 9.5/6 and RM 6.4/4);

• a named parameter must not be specified for a formal parameter if an actual ,i
positional parameter is also given for that formal parameter (RM 9.5/6 and RM
6.4/5);

.the base types of corresponding formal and actual parameters must be the
same (RM 9.56 and RM 6.4.1/1).

- 1-20. The formal parameter name in a named parameter association must be identical to that of
a formal parameter in the corresponding entry declaration (RM 9.5/6 and RM 6.4/3).

L21. No duplicates are permitted among the formal parameter names used in any parameter
associations of an entry call (RM 9.5/6 and RM 6.4/5).

I 22. An actual out or In out parameter of an entry call must be either the name of a variable or
must have the form of a type conversion applied to the name of a variable (RM 9.4/6 and
RM 6.4.1/3).

L23. The type mark appearing in an actual In out or out parameter having the form of a type
conversion must conform to the type mark of the formal parameter (RM 9.4/6 and RM
6.4.1/3).

124. A call to a single entry is not allowed unless the name of the entry, the number of
parameter associations, the types and order of the actual parameters, and the names of , "-

the formal parameters (if named associations are used) suffice to determine which entry is -,- -
being called (RM 9.4/6 and RM 6.6/3).

Exception Conditions

El. For an entry call, TASKINGERROR is raised if the called task:

* has completed (or terminated) its execution at the time of the call (RM 9.5/16);
or

* completes its execution before accepting the call (RM 9.5/16); or

" is abnormal when the call is made (i.e., the task has been aborted, but is not
yet terminated) (RM 9.10/7); or

" becomes abnormal (i.e., is aborted) before accepting the call or while
executing the rendezvous (RM 9.10/7).

E2. CONSTRAINTERROR Is raised for an entry call if the value of the entry index does not lie
within the declared range (RM 9.5/16).

E3. CONSTRAINTERROR Is raised for an accept statement if the value of the entry index
does not he within the declared range for the entry family (RM 9.5/16).

E4. For an actual parameter of mode In, CONSTRAINTERROR is raised if: ""

* the formal parameter has a scalar type and the value of the actual parameter
before the call lies outside the range specified for the formal parameter (RM
9.5/6 and RM 6.4.1/6).

9-22

". w o '',4,,""*'°"" °, . . - , . . * . 4 • "" " ," . . o . . - o - o . • o o

S S..-' -- " - ,.' < : .,:: ,,, _"L _ . _ .,...'.:_ -',"- .,.. , '. -,... .'-'. . . -.. ".-.-...-.-.-... .

5 . VV. 7 v -u tn v nv-. r W t "-r- -W- -1VW FVIWIaWF ,

Version 1 (Dec 86) 9.5 Entries, Entry Calls, and Accept Statements

.the formal parameter has a constrained array type and the index bounds of -!the actual parameter are not equal to the bounds specified for the formal
parameter (RM 9.5/6 and RM 6.4.1/6, /9).

9 the formal parameter has a constrained record, private, or limited private type
and the discriminant values for the actual parameter do not equal those
specified for the formal parameter (RM 9.5/6 and RM 6.4.1/6,/9).

* the formal parameter has a constrained access type, the value of the actual _

parameter is not null, and the bounds or discriminants of the designated
object do not equal the values of the bounds or discriminants specified for the
formal parameter's constraint (RM 9.5/6 and RM 6.4.1/6).

E5. For a parameter of mode In out having the form of a variable name,

* CONSTRAINTERROR is raised before the call if:

*the parameter has a scalar type and the value of the variable lies
outside the range specified for the formal parameter (RM 9.5/6 and RM
6.4.1/6).

* the formal parameter has a constrained array type and the index
bounds of the actual parameter are not equal to the bounds specified
for the formal parameter (RM 9.5/6 and RM 6.4.1/6,/9).

" the formal parameter has a constrained record, private, or limited
private type, and the discriminant values for the variable do not equal
those specified for the formal parameter (RM 9.5/6 and RM 6.4.1/9, /6).

* the formal parameter is a constrained access type, the value of the
variable is not null, and the bounds or discriminants of the designated
object do not equal the values of the bounds or discriminants specified
for the formal parameter's constraint (RM 9.5/6 and RM 6.4.1/6). '-.

• CONSTRAINTERROR is raised after the completion of the entry call if:

*the formal parameter has a scalar type or a private type whose full
declaration declares a scalar type and the value of the formal parameter
lies outside the range specified for the variable named as the actual
parameter (RM 9.5/6 and RM 6.4.1/7).

* the actual parameter has a constrained access type or a private type
whose full declaration declares a constrained access type, the formal
parameter's value is not null, and the bounds or discriminants of the
formal parameter's designated object do not equal the values of the
bounds or discriminants specified for the actual variable's subtype (RM
9.5/6 and AM 6.4.1/7).

E6. For a parameter of mode In out having the form of a type conversion applied to the name
of a variable:

* NUMERIC-ERROR Is raised before the call if:

• the parameter has a scalar numeric type and the value of the actual
parameter cannot be accurately represented as a value of the formal
parameter's type because the value lies outside the range of the formal

. •parameter's base type (RM 3.5.4/10).

I
~ V ,'- "-"-" ";"-" -V"'-',." "-."

9.5 Entries, Entry Calls, and Accept Statements Version 1 (Dec 86)

_ the formal parameter has an unconstrained array type and for some
%-' dimension of the formal parameter's type, an index bound of the

variable lies outside the range of the formal parameter's index base type
(RM 9.5/6, RM 6.4.1/4, and RM 4.6/13).

* CONSTRAINT-ERROR is raised before the call if:

* the parameter has a scalar type and the converted value of the variable
lies within the range of the formal parameter's base type but outside the
range specified for the formal parameter (RM 9.5/6, RM 6.4.1/4, and RM
4.6/12).

e the formal parameter has an array type:

~% * constraints are specified for the component type of the variableand the component type of the formal parameter, and the
constraints are not equal (RM 9.5/6, RM 6.4.1/4, and RM 4.6/13);
or
the array type is unconstrained, the operand is a non-null array,
and for some dimension of the formal parameter's type, the index
bounds of the variable, after conversion to the formal parameter's
index base type, do not both lie within the range of the formal
parameter's index subtype (RM 9.5/6, RM 6.4.1/4, and RM
4.6/13).

the array type is constrained,

e the formal parameter declares a null array, and the value of
the variable is not a null array (RM 9.5/6, RM 6.4.1/4, and
RM 4.6/13); or

e the formal parameter does not declare a null array, and for
at least one dimension, the number of components
specified for the value of the variable is not the same as the
number of components specified for the formal parameter
(RM 9.5/6, RM 6.4.1/4, and RM 4.6/13);

* the formal parameter is a constrained access type, the value of the
variable is not null, and the bounds or dlscriminants of the designated
object do not equal the values of the bounds or discriminants specified
for the formal parameter's constraint (RM 9.5/6, RM 6.4.1/4, and RM
4.6/12).

* NUMERICERROR is raised after the call if the parameter has a scalar
numeric type and the value of the formal parameter cannot be accurately
represented as a value of the actual parameter's type because the value lies
outside the range of the actual parameter's base type (RM 3.5.4/10).

* CONSTRAINTERROR is raised after the call if:

* the parameter has a scalar type or a private type whose full declaration
declares a scalar type, and the converted value of the formal parameter
lies within the range of the actual parameter's base type but outside the
range specified for the actual variable (RM 9.5/6 and RM 6.4.1/7).

* the formal parameter is a constrained access type or a private type

9-24

Version 1 (Dec 86) 9.5 Entries, Entry Calls, and Accept Statements

whose full declaration declares a constrained access type; the value of
the formal parameter is not null; and the bounds or discriminants of the
designated object do not equal the values of the bounds or
discriminants specified for the actual parameter (RM 9.5/6 and RM
6.4.1/7). p.'

E7. For a parameter of mode out having the form of a variable name:

* CONSTRAINTERROR is raised before the call as for an in out formal
parameter of a constrained array, record, private, or limited private type (see
E5).

*CONSTRAINTERROR is raised after normal completion of the call as for in
out parameters (see E5).

E8. For a parameter of mode out having the form of a type conversion applied to the name of a
variable:

* NUMERICERROR is raised before the call as for an In out formal parameter
of an unconstrained array type (see E6).

"p.

* CONSTRAINTERROR is raised before the call as for in out formal
parameters having an array type (see E6).

" NUMERICERROR is raised after completion of the call as for an In out
formal parameter of a scalar type (see E6).

" CONSTRAINTERROR is raised after completion of the call as for an in out .
formal parameter of a scalar, private, or constrained access type (see E6).

two, E9. For omitted parameter associations, CONSTRAINTERROR is raised:

* for scalar parameters if the value of the default expression lies outside the
range of the formal parameter (RM 9.5/6 and RM 6.4.1/6).

" for formal parameters having a constrained array type if the bounds of the
default expression do not equal the bounds specified for the formal parameter
(RM 9.5/6 and RM 6.4.1/6,/9).

" for formal parameters having discriminants if the discriminants for the value of
the default expression do not equal the discriminants specified for the formal
parameter (RM 9.5/6 and RM 6.4.1/6, /9).

• for formal parameters of a constrained access type if the value of the default
expression is not null and the bounds or discriminants of the designated
object do not equal the bounds or dlscriminants specified for the formal
parameter (RM 9.5/6 and RM 6.4.1/6). ".9

" for formal parameters of a private type if the value of the default expression
would raise an exception when the appropriate rule for the private type's full .

declaration Is used.

Test Objectives and Design Guidelines

Ti. Check that the name of an entry family must be specified as a singly indexed component in
an entry call or an accept statement.

Check that the base type of an index in an entry call or an accept statement must match
that given in the entry family's declaration.

V.V

9-25 ""

.9*

9.5 Entries, Entry Calls, and Accept Statements Version 1 (Dec 86)

Check that the base type of the index is INTEGER if both bounds are specified with integer
literals, named integer constants, or attributes having the type universalinteger. *, ..

Check that a discrete range for ai entry index is illegal if both bounds have type '
universalinteger but the bounds have the form of a signed integer literal, a signed
attribute, or a signed named constant.

T2. Check that the name of a single entry may not be given as an indexed component in an
accept statement or in an entry call.

T3. Check that the entry name in an accept statement cannot be an expanded name.
T4. Check that an accept statement for an entry of a task may not appear outside the task's

body, or in a subprogram, a package, or a task unit nested in the task's body. ..

Check that an accept statement cannot be nested with another accept statement for the
same single entry or entry family (even if different entry family members are named).
Check that nested accept statements are allowed for single entries having the same name
(and different parameter profiles) (see T22).

T5. Check that the identifier at the end of an accept statement may be omitted.
T6. Check that the identifier at the end of an accept statement, if present, must be that used in

the declaration of the corresponding entry or entry family.
17. Check that if a task's entry is renamed as a procedure inside the corresponding task body,

the procedure name must not be used in an accept statement. J-

T8 Check that CONSTRAINTERROR is raised for an out-of-range index value when
referencing an entry family, either in an accept statement or an entry call.

T9. Check that a task object can call its own entries and entries of other tasks.
Implementation Guideline: Deadlock occurs if a task calls its own entry. Use a timed entry call to break the
deadlock. I'

, T10 Check that a task may contain more than one accept statement for an entr/. ,.
Implementation Guideline. Use single entries and entry families.

Ti1 Check that a task need not contain an accept statement for an entry.

T12. Check that calling a task not yet activated does not raise an exception at the point of the
call.

, T13 Check that a rendezvous in which the accept statement has no do part is carned out.
T20 Check that the formal parts of entry declarations and accept statements must conform.

Implementation Guideline: Include a check across separately compiled units.
Implementation Guideline: Include a check that all entry family members have the same formal part.

T21. Check that entry calls are processed in the order of their arrival.
Implementation Guideline: Include a check that each entry family member has its own queue.

T22. Check that an accept statement can be executed from inside another accept statement
Implementation Guidehne: Include a case where the entries have the same identifier (but are overloaded

T30 Check that an entry declaration is not allowed in a task body.

T31 Check that nonexistent entries cannot be called.
T32 Check that selected component notation must be used to call entries from outside a task

. (unless the entries have been renamed as procedures).

9-26

% 5. *. 5 , ...- . , , . -\.% .

Version 1 (Dec 86) 9.5 Entries, Entry Calls, and Accept Statements

T33. Check that the entry family index is evaluated in accept statements and entry calls.
Implementaton Guideline: In the entry call case, check that the index is evaluated before any argument n the
call. P

T34. Check that a calling task is suspended if the receiving task has not reached the
corresponding accept statement. ,

Check that the calling task remains suspended while the rendezvous is in progress.

T35. Check that a task is suspended when it reaches an accept statement if there is no call
currently waiting for that entry.

T40. Check that TASKING ERROR is raised if an entry of a completed task is called, or if a
called task is active but completes without accepting the call.

T41. Check that an entry family index can be specified with the form, A'RANGE.

Checks based on subprogram declaration and call rules

T61. Check that certain syntactic malformations are forbidden, namely (cf. IG 6.1/Ti):

" an array type definition is not allowed in a formal parameter declaration;

" the type of a formal parameter must be designated by a type mark, not a
subtype indication with an explicit constraint. ''

T62. Check that within an entry declaration, duplicate formal parameter names are forbidden in
a formal part (cf. IG 8.3.e/T1).

T63. Check that default expressions are forbidden for formal parameters of mode in out or out
(cf. IG 6.1/T5).

T64. Check that the type of a default expression must be the same as the base type of the
formal parameter (cf. IG 6.1/T6).

T65. Check that CONSTRAINT ERROR is not raised when an entry is declared if the value of

the default expression for the formal parameter does not satisfy the constraints of the type
mark, but is raised when the entry is called and the default value is used (cf. IG 6.1/T8).
Implementabon Guideline: Try: an array parameter constrained with nonstaic bounds and initialized with a
static aggregate; a scalar parameter with nonetatic range constraints initialized with a static value; and a record
parameter who" componients hav nonstalc constraints initialized with a static aggregate.

-p T66. Check that names of variables, calls to user-defined operators, calls to functions, and
allocators may be used in default expressions for formal parameters (cf. IG 6.1/T9).

T67. Check that a formal parameter of mode In and In out can have a limited type, including a
composite type (cf. IG 8.1/T 0).

Check that a formal parameter of mode out may be a limited private type only under ...%-

certain circumstances (see IG 7.4.4/1Ti).

Check that a formal parameter of mode out cannot be a task type (see IG 7.4.4/Ti).

T68. Check that a name referring to a formal parameter cannot be used later in the same formal
part (although a parameter's identifier can be used if it does not refer to the parameter)
(cf. IG 6.1/T11). -'

T69. Check that the Identifier of a single entry or an entry family cannot be used within its formal
part as a selector, as a component simple name in an aggregate, as a parameter name in .
a named association, or as a simple name in a default expression (cf. IG 6.1/T12).

170. Check that a formal In parameter cannot be used as the target of an assignment

9-27

0 , P " ,d' I . ,, 'J , .- >,",p " - . -S' p".- ,,. . " ,a . , I,. - " .

9.5 Entries, Entry Calls, and Accept Statements Version 1 (Dec 86)

f.%

statement, or as an actual parameter whose mode is In out or out, nor as a generc in out
actual parameter (see IG 12.3.1/T2) (cf. IG 6.2/T1). "N:"" i
Implementaion Guideline: Use a simple scalar in parameter, an array and a record In parameter (attempt to 1%
asign to a component of the parameter or to use a component as an out actual parameter), and an in
parameter having an access type.

171. Check that objects designated by In parameters of access types (including the object
selected by all) can be used as the target of an assignment statement and as an actual
parameter of any mode (cf. IG 6.2/T2).

172. Check that scalar and access parameters are copied for all three modes (cf. IG 6.2/13).
Implementaion Guideline: Check this with entry calls having the form F(AA) where the second parameter)s
an in out or out parameter. Assignments to the second formal parameter should not change the value of the
first formal parameter. nor should direct assignments to the actual parameter change the value of the
corresponding formal parameter.
Implementation Guideline: Check that if an exception is propagated from a subprogram. the values of the
actual scalar parameters are the values at the time of the calls, even if assignments were made to the formal
parameters before the exception was raised.

Check that a private type whose full declaration declares a scalar or an access type is
passed by copy for all modes (cf. IG 6.2/T3).

T73. Check that aliasing is permitted for parameters of composite types, e.g., a matrix addition
procedure can be called with three identical arguments (cf. IG 6.2/T4).

174. Check that the discriminant of an out formal parameter and its subcomponents may be
read inside the procedure, but not other component values (cf. IG 6.2/T6).
Check that 'FIRST, 'LAST, 'LENGTH, 'RANGE, 'ADDRESS, 'SIZE, 'POSITION, 'FIRST-
_BIT, and 'LAST BIT cannot be applied to an out parameter of an access type (nor to an
access subcomponent of an out parameter), but are allowed for an in or in out parameter
(cf. IG 6.2/'6).
Check that 'FIRST, 'LAST, 'LENGTH, 'RANGE, 'ADDRESS, 'SIZE, 'POSITION, 'FIRST-
-BIT, and 'LASTBIT can be applied to an out parameter or an out parameter
subcomponent that does not have an access type (cf. IG 6.2/T6).

Check that 'CONSTRAINED is not allowed for a parameter (of any mode) having an
access type. even if the designated type is a type with discriminants (cf. IG 6.2/T6).

Check that an out parameter or an out parameter subcomponent cannot be read or
% passed as an in or in out parameter (cf. IG 6.2/T6).

Check that an out parameter or an out parameter subcomponent having an access type
cannot be used in a selected component, an indexed component, or a slice (cf. IG 6.2/T6).
Implementation Guideline: Check in both expression and assignment contexts.

Check that no out parameter or out parameter subcomponent can be used as an in out
actual parameter (cf. IG 6.2/T6).
Che.k that an out parameter can be passed to another out parameter (cf. IG 6.2/T6).

175. Check that entry calls are allowed even if they do not assign values to scalar formal out
parameters or to scalar components of formal out prameters. No exceptions should be
raised, and no errors reported in compilation. (Warnings, however, are allowed) (cf. IG
6.2/T7).
Implementation Guideline: Do not refer to the values after the calls.

176. Check that an accept statement with and without a return statement returns correctly .
, ~~(cf. IG 6.3/T4). .,'"

t. 'f• .1

9-t28

% '% W .,% '*. f

WV-TWT .-I %.

Version 1 (Dec 86) 9.5 Entries, Entry Calls, and Accept Statements

177. Check that no exception handler part can be provided in an accept statement.
178. Check that an exception raised during the execution of an accept statement can be

handled inside the accept body.

179. Check that the form T.F0 is illegal for an entry call (cf. IG 6.4/T1). %

T80. For entries having no default parameter values, check that the number of actual positional
and named parameters must equal the number of formal parameters (cf. IG 6.4/T2).
Implementabon Guideline: Use calls that are valid except for the number of parameters. Check calls to single
entries and to entry family members. Use purely positional notation, purely named notation, and a combination
of positional and named notation.

Check that parameterless entries can be called with the appropriate notation (cf. IG
6.41T2). 'N
Check that the base type of formal and actual parameters must be the same (cf. IG
6.4/T"2).

Implementation Guideline: Check numeric types in particular.

T81. Check that for a mixture of named and positional notation, named parameters cannot
precede, or be interleaved with, positional parameters (cf. IG 6.4/T3).

*e Implementation Guideline: Use a call in which the types of all the formal parameters are identical. Check that
in a mixture of named and positional notation, a named parameter and a later positional parameter cannot be ,
specified for the same formal parameter.

Check that two or more named parameters cannot specify the same formal parameter -.

(cf. IG 6.4/T3).

Check that the name used in a named parameter must only be a name of a formal
parameter (cf. IG 6.4/T3).

Check that a formal parameter in a named parameter association is not confused with an
actual parameter identifier having the same spelling (see IG 8.3.efT3).

Check that a named parameter cannot be provided for a formal parameter if a positional
parameter has already been given for that formal parameter (cf. IG 6.4/T3).

T82. For entries having at least one default parameter, check that (cf. IG 6.4/T4):

e calls of the form T.F(A,,B) are forbidden, where the second formal parameter
has a default value;

* for a call using only positional notation, no parameters can be omitted unless
the default parameters are at the end of the parameter list;

e for a call using named notation, omitted parameters must have default values;

e for a call using named notation, regardless of the order of the actual
parameters, the correct correspondence with the intended formal parameter is
achieved.

T83. Check that the expression corresponding to an out or an In out parameter cannot be
(cf. IG 6.4.1/Tl): Si-.

* a constant, including an in formal parameter, an enumeration literal, a loop
parameter. a record discriminant, the literal null, and a number name;

* a parenthesized variable;

* a type conversion with a parenthesized variable;

9-29
I= r" -,

4.. -* 4 .4 4 4

9.5 Entries, Entry Calls, and Accept Statements Version 1 (Dec 86)

" a function returning a value of a record, array, private, scalar, or access type;

. an attribute; -

" an aggregate, even one consisting only of variables;

" a qualified expression containing only a variable name;

" an allocator;

" an expression containing an operator.

T84. For type conversions of a scalar variable as an In out parameter, check that (cf. IG
6.4.1/T3):

* NUMERICERROR is raised for numeric types: P

" before the call when the actual value lies outside the range of the formal
parameter's base type.

" after the call when the formal's value lies outside the range of the actual
variable's base type.

* CONSTRAINTERROR is raised:

* before the call when the converted value of the actual variable lies
outside the range of the formal parameter's subtype.

. after the call when the converted value of the formal parameter lies
outside the range of the actual variable's subtype. "

For a type conversion of an array variable as an In out or an out parameter, check that: '- -"

* CONSTRAINTERROR is raised before the call if: pV,

* the subtype constraints imposed on the actual variable's components
are not the same as the constraints imposed on the formal parameter's
components;
Implementation Guideline: Check conversion to both a constrained and an
unconstrained array type.

• for conversion of a non-null value to an unconstrained array type, an
index bound of the actual parameter, after conversion, does not lie -i
within the range of an index subtype of the formal parameter.

• for conversion to a constrained array type, the number of components
per dimension is not the same for the formal and actual parameters
when the actual variable is a non-null array, or the formal parameter
specifies a non-null array.

* NUMERICERROR is raised before the call for conversion to an
unconstrained array type if the value of a bound of the variable lies outside the
range of the corresponding index base type. 7.

,,-

For a type conversion to a constrained access type as an In out parameter, check that
CONSTRAINTERROR is raised:

* before the call if the value of the actual parameter is not null and the bounds
or discriminants of the designated object do not equal the
bounds/discriminants of the formal parameter.

9-30 :.5'.

• 'I . +' '=, ' ,. ,' ",, "., ' ,, , ',. - . . -. -. -. -. . - -. ,,, - -. .. % .. - . . - .= _ . .,, . . . ,.

Version 1 (Dec 86) 9.5 Entries, Entry Calls, and Accept Statements ,

Implementation Guideline: Check for both null and non-null array objects.

, after the call, if the value of the formal parameter is not null and the bounds or
discriminants of the designated object do not equal the bounds/discnminants
of the actual variable.,

T85. For calls not involving parameters having the form of a type conversion, check that
CONSTRAINTERROR is raised under the appropriate circumstances, namely (cf. IG
6.4.1/74):

" before the call, when the value of a scalar in or In out actual parameter does
not satisfy the range constraint of the formal parameter;

" after the call, when the value of a formal out or in out scalar parameter does
not satisfy the range constraint of the actual parameter at the time of normal
subprogram return;

" before the call, for all modes, when an actual record parameter has
discriminant values not equal to the discriminant values of the formal
parameter; :,
Implementation Guideline: In particular, try an unconstrained actual out parameter. ,

" before the call, for all modes, when an actual array parameter has different
bounds for one dimension than is required by the constrained formal I
parameter;
Implementation Guideline: Check for null arrays with index values that are outside the index .".

subtype.
Implementation Guideline: Check that null multi-dimensional actual parameters must have the
same bounds as the formal parameter.

9 for access types, when the index bounds of the object designated by the
actual variable do not equal the index bounds specified for the formal .-
parameter:

.5%

" before the call for In and in out parameters;
,/5%.=

" after the call for in out and out parameters. I

* for access types, when the discriminant values of the object designated by an P%
actual variable do not equal the discrlminant values specified for the formal
parameter:

" before the call for In and In out parameters;

" after the call for In out and out parameters.
Implementation Guideline: Check that within an accept statement, assignments to an %P
out parameter obey the constraints of the formal parameter, not the constraints of the
actual variable, when the constraints of the formal and the actual parameter are
different.

" after the call, when the discriminant values or index bounds associated with
the value of an unconstrained formal access out or In out parameter do not .- ',..
equal the constraint values of a constrained actual access parameter.

Check that when a private type is whose full declaration declares an access or a scalar -

type and is used as an out or an In out parameter, CONSTRAINTERROR is raised after
the call if the value of the formal parameter does not belong to the subtype of the actual
parameter.

9.31

9,5 Entries, Entry Calls, and Accept Statements Version 1 (Dec 86)

Check that CONSTRAINT ERROR is raised at the place of the call (i.e., within the caller, %
not within the called accept statement) in the above circumstances. ,-.

T86. Check that CONSTRAINTERROR is not raised under the appropriate circumstances. In
particular, check that no exception is raised (cf. IG 6.4.1/T5).

* at the time of call, for all modes, when the value of a scalar actual out
parameter does not satisfy the range constraints of the formal parameter; I.

Implementation Guideline: Check when the actual has the form of a type conversion as well as
the form of a variable name.

* at the time of call, for all modes, when an actual access parameter has the
value null and the formal parameter is constrained (even if the subtype of the
actual parameter does not match that of the formal parameter), when the
actual parameter has the form of a variable name or a type conversion;

" on normal return, for In out and out parameters, when the formal parameter
value is null and the actual parameter is constrained (even if the subtypes of
the formal and the actual parameters are not the same);

" for an in out or out parameter having an array type, when the formal
parameter is constrained and the actual parameter has the form of a type
conversion:

@corresponding dimensions of the formal and actual parameter have the
same number of components (for a non-null array), and the index
bounds of the actual parameter lie outside the index subtype of the
formal parameter.

e corresponding dimensions of the formal and actual parameter do not '0

have the same number of components, but the formal and actualparameter are both null arrays.

* for an unconstrained formal parameter having an array type when the actual
parameter has a null array value and its bounds lie outside the range of the
index subtype.

* for an out parameter having a constrained access type, before the call, when
the object designated by the actual parameter does not satisfy the formal
parameter's constraints. ,

T87. Check that unconstrained record, private, limited private, and array formal parameters use %
the constraints of the actual parameter (even when the default parameter value has a
constraint different from that of the actual parameter) (cf. IG 6.4.1/T6).
Implementation Guideline: For record, private, and limited private types having default discriminant constraints,
be sure to try an uninitialized constrained variable as an out actual parameter.
Implementation Guideline: Check that null strings can have negative bounds, and the bounds are passed
correctly. %

Check that assignments to (formal parameters of) unconstrained record types without
default constraints (i.e., for which T'CONSTRAINED is always true) raise CONSTRAINT-
_ERROR if an attempt is made to change the constraint of the actual parameter (by
making a whole-record assignment to the formal parameter).

Check that assignments to (formal parameters of) unconstrained record types with default
constraints (i.e., for which T'CONSTRAINED is true or false depending on its value for the
actual parameter) raises CONSTRAINTERROR if the actual parameter is constrained ."
and the constraint values of the object being assigned do not satisfy those of the actual %

9-32

Version 1 (Dec 86) 9.5 Entries, Entry Calls, and Accept Statements

parameter. Check that CONSTRAINT ERROR is not raised if the actual parameter is
unconstrained, even if the assignment changes the constraints of the actual parameter.
Implementation Guideline: Try a case where an actual parameter has the form of a type conversion.
Implementation Guideline: For both checks, include cases where the unconstrained record type is the full
declaration of a private or limited private type.
Implementation Guideline: Try these checks for nested procedure calls as well. i.e., where an unconstrained
formal parameter is used as an actual parameter in a subprogram call.

T88. Check that actual parameters are evaluated and identified at the time of call, e.g., use a
call of the form T.E(l, A(l)) where the parameters of E are out parameters, or use a name
with a function prefix (cf. IG 6.4.1/T7).

T89. Check that all permitted forms of variable actual parameters are permitted (cf. IG 6.4.1/T8). %
Implementation Guideline: Include a case when the variable is named by a dereferenced function. i.e.. by F.all.

T90. Check that slices and arrays that are components of records are passed correctly to
entries (cf. IG 6.4.1/T9).
Implementation Guideline: Use all parameter modes.
Implementation Guideline: Use multidimensional arrays.
Implementation Guideline: Use records with components whose bounds depend on a discriminant and have p."

more than one array component.
implementation Guideline: Use objects designated by access types.
Implementation Guideline: Be sure that arrays with different bounds can be passed to unconstrained formal
parameters.
Implementation Guideline: Pass a formal as an actual parameter.

T91. Check that type marks appearing in actual In out or out parameters must conform to the
type mark given in the formal parameter's declaration (cf. IG 6.4.1/Ti0). C.

Check that conformance is not required for in parameters (cf. IG 6.4.1/T10).Chraethatonmtdtye ar feseolsweermliil.)(n IG 642T)
T92. Check that default values of all types (including limited types) can be passed to a formalparameter. (Nonlimited types are tested elsewhere implicitly.) (cf. IG 6.4.2MT). '

Check that CONSTRAINTERROR is raised for a default expression, if appropriate (seeI G 9.5/T85)..,'
Ig.

Check that an aggregate with an others choice can be used as a default value for a
parameter with a constrained array subtype (see IG 4.3.2/T4).

T93. Check that default expressions are evaluated each time they are needed (cf. IG 6.4.2/T2).

T94. Check that subprogram and entry redeclarations are forbidden. Use two entries and an ','

entry and a procedure declared in the same declarative region that are identical except for
one of the following differences (see IG 6.6/Ti):

" the parameters are named differently (differences in parameter names are
ignored).

" the subtypes of a parameter are different (differences in subtype names are
ignored if the base types are the same).

" the parameter modes are different; also try reordering the parameters and
changing their modes.

" a default expression is present/absent (the presence or absence of a default
expression does not affect the parameter profile).

Check that an entry family name is not overloadable. In particular, check that the
declaration of two entry families with different index types and different formal parameters

N7

-'C

, ,'

9.6 Delay Statements, Duration, and Time Version 1 (Dec 86)

is not allowed it the entry families have the same identifier, nor can an entry family and
single entry have the same identifier. . %

Check that a procedure cannot be du(lared in a task body with the same identifier as that
of an entry family.
Implementation Guideline: Include procedures declared by a subprogram declaration, renaming declaration.
and generic instantiation. Include a check when the task body is declared as a subunit.

Check that the declaration of an entry family hides outer declarations of subprograms and
other entities having the same identifier.

T95. Check that overloaded subprogram/entry declarations are permitted in which there is a
minimal difference between the declarations. In particular, use declarations that differ in
only one of the following aspects (cf. IG 6.6/T2):

" one is a function; the other is an entry.
Impiementation Guideline: Try parameterless functions and entries as well as functions and
entries having at least one parameter.

" one subprogram/entry has one less parameter than the other (the omitted
parameter may or may not have a default value).

" the base type of one parameter is different.

" a subprogram is declared in an outer declarative part, an entry is declared in a
task, and

* the parameters are ordered differently.

* one subprogram/entry has one less parameter than the other, and the
omitted parameter has a default value.

9.6 Delay Statements, Duration, and Time
Semantic Ramifications

s1. No upper limit is imposed on the actual duration of a delay specified in a delay statement.
However, the rule in RM 9.8/4 ensures that if a high priority task executes a delay statement, it
will regain control at the first opportunity after its delay has expired.
S2. The semantics of a delay statement are affected by whether it is used in a selective wait or
a timed entry call (see RM 9.7). RM 9.6/1 gives the semantics of delay statements that are not
part of a selective wait or a timed entry call.
S3. When TIMEOF is called with a seconds value of 86_400.0, the effect can be the same as
if TIMEOF had been called with the next day and a seconds value of 0.0. To see this, consider
the following statements:

NOW1 TIMdEOF (1984, 5, 25, 0.0);
NOW2 := TIbcOF (1984, 5, 24, 86400.0);

NOW1 and NOW2 denote the same instants of time. Although the RM does not demand it, it
would be reasonable for SPLIT to produce the same values for SPLIT(NOW1) and
SPLIT(NOW2). In particular, most users would expect SPLIT(NOW2) to produce DAY = 25 andSECONDS = 0.0. :

s4. Because DURATION is a predefined fixed point type (see Annex C), the following fixed
point declaration must be allowed: ". -.

9-34

ep
p.'

.%

Version 1 (Dec 86) 9.6 Delay Statements, Duration, and Time

type FP is delta DU ATION'SZALL range DUP.ATION'FIRST .. DURATION'LAST; %"

Since values of type DURATION require at least 24 bits, this means an implementation must
support fixed point values occupying at least 24 bits.
Changes from July 1982

S5. Conditions under which TIMEERROR is raised are stated and, in particular, expanded so
"" and "-" are expected to raise this exception under certain conditions.

S6. The subtype, DAYDURATION, has been declared.
S7. The function, SECONDS, has been restricted to returning non-negative values that do not
exceed 86_400.0.
s. The procedure SPLIT must return a SECONDS value that is in the range 0.0 .. 86_400.0.
sq. The TIME OF function only accepts a SECONDS value that lies in the range 0.0
.. 86_400.0.

Changes from July 1980

s10. The maximum value of DURATION'SMALL is specified.
Sl 1. The subprograms SPLIT and TIMEOF have been defined.
s12. Ordering operators are defined. 4
S13. The subtypes YEARNUMBER, MONTHNUMBER, DAYNUMBER, and DAY-
_DURATION are defined.

S14. Functions for determining the year, month, day, and seconds components of a TIME value
are defined.

Legality Rules

Li. The simple expression in a delay statement must have the predefined type DURATION.
Exception Conditions

.5-

El. TIMEERROR is raised by (RM 9.6/6):

" the function TIME OF if the actual parameters do not form a proper date, i.e.,
if the month and day are any of the following: 2/29 in a nonleap year, 2/30,
4/31, 6/31, 9/31, 11/31.

* . the operator "+" if the value returned would lie outside the range January 1,
1901 through December 31, 2099.

" the operator "-" if the value returned would lie outside the range January 1,
1901 through December 31, 2099 or if the difference in times does not lie in
the range of DURATION values.

E2. CONSTRAINTERROR is raised by:

* TIMEOF if the value of the YEAR parameter does not lie in the range 1901
2099, or the value of the MONTH parameter does not lie in the range I .. 12,

or the value of the DAY parameter does not lie in the range 1 .. 31, or the
value of the SECONDS parameter does not lie in the range 0.0.. 86_400.0.

* +" and "-" if called with a value of type DURATION that does not lie in the ..
-. *~p* range DURATION'FIRST.. DURATION'LAST, but does lie in the range of the

base type.

9-35

9.6 Delay Statements, Duration, and Time Version 1 (Dec 86)

4.,%

Test Objectives and Design Guidelines

T1. Check that a delay statement delays execution for at least the specified time. .,

Implementation Guideline. Check the elapsed time by using the CLOCK function. Use small delay values.
e.g.. less than 90 seconds.

Check that a negative delay is accepted.

T2. Check that the argument to the delay statement must have the type DURATION. "'
Check that the "+ function does not accept two arguments of type TIME.
Check that the "-" function does not allow a value of type TIME to be subtracted from a

value of type DURATION.
T3. Check that the YEAR, MONTH, and DAY parameters of TIMEOF do not have default

values.
Check that the DATE parameter of SPLIT does not have a default value.

Check that the DATE parameters of YEAR, MONTH, DAY, and SECONDS do not have
default values.

T4. Check that YEARNUMBER, MONTHNUMBER, DAYNUMBER, and DAYDURATION
have the correct range constraints. ,

T5. Check that addition and subtraction of values of type TIME yields the correct results when
no exception is raised by the call.
Implementation Guideline: Check for values lying within a month, for values lying in different months, and for
values lying in different years. The tests should take into account the fact that the range of DURATION is
implementation dependent. Calls to + and *-* may raise CONSTRAINT ERROR if an out-of-range
DURATION value is used. A call to - can raise TIMEERROR if an out-of-range DURATION value is
returned.
Implementation Guideline: Check for time intervals that include the end of February in leap and nonleap years.

Check that "-" raises TIMEERROR (not CONSTRAINTERROR) when the value returned
does not lie in the range of DURATION'FIRST.. DURATION'LAST.
Implementation Guideline: Check both bounds of DURATION.

Check that "+" and "-" raise CONSTRAINTERROR when called with a value that is
outside the range of DURATION'FIRST .. DURATION'LAST but within the range of
DURATION'BASE'FIRST.. DURATION'BASE'LAST. . -.

Implementation Guideline: Such a value may not exist, in which case NUMERICERROR must be raised.

Check that TIMEERROR is raised if "+" or "-" attempts to produce a value whose year
number is less than 1901 or greater than 2099.

T6. Check that comparisons are performed correctly, including equality comparisons.
Implementation Guideline: Check that no exceptions are raised even when companng TIME values at the
extremes of the permitted range.

17. Check that TIMEOF raises TIMEERROR for invalid dates: 2/29 in a nonleap year, 2/30,
4/31, 6/31, 9/31, and 11/31.

Check that TIME OF raises CONSTRAINT ERROR if the year, month, day, or seconds
arguments lie outside the specified ranges for the formal parameters.

T8. Check that TIMEOF and SPLIT are inverse functions, except that when SECONDS has
the value 86_400.0 for TIMEOF, SPLIT (and DAY) should produce a value that is one day
later with zero SECONDS.

Check that the formal parameters of TIME OF and SPLIT are named correctly. . -.

9-36 %4

Version 1 (Dec 86) 9.7.1 Selective Waits

V s n (c 6
Check that TIMEOF gives SECONDS a default value of 0.0.

"V. Check that the functions YEAR, MONTH, DAY, and SECONDS return correct values. .-

Check that the formal parameter of YEAR, MONTH, DAY, and SECONDS is named DATE.

Check that the value returned by CLOCK can be processed by SPLIT.

Check that DURATION'SMALL does not exceed 0.020 seconds.

9.7 Select Statements

9.7.1 Selective Waits
Semantic Ramifications

si. A delay statement used as a select alternative has different semantics than a delay S
statement used by itself. In particular, in a selective wait, a delay statement means a task is
intended to wait at most for the specified time, whereas when used by itself, it means a task
must wait at least the specified time.

S2. A selective wait with a zero (or negative) delay means the delay alternative is selected if
there are no tasks queued at open accept alternatives. If the only open alternative is a delay
alternative, then the statements of the delay alternative cannot be executed until the delay has
expired.

S3. The accept alternatives need not mention different entries of the task. If two accept
alternatives are open for the same entry, then one is chosen arbitrarily. Since the same entry
can be mentioned several times in a single selective wait statement, it is important that the
queue for an entry not be associated with accept alternatives, but instead, be associated directly
with the entry. ,,

S4. If several delay alternatives specify only slightly differing delay values, an implementation is
not required to select the shortest:

select S
accept E;

or
delay 1.0:
PROCM;

or
delay 1.0 + DURATION'SMALL- 0
PROC2;

end select;

The condition for selecting an open delay alternative is that "the specified delay has elapsed"
(RM 9.7.1/8). If SYSTEM.TICK Is greater than DURATION'SMALL, it is certainly possible that
both delays specified above will have elapsed between consecutive readings of the clock. In
such a case, either alternative can be selected. Similarly, if a select statement is in a low
priority task, then the delays specified by several alternatives might expire before the task is
actually chosen for execution, at which time, any of the expired delay alternatives can be
executed.

5. If tasks with different priorities are queued on different open alternatives of a selective wait
statement, RM 9.8/4 does not require that the task having the highest priority be accepted, since
none of the queued tasks Is "eligible for execution" until the scheduler has decided which call to

9-37
,"0 . i1

WU WW~ WVUW-Nq-XWU ~RY -.J F5 F - ' P rA ,A " WN %r V TV L' w -,-V .

- 9.7.1 Selective Waits Version 1 (Dec 86)

accept. The choice of entry calls is "arbitrary" (RM 9.7.1/6), and, until the choice has been
made, none of the waiting tasks is eligible for execution. Of course, an implementation is
allowed to take the priorities of the waiting tasks into consideration when making its "arbitrary" -
choice, but the RM does not require this.
S6. If a selective wait statement contains conditions, delays, and entry family indexes in accept
alternatives, then the RM Imposes no order of evaluation on these expressions, except that
delay expressions and entry indexes must not be evaluated for closed alternatives (RM 9.7.1/5),
e.g.:

select
when F1=>

accept E(F2);
or

when F3 =>
delay F4;

end select;

The following are the permitted orders of evaluation, where Flit means that F1 is evaluated and
that it returns the value TRUE, and Fif means that F1 returns the value FALSE:

Fit, F2, F3t, F4
Fit, F2, F3f
Fit, F3t, F2, F4
Fit, F3t, F4, F2
Fif, F3t, F4
Flf, F3f
F3t, F4, Fit, F2
F3t, F4, Flf
F3t, Fit, F4, F2
F3t, Fit, F2, F4
F3f, Fit, F2 S,

F3f, Fif

S7 Since terminate is not a statement, it can be used only in a selective wait.
S8. Since a selective wait must contain at least one accept statement (RM 9.7.1/3), and since -"
accept statements for an entry of a particular task cannot appear outside the task's body or "
inside subprograms, packages, or tasks nested In the task's body (RM 9.5/8). a selective wait ,'
statement similarly cannot appear in these places.

Changes from July 1982

S9. It is stated explicitly that if several open delay alternatives can be selected, then one is
selected arbitrarily.
S10. Selective waits with a terminate alternative are now allowed in inner blocks that declare
task objects.

Changes from July 1980
I..

Sl 1. An entry index or a delay alternative no longer need be evaluated immediately after the
condition specified in a guard.

S12. PROGRAMERROR is raised instead of SELECTERROR when all alternatives are
closed and there is no else part.

'.. ;.,

9-38

",rz. --. -,-

Version 1 (Dec 86) 9.7.1 Selective Waits

Legality Rules
%. 1L1. At least one selective wait alternative must be an accept alternative (RM 9.7.1/3).

L2. At most one terminate alternative is allowed in a selective wait (RM 9.7.1/3).
L3. The innermost program unit (package, subprogram, or task) enclosing a select statement

must not be a package or a subprogram, nor can it be a task that does not contain an entry
or an entry family member named by an accept alternative (RM 9.7.1/3 and RM 9.5/8).

L4. If a selective wait occurs within an accept statement, then the accept statement must not
be for a single entry or an entry family that is also named by an accept alternative (RM
9.7.1/3 and RM 9.5/8).

L5. At most one of a single terminate alternative, one or more delay alternatives, or an else
part, is allowed in a selective wait statement (RM 9.7.1/3).

Exception Conditions

El. PROGRAMERROR is raised if all alternatives are closed and there is no else part (RM..
9.7.1/11).

Test Objectives and Design Guidelines

Ti. Check that a selective wait statement must end with end select and not just end or end
followed by an identifier. ,".-,

Check that a label cannot be placed at the beginning of an accept alternative or a delay
alternative.

T2. Check that a selective wait statement must contain at least one accept alternative.
T3. Check that the innermost unit enclosing a selective wait statement must not be a

subprogram or a package (even when the selective wait names an entry of an enclosing
task), or a task that does not contain an entry named by an accept alternative.
Implementation Guideline: Include a selective wait that names some entries of an enclosing task and some
entries of an outer task body.

Check that within a selective wait statement, an accept alternative is not allowed to name
the single entry or the entry family specified in an enclosing accept statement.

T4. Check that terminate may not be used outside a selective wait.
T6. Check that more than one select alternative may start with a delay statement. "-*

17. Check that more than one terminate alternative is not allowed.
T8. Check that more than one else part is not allowed.

T9. Check that a terminate alternative and an else part are not both allowed in the same
selective wait.

T10. Check that a terminate alternative, and an alternative starting with a delay statement, are
not allowed in the same selective wait. S

T1 1. Check that an else part and an alternative starting with a delay statement are not allowed
in the same selective wait.

T12. Check that a delay statement is allowed in the sequence of statements of a select
alternative of a selective wait containing a terminate alternative or an else part.

T1 3. Check that all conditions, open delay alternative expressions, and open entry family
indexes are evaluated.

..-39'

:S'

w•.n

9.7.2 Conditional Entry Calls Version 1 (Dec 86)

Implementation Guideline: Have an accept alternative without a condition. Ensure that the corresponding entry
has been called, for example as follows:

w,-ile E'COUT = 0 loop delay 5.0; end loop;
select

accept 2: P
or when F() -> 4

end select;

T1 4. Check that for a guarded delay alternative, the delay expression is evaluated only if the
guard is true. d
Implementation Guideline: Report whether the delay expression is evaluated immediately after the guard is I,evaluated.-: ,

T1 5. Check that for a guarded accept alternative for an entry family, the entry index is evaluated
only if the guard is true.
Implementation Guideline: Report whether the index expression is evaluated immediately after the q.jard is
evaluated.

T16. Check that the conditions are not reevaluated during the wait. .1
Implementation Guideline: Write a select statement with a delay alternative and all other alternatives closed.
Call functions in the guards and delay expression that can tell when the last function has been evaluated.
When the last function is evaluated, allow another task to proceed and to change a variable whose value
affects a guard. I

T17 Check that PROGRAMERROR is raised if all alternatives are closed and no else part is
present.
Check that an else part is executed if all alternatives are closed or if there are no tasks
queued for open alternatives.
Implementation Guideline: Include a case where there is a task queued for a closed alternative. ;:'. '*:.;

Check that an else part is not executed if a task is queued at an open alternative.
T1 8. Check that a call to a closed alternative is not accepted.

T19. Check that a terminate alternative is only selected under the correct conditions (see lG
9.4/T8).

T20. Check that a selective wait delays at least as long as is specified in a delay alternative.
Check that if a specified delay is zero or negative and an entry call is waiting at an open
alternative when the selective wait is executed, the call is accepted.

9.7.2 Conditional Entry Calls
Semantic Ramifications

St. A conditional entry call is canceled if a rendezvous is not "immediately" possible. RM
9.7.2/4 indicates in what sense a call is Immediately possible, i.e., the called task has reached
an accept statement for the entry or a selective wait statement with an open accept alternative
for the entry. This paragraph shows that "immediately" is not to be interpreted as "within zero
seconds," but instead, is dependent only on the computational state of the called task. When
the called task is executing a selective wait, more than one accept alternative might be open,
and more than one task might be able to be accepted. In such a case, a conditional call need
not be accepted in preference to a call waiting at a different accept alternative.

S2 In general, the calling task must wait at least until it can be determined whether the called .
task is both able to accept the call and has decided to accept it. In a distributed system, if the .' -**

9-40

=. % % % - - ,, - - . .% '

'=4' " #' . • " • " "= ", . • .. " " % . "- .= . , #I

._,.,-= _,: , ,-: .- : < . ,,,- 4. ,,-,-...-.. , . . . ,-..... . . -.. ...-. '

Version 1 (Doc 86) 9.7.2 Conditional Entry Calls

called task is running on a different computer, the calling task might have to wait longer before
knowing whether the conditional call will succeed than would be the case when the called task .,

is running on the same computer.

S3. In short, acceptance of a conditional call is independent of the length of time required to .
decide if the call can be accepted; acceptance is only dependent on the state of the called task.

s4. The calling task in a conditional entry call Is never entered in any queue of the called task,
since entry in a queue would imply the call could not be accepted "immediately."

S5. Since the name in an entry call statement is required to be the name of an entry (i.e., a
name declared by an entry declaration; see RM 9.5/4), if an entry is renamed as a procedure,
the procedure name cannot be used as an entry name in a conditional entry call. This fact can
be used in helping to resolve an overloading of the entry name (see IG 8.7.a.2/S).

Similarly, an entry declaration is not allowed as a generic formal declaration, and the name of a
formal procedure (or function) cannot be used as an entry name in a conditional entry call even ,.,
if the actual parameter is an entry name. 9

Changes from July 1982

S6. Evaluation of an entry name is required (rather than evaluation of just the entry index).

Changes from July 1980

s7. TASKINGERROR is raised by a conditional entry call if the called task is completed or
has been aborted.

se. The conditions under which a rendezvous is "immediately possible" are now stated
explicitly.

Legality Rules

L1. If an entry has been renamed as a procedure, the procedure name is not allowed at the
place where an entry call is required in a conditional entry call (RM 8.5/9).

1.2. A formal procedure parameter of a generic unit is not allowed at the place of an entry call
statement in a conditional entry call (even if an actual parameter is the name of an entry)
(RM 9.5/4). S

Exception Conditions

El. TASKING ERROR is raised if the called task has already completed its execution (RM
9.7.2/6) or if the called task has been aborted (and so is abnormal) (RM 9.10/7).

Test Objectives and Design Guidelines o

Ti. Check that if a rendezvous requested by a conditional entry call cannot be performed
"immediately," then the call is not performed. Check at least the following:

" the called task has not yet been activated;

" the queue for the called entry already contains another task; S

" an accept statement for the called entry has not yet been reached.

* the body of the task containing the called entry does not contain any accept
statement for that entry;

* the corresponding accept statement is permanently or temporarily closed; S
.- r*,- .., 4.

* the only accept statement for the called entry appears in a selective wait with .,

an else part (that is, the called task also refuses to wait).

9-41 .4.

P,

9.7.3 Timed Entry Calls Version 1 (Dec 86)

Implementation Guideline: Check that the else part is executed when the call is not accepted.
T2. Check that whenever an index is present, it is evaluated before any parameter

associations are evaluated and beforg a rendezvous is attempted. :-'
Implementation Guideline: Create a task without a corresponding accept statement (then the rendezvous will
never be possible).

T3. Check that a conditional entry call can appear in places where a selective wait is not
allowed.
Implementation Guideline: Try procedure bodies, package bodies, and task bodies nested in tasks.

T4. Check that TASKINGERROR is raised if the called task has already completed its
execution when the conditional entry call Is executed, or if the called task is aborted prior to
the call.

i Implementation Guideline: In the aborted case, abort the task when a function in the entry call is called.

T5. Check that if the rendezvous is immediately possible it is performed.
Implementaton Guideline: There are two cases: when the called task is executing an accept statement, and
when the called task is executing a selective wait. Use an entry family for one case.

When a call is accepted, check that the statements after the call in the conditional entry call
are executed.

T6 Check that if an entry is renamed as a procedure, the procedure name cannot be used in a
conditional entry call as the name of the entry.

Check that the name of a formal procedure cannot be used in a conditional entry call as
the name of the entry (see IG 12.1.3/T6).

9.7.3 Timed Entry Calls
Semantic Ramifications % R

st. The RM specifies (RM 9.7.3/3) that in a timed entry call, the entry index is first evaluated, "
followed by the actual parameters (it any), and finally by the delay expression.

S2. There is no requirement to cancel the entry call within a minimal amount of time after the -.

delay has expired. The RM only says that the call is canceled after expiration of the delay.
Thus, if an implementation takes a certain amount of time to decide whether a timed entry call
can be accepted, this amount of time can be taken even if the specified delay is zero or
negative. On the other hand, an implementation might decide that if the delay is sufficiently
small, no call can be accepted within that amount of time. A permissible optimization is to
simply delay for that length of time. Consequently, even if the called task has reached an
accept statement for the called entry, it is implementation-dependent whether the call will be
allowed if the delay expression is less than some small value.
S3. In contrast, the execution of a conditional entry call must take at least long enough to
determine whether the called task Is able to accept the call. This means that a conditional entry
call may succeed where a timed entry call with a small delay will fail. (See also IG 9.7.2/S.).
S4. Since the name in an entry call statement is required to be the name of an entry (i.e., a
name declared by an entry declaration; see RM 9.5/4), if an entry is renamed as a procedure,
then the procedure name cannot be used as an entry name in a conditional entry call. This fact
can be used in helping to resolve an overloading of the entry name (see IG 8.7.a.2/S).
Similarly, since a generic subprogram declaration can only declare procedures or functions, the
name of a formal procedure (or function) cannot be used as an entry name in a conditional entry .,.
call. " "

9-42

% q , . . % . .. o, ". d , . , , ," ."I. .. , ' V . • . .. ,

Version 1 (Dec 86) 9.7.3 Timed Entry Calls

Changes from July 1982

ss. Evaluation of an entry name (not just an entry index) is now required.

Changes from July 1980

S6. TASKINGERROR is raised if the called task is completed or aborted before the expiration
of the delay.

Legality Rules

L1. If an entry has been renamed as a procedure, the procedure name is not allowed at the
place where an entry call is required in a conditional entry call (RM 8.5/9).

L2. A formal procedure parameter of a generic unit is not allowed at the place of an entry call.A
statement in a conditional entry call (even if an actual parameter is the name of an entry)
(RM 9.5/4).

Exception Conditions

El. TASKINGERROR is raised if the called task is completed at the time of the call or
completes its execution before the call is accepted (RM 9.7.3/6).

E2. TASKINGERROR is raised if the called task is aborted before the call is accepted (or
while performing the rendezvous) (RM 9.10/7). p

Test Objectives and Design Guidelines

T1. Check that a timed entry call delays for at least the specified amount of time if a
rendezvous is not possible. Check at least the following conditions:

a the called task has not yet been activated;

*the queue for the called entry already contains another task whose
rendezvous cannot be completed within the specified delay (e.g., because the
rendezvous contains a delay statement);

* an accept statement for the called entry has not yet been reached;

* the body of the task containing the called entry does not contain any accept I
statement for that entry;

* the corresponding accept statement is permanently or temporarily closed;

e the only accept statement for the called entry appears in a selective wait with ,p.
an else part (that is, the called task refuses to wait).

Implementation Guideline: Check that the delay is at least for the specified time by calling CLOCK before and
after the timed entry call.

T2. Check that whenever an index is present it is evaluated before any parameter associations
are evaluated, and the parameter associations are evaluated before the delay expression.
Then a rendezvous is attempted.
Implementation Guideline: Create a task without a corresponding accept statement (then the rendezvous will
never be possible).

T3. Check that a timed entry call can appear in places where a selective wait is not allowed.
Implementation Guideline: Try procedure bodies, package bodies, and task bodies nested in tasks.

T4. Check that TASKINGERROR is raised if the called task has already completed its
execution when the timed entry call is executed, or if the called task is aborted prior to the
call.

.

9-43 %
I

.:...-:

9.8 Priorities Version 1 (Dec 86)

Implementation Guideline: In the aborted case, abort the task when a function in the entry call is called.

T5. Check that if the rendezvous is immediately possible (and the delay is lengthy, e.g., more
than 10 seconds), then the rendezvorj-, is performed.
Implementation Guideline: There are two cases: when the called task is executing an accept statement, and
when the called task is executing a selective wait. Use an entry family for one case.

When a call is accepted, check that the statements after the call in the entry call are
executed.

Check also, that if a call is not immediately possible, but becomes possible before the
delay expires, the call is accepted.

T6. Check that if an entry is renamed as a procedure, the procedure name cannot be used in a
timed entry call as the name of the entry.
Check that the name of a formal procedure cannot be used in a conditional entry call as
the name of the entry (see IG 12.1.3/T6).

17. Check that a canceled entry call is removed from the queue of the called task's entry.
Implementation Guideline: Create a queue with a normal call, two timed calls, and a normal call, and check
that the appropriate calls are accepted if one or both of the timed calls are canceled.

9.8 Priorities
Semantic Ramifications

s . Since RM 2.8/9 states that a pragma "has no effect ... if its placement or its arguments do
not correspond to what is allowed for the pragma," the pragma PRIORITY is ignored if it is used
in an inappropriate place or has a nonstatic argument. The program is not illegal. A friendly
compiler will warn a user when a pragma is ignored.
S2. If the value specified in a pragma PRIORITY lies outside the range of permitted pdority N
values, no exception is raised, since such a value does "not correspond to what is allowed for t
the pragma." Similarly, if a nonstatic expression is used, it is not evaluated.
S3. Although the RM requires that the argument to the pragma PRIORITY be a static integer
expression, the RM leaves completely open how an implementation chooses to define the
subtype PRIORITY. In particular, the subtype could be defined as a null range, so no value
would be recognized as a suitable priority value. An implementation is even free to define
PRIORITY as a nonstatic subtype, although this might make it difficult to decide when the
pragma should be ignored.

S4. Even if no user-defined priorities are supported (by making subtype PRIORITY a null
range), it is still required that entry calls associated with interrupts be treated with a higher

* priority than other calls (RM 13.5.1/2).

S5. If 'asks with different priorities are queued on different open alternatives of a selective wait
statement, RM 9.8/4 does not require that the task having the highest priority be accepted, since
neither task is "eligible for execution" until the scheduler has decided which call to accept. The
choice of entry calls is "arbitrary" (RM 9.7.1/6), and until the choice has been made, none of the
waiting tasks is eligible for execution. Of course, an implementation is allowed to take the
priorities of the waiting tasks into consideration when making its "arbitrary" choice, but the RM
does not require this.

S6. If tasks of different priorities are queued for the same entry, their requests for rendezvous
are serviced in the order of arrival (RM 9.5/15); higher priority tasks are not serviced first unless
they arrived first. .-' -

9-44 "

Version 1 (Dec 86) 9.8 Priorities

S7. It is possible for a high priority task to be blocked by the activation of a lower priority task. J"
For example:

task type LOW is
pragma PRIORITY (PRIORITY'FIRST); -- least urgent

end LOW;
d

type ALOW is access LOW;

task body LOW is
-- activation actions here

begin ... end LOW;
4

task NED is
pragma PRIORITY (PRIORITY' FIRST+1);

end NED;

task body NED ... end MED;

task HIGH is
pragma PRIORITY (PRIORITY'LAST); -- most urgent

end HIGH;

task body HIGH is
X LOW : A LOW :=new LOW; -- (1) .1:'

. .-- (2)
* , begin ... end HIGH;

Tasks MED and HIGH are to be activated. Since HIGH has the highest priority, its activation
starts first. Among Its first activation actions is the activation of the low priority task at (1) via an
allocator. The activation of HIGH cannot proceed until LOW is activated (RM 9.3/6). But since
task MED is also awaiting activation, and since MED has a priority higher than that of LOW, RM
9.8/4 requires that the activation of LOW be suspended (and hence, the activation of HIGH be
delayed) in favor of beginning the activation of MED. Assuming that MED does not require the
activation of any tasks before completing its own activation, the activation of LOW will only
resume when MED is fully activated. In short, since tasks are not activated with the priority of
their master, it is possible for a high priority task's activation to be delayed by the need to
activate a lower priority task.
ss. RM 9.8/6 says priorities should not be used for task synchronization. This means that
programmers should not assume that tasks with different priorities each have exclusive access
to a shared variable because only one task can be running. Although this reasoning may be
correct for a particular Ada implementation, it is not correct for all implementations, since
priorities have no effect if each task executes on its own CPU.
sg. Priorities have no detectable semantic effect when there is no competition for resources,
i.e., when the number of tasks eligible to run never exceeds the available resources.
Consequently, it is not possible to write implementation-independent tests to check whether
priorities are being obeyed.
Changes from July 1982

S10. The pragma PRIORITY is allowed in any library unit subprogram and is ignored if this
subprogram is not used as a main program.

9-45 '

% .. 'n ,..'

-73 a. W

9.9 Task and Entry Attributes Version 1 (Dec 86)

Changes from July 1980

si 1. There are no significant changes. ,

Test Objectives and Design Guidelines

Ti. Check that if the expression In a pragma PRIORITY is static, and is outside the range of
the subtype PRIORITY, no exception is raised.

Check that if the expression In a pragma PRIORITY Is nonstatic, it is not evaluated (since
the pragma has no effect).

T2. When calls are queued on several open alternatives of a select statement, check to see if
priorities seem to be considered in deciding which call to accept.

T3. Check to see if a rendezvous is executed with the priority of the calling task instead of with
the priority of the called task.
Implementaion Guideline: If this check appears to indicate that the rendezvous is not executed with the correct
priority, then an implementation's scheduling algorithm should be examined more carefully to see ;f it conforms
to RM 9.8/4. Any test written for this objective may report failure if there is, in fact, no contention for resources,
since in this case, priorities have no effect.

9.9 Task and Entry Attributes "
Semantic Ramifications

si. The prefix of the 'CALLABLE and 'TERMINATED attributes may be a task object (i.e., an
object declared by an object declaration or the declaration of a formal parameter of a
subprogram, entry, or generic unit, or a subcomponent of such an object) or it may be a value . . -
(i.e., a value returned by a function call, or subcomponent of such a value). The prefix may also
have an access type if the designated type is a task type (RM 3.8.2/3).

S2. The definition of 'COUNT in RM 9.9/6 says simply that it returns "the number of entry calls
presently queued on the entry (denoted by the prefix].* Now suppose entry family E has one
task waiting on E(1) and one waiting on E(O). Consider the following uses of the 'COUNT -
attribute: Pk

accept E(I(1)'COUNT) do -- (1) which call is accepted?
if E(1)'COUNT - 1 then -- (2) is the condition TRUE?

When the first accept statement is evaluated, E(1)'COUNT equals 1, since there is one call
waiting. so the call for entry E(1) is accepted. Once this call is accepted, there is no longer a
call waiting in the queue, so E(1)'COUNT now equals zero. Consider the parenthesized
comment in RM 9.9/6: "(if the [COUNT] attribute is evaluated by the execution of an accept
statement for the entry, then the count does not include the calling task)." This comment '.

applies to the use of the 'COUNT attribute at point (2), since the syntax of an accept statement
includes the sequence of statements following do, and since the calling task is no longer in the
queue. It is not a correct statement of the rule for the use at (1), since when the attribute is
evaluated at (1), no calling task has been removed from any queue - the evaluation simply
serves to determine which queue should be considered.
S3. If an entry is renamed as a procedure, then the new name cannot be used as the prefix of
the 'COUNT attribute, since It Is considered the name of a procedure (RM 8.5/9). On the other
hand, if a task is renamed, the new name can be used as a prefix for the 'CALLABLE and
'TERMINATED attributes.

S4. The prefix of the 'COUNT attribute must be the name of an entry in an enclosing task unit. :[:
It cannot be the name of an entry of a task object:

9-46

Version 1 (Dec 86) 9.9 Task and Entry Attributes

Ip

task type T is
entry E; I

end T.; .

OBJ : T;

task body T is
CNT INTEGER;

begin
CNT OBJ.E'COUNT;

-- illegal prefix
CNT T.E'COUNT; -- legal prefix
CNT E'COUNT; -- legal prefix

end T;

OBJ.E is an illegal prefix because OBJ is not the name of an enclosing task unit; it is the name
of an object. On the other hand, since T is the name of the enclosing task unit, T.E is just an S
expanded name for an entry of the enclosing unit, and so this prefix is okay.

s5. If X is a task object, then X'SIZE returns the size needed to hold a value that designates a
task, i.e., it does not return the size of the designated task. If X is declared as a single task, i.e.,
with the declaration task X, then X denotes an implicitly declared task object (see RM 9.1/2), -/

and X'SIZE returns the size of this implicitly declared object.

s6. If T is the name of a task type, then T'SIZE returns the minimum number of bits needed to
hold any value that designates a task having type T. .,

S7. Within the body of a task type, the task's identifier denotes a task object (RM 9.1/4), and so
T'SIZE is allowed and returns the size of the task object whose designated task is currently
executing the task body.
ss. If X Is a task object, X'ADDRESS returns the address of the object designating a task, not
the address of the task's machine code. If X is declared as a single task, then X'ADDRESS
returns the address of the Implicitly declared object associated with the task's declaration.

sq. Outside the body of a task type, T, the task's Identifier denotes a task type as well as a task
unit. Since T'ADDRESS is not legal for a task type, it returns the address of the machine code
for T's body. Within the body ot T, T is used as both the name of the object executing the body
and as the name of the enclosing task unit. Within the body, T'ADDRESS should be interpreted
as the address of the enclosing unit. a .

sio. The prefix of 'SIZE cannot be either the name of a function or a function call. A function
call is not allowed because such a call produces a value, not an object. A function name (i.e., a
prefix having the form of a parameterless function call) is not allowed since it cannot be invoked
(it would produce a value) and since the name itself Is not the name of an object.

si. If a prefix, P, is an object of an access type whose designated type is a task type, then
P'STORAGESIZE yields the collection size for P's type, not the number of storage units
reserved for the activation of the designated task object. P.all'STORAGESIZE, however, does
return the number of storage units reserved for the designated task's activation.

S12. Prior to a task's activation, T'CALLABLE is TRUE and T'TERMINATED is FALSE:

task T; ",.
B1 : BOOLEAN :- T'CALLABLE; -- yields TRUE
B2 : BOOLEAN T'TERMINATED; -- yields FALSE

9-4

9.47 ."1

Ii

- S=

; ".L-. Z L ,.,. - ..- / .: v.. , .-. . . .,,-, ,. - . . . -

9.9 Task and Entry Attributes Version 1 (Dec 86)

Changes from July 1982

S13. The 'COUNT attribute can be used within an accept statement for the entry named in its *.-:.'-

prefix. N-%.

Changes from July 1980

S14. 'CALLABLE has been added.

s1s. The prefix of the 'TERMINATED attribute cannot be a task type.

S16. The attribute 'PRIORITY no longer exists.

S17. For entry E of task unit T, the 'COUNT attribute is now not allowed within subprograms,
packages, or tasks nested within T.

s18. 'COUNT now returns a value of type universalinteger.

s19. The prefix of the 'COUNT attribute must be the name of a task unit, not the name of a task
object or value.

Legality Rules

Li. The prefix of the 'CALLABLE and 'TERMINATED attributes must have a task type (RM
9.9/1) or an access type designating a task type (RM 3.8.2/3).

1L2. The prefix of the 'COUNT attribute must be the name of an entry (either a single entry or a
member of an entry family) of task unit T, and the attribute must appear within the body of
T, but not within any subprogram, package, or task nested within T (RM 9.9/5).

L3. The prefix of the 'COUNT attribute cannot be a name declared by a renaming declaration
(RM 8.5/9).

Exception Conditions

El. CONSTRAINTERROR is raised if the prefix of CALLABLE or TERMINATED has the
value null (RM 4.1/10).

Test Objectives and Design Guidelines

T1. Check that the prefix of the attributes 'TERMINATED and 'CALLABLE cannot be the name
of a task type.
Implementation Guideline: Include a check that the prefix can be the name of a task unit inside the body of a

"d, task type.

T2. Check that the prefix of the 'COUNT attribute must be the name of an entry of the
innermost task unit enclosing the use of the attribute.

Check that the prefix cannot be the name of a task object, even if the object has the type of
the enclosing task unit.

* Check that 'COUNT cannot be used in an inner procedure, package, or task.

T3. Check that when the prefix of the 'COUNT attribute contains the name of an entry family,
the entry name must have the form of an indexed component.

T4. Check that the prefix of 'TERMINATED and 'CALLABLE can be a function call returning
either a value having a task type or an access value designating a task.

Check that the prefix can be an object having a task type or having an access type that
designates a task.

Check the values returned by 'TERMINATED and 'CALLABLE (checked implicitly by tests
in IG 9.10/T).

9-48

9.-

% V,.* .. . b9

Version 1 (Dec 86) 9.10 Abort Statements

T5. Check that 'COUNT returns the correct value, both for single entries and for members of
S.an entry family.

Implementaton Guideline: Include a check when 'COUNT occurs as an entry family index in an accept
"' statement.

T6. Check that 'COUNT returns a value of type universal integer. ir

17. Check that the prefix of 'STORAGE-SIZE can be a task type or a task object (including a
formal parameter).
Implementation Guideline: Include a check that the name of a task type or subtype can be used as a prefix p
within the task's body. Also use the name of a single task.

Check that an object having an access type is not allowed as the prefix of 'STORAGE-
_SIZE, even if the designated object has a task type, nor can the prefix be a function call or
the name of a function (even if the function returns a task value).

Check that the prefix of 'SIZE can be a task object or a task type.
Implementation Guideline: Include a check that the name of a task type or subtype can be used as a prefix
within the task's body. Also use the name of a single task.

Check that the prefix of 'ADDRESS can be a task object (a single task, an object having ,.
user-defined task type, or a formal parameter) or the name of a task unit (only applies
outside the task body to names of task types). r
Implementation Guideline: Check that task objects have different addresses. Also, check that when two
objects having the same task type are called, 'ADDRESS returns the same values within the task body when
the name of the task unit is used.

Check that the prefix of 'ADDRESS cannot be a subtype name for a task type, whether the
name is used within or outside the task body.

T8. Check that CONSTRAINT ERROR is raised if the prefix of CALLABLE or TERMINATED
has the value null (see IG 4.1.4/Ti).

9.10 Abort Statements

Semantic Ramifications

s1. After an abort statement has completed Its execution, the aborted task may continue to
execute (in particular, it may read and write shared variables) but it cannot activate any new
tasks or call any other task. The aborted task must be removed from any queues before
completion of the abort statement, so no entries can be called by an aborted task (RM 9.10/5).
S2. The reason an aborted task Is considered abnormal rather than complete is to allow the
execution of the aborting task to continue before the aborted task is actually terminated. For
example, if a task running on a remote node in a distributed system is aborted, then the node
executing the abort statement can send a message to the remote node specifying which task is
to be aborted (after removing it from a queue, if necessary), and then, without waiting to be sure
that the task has actually been terminated, it can continue - after noting in its own tables that
the aborted task is no longer callable. The aborted task can continue to execute until it reaches
a synchronization point (RM 9.10/6).
S3. Since the activation of a task is a synchronization point, an aborted task can never activate
additional tasks before It completes.

s4. If an aborted task is in a loop and never reaches a synchronization point, the abort need
never take effect, in the sense that the task can continue to execute. However, calls to such a

--, Wtask will raise TASKINGERROR rather than be placed in a queue.
S5. If a calling task is aborted while a rendezvous Is in progress, the rendezvous is allowed to

9-49

9.10 Abort Statements Version 1 (Dec 86)

complete (RM 9.10/6). This ensures that the called task has access to actual parameters while
the rendezvous is in progress, even though the caller will disappear after the rendezvous is
completed. Since the rendezvous Is not terminated prematurely, if the rendezvous is in a loop
or is executing a long delay, it can take some time for the calling task to become terminated. Of
course, a programmer can always abort the called task as well, to allow the calling task to
terminate.

S6. If a task is aborted while updating a global variable, the task need not complete the update
before the task terminates (RM 9.10/8). This means that updating need not be implemented as
an indivisible operation. Moreover, since updating or reading a variable named in a SHARED
pragma is not one of the synchronization points listed in RM 9.10/6, such updates or reads can
occur even after a task has become abnormal.

S7. If a task name in an abort statement is a function call, or if the name includes a function
call, e.g., F.T, then overloadings of the function name can be resolved using the fact that the
name must denote a task.

s8. A task can be aborted before it is activated (see IG 9.3/S).

Changes from July 1982

sq. Aborted tasks become complete rather than terminated (so the usual rules for task
termination can be used).
sio. The raising of TASKINGERROR exceptions in callers of aborted tasks is no longer part of
the execution of the abort statement, but instead occurs independently, and so can be raised
before the aborted task completes its execution.
st i. The activation of a task is now considered a synchronization point.

Changes from July 1980

S12. Aborted tasks become abnormal rather than being terminated directly.

Legality Rules

Li. Each name in an abort statement must have a task type (RM 9.10/3).

Exception Conditions

El. TASKINGERROR is raised in the calling task if an entry of an abnormal task is called (RM
9.10/7).

E2. TASKINGERROR is raised in the calling task if the called task becomes abnormal before
the call has been accepted or while executing the rendezvous (RM 9.10/7).

Test Objectives and Design Guidelines

T1. Check that at least one task name Is required in an abort statement.

T3. Check that aborting a terminated task does not cause an exception.

4. Check that if a task Is aborted before being activated, the task is terminated, and no
exceptions are raised.

T5. Check that after completing execution of the abort statement, the named tasks and all
dependent tasks are not callable, i.e., 'CALLABLE is FALSE.

T6. Check that a task may abort itself; check that the next statement is not executed.

Implementation Guideline: The abort must be in a conditional statement, otherwise the compiler may delete all ..

following statements. 'r

.. %~% * 4*~*4,%.., ','..."-.
9-50 tA

=, % , • % , • % " . ,. %", . , . ,.. . , -, .," . ." ,,. * . . .

Version 1 (Dec 86) 9.11 Shared Variables

p

17. Check that a task may abort a task that it depends on.

T8. Check that an aborted task is removed from any entry queue it may be on.
Implementation Guideline: Check that the queue is maintained correctly when the aborted task is at the front of
the queue, in the middle, or at the end.

T9. Check that if a calling task is aborted during a rendezvous, the rendezvous must be
completed. In particular, check that If the master of a calling task is aborted while a
dependent task is in a rendezvous, neither the master nor the dependent task can be
terminated while the rendezvous continues.

T1 0. Check that an abnormal task can be aborted.

T1 1. Check that TASKINGERROR is raised in the calling task if a called task is aborted while
in a rendezvous.

Check that TASKINGERROR is raised by a timed entry call if the called task is aborted
before the delay expires, but not when the call is first executed.

Check that TASKINGERROR is raised by a conditional entry call if the called task isabnormal at the time of the call (see IG 9.7.2/T4).

9.11 Shared Variables

Semantic Ramifications

Si. The significance of the assumptions stated in RM 9.11/3-6 is that when a shared variable is
a scalar or an access type, a compiler can generate code to read and write the variable on the

% assumption that a particular task has exclusive access to the variable between synchronization
points. In particular, if a task has exclusive access to a variable, it can assume that the value of
the variable does not change unless it has been assigned to. A compiler can therefore keep
local copies of a variable's value in registers and can defer reading or updating the actual
variable until the register is needed for some other purpose, or until a synchronization point is
reached. At each synchronization point, any updates to shared variables must be made, and it
is possible that the value of a shared variable will be changed by some other task (so its value
must be read again if it is needed).

s2. The pragma SHARED makes each read or update of a shared variable a synchronization
point for that variable, i.e., every read must actually read the value of the variable (which may
have been changed by some other task since the last read), and every update must be stored ,
home immediately in the variable rather than being retained in a register.
s3. The current formulation of the assumptions in RM 9.11/3-6 is defective with respect to
variables that are subcomponents of a composite type. For example:

type BITS is array (0..15) of BOOLEAN;
pragma PACXZD (BITS);
WORD : BITS:

task TI ; ,.
task T2;

task body Ti is

begin
WORD(14) := TRUE;

end TI

S....V~ %.9-5 S ,"

9.11 Shared Variables Version 1 (Dec 86)

task body T2 is
begin .- -

WORD(15) := FALSE;
end T2;

According to RM 9.11/3-6, the assignments to the different components of WORD are not
erroneous because WORD(14) and WORD(15) are different variables. Of course, in most
implementations, the packed BITS array will occupy exactly 16 bits, and for a byte addressable
machine, WORD(1 4) and WORD(1 5) will occupy the same byte. The only way to modify one bit
in a byte is to read the byte, modify the bit, and store back an entire byte. In effect, the
assignment to WORD(1 4), say, would usually be implemented as:

WORD(8..15) := SET BIT 14 OF (WO.D(8..15));

Each task would, in effect, be assigning to the same slice of the WORD array.
S4. The above implementation of assignments to components of WORD is incorrect because
incorrect results can be obtained, i.e., WORD(14) might not have the value TRUE after the
assignment. An implementation has two choices here. It can refuse to obey the PACKED
pragma. and store BITS arrays so each component occupies one addressable storage unit, or it
can establ;sh a semaphore guarding access to the shared variable WORD, to ensure that
updates ii individual components are made indivisibly. Note that the same issue arises for
,r<.crd t-pe6 having an explicitly defined representation that requires two record components to
x u,,,yth&, same addressable storage unit.

5. The Ada Larnguage Maintenance Committee has considered this situation and hasrecommended that paragraphs 3-6 be understood to include variables whose representation
has been specified with an explicit representation clause or PACKED pragma. This means that
the assignments to WORD(14) and WORD(15) above would be considered erroneous, i.e., it is
up to the programmer to ensure that they are performed on a noninterfering basis. An
implementation is allowed to use the straightforward implementation that was originally
3uggested.

s6. The name given in a pragma SHARED cannot be a name declared by a renaming
;",'i rrnamed entity is an ohiq- + declired by an object declaration (and is a

.., .. ,car or an access type). The ,ufain- coes not permit such names since the
rul3 in RM 9.1 1 ,!1 only allows names declared by object declarations.
S7. Aithot.hgh a name declared by a renaming declaration cannot be used in a pragma
SHARED), ti-e thIect of a pragma SHARED extends to names declared by renaming
deciarations, i.e., if a renamed entity has been named in a pragma SHARED, reads and
updates using the new name are also considered synch,'onization points for the new name. The
reason is that the pragma SHARED specifies that every read or update "of a variable" is a
synchronization point. A variable is an object (RM 3.2.1/3) and an object is an entity (RM 3.1/1).
A renaming declaration declares a new name for an entity (RM 8.5/1). So the pragma SHARED
applies to the entity named In the pragma, and consequently, applies to any new names for the
entity as well.

s8 Since the term "shared variable" refers to variables accessible from more than one task
(RM 9.11/2), it is convenient to have a different term for those variables named in a pragma
SHARED. We shall call such variables "volatile variables." The term refers to the fact that from
an implementation's point of view, the value of such a variable can change without being
assigned to
s9. If a volatile variable is used as an actual generic In out parameter, then all reads and
updates of the formal parameter within the instantiated unit are considered synchronization
points for the variable. In general, this means that the code generated for such an instantiation

9-52

' " . - .- .. - -.- 4" ,t ,-

Version 1 (Dec 86) 9.11 Shared Variables
I

will be different from the code generated for an instantiation that does not refer to a volatile
variable.

Sio. If a subprogram or an entry is called with a volatile In out or out actual parameter, then for
the In out parameter, a read synchronization point occurs when the variable is passed to the
formal parameter, and an update synchronization point occurs when the subprogram returns. In
particular, the formal parameter is a different object (since volatile variables must have scalar or
access types and values of these types are passed by copy), so each read or update of the
formal parameter is not a synchronization point. Code generated within the subprogram or
rendezvous is not affected by the fact that an actual parameter may be a volatile variable.

si1. The synchronization points introduced by the use of the pragma SHARED are not
considered when a task is aborted, since these points are not listed in RM 9.10/5-6. This .:,-

means that an aborted task may update a shared variable if such an update occurs after the
task has been aborted and before the task has reached one of the synchronization points
mentioned in RM 9.10/6.

S12. If the arguments to a pragma do not correspond to what is expected or allowed for a P
pragma, the pragma then is ignored; the program is not illegal (RM 2.8/9), e.g.:

pragma SHARED (A, B, C); -- ignored; not illegal
pragma SHARED (A(3)), -- ignored; not illegal
pragma SHARED (A, B,); -- syntactically illegal

The last example does not conform to the syntax for a pragma as specified in RM 2.8/2, and is
illegal because the program containing it does not conform to the syntax of a legal Ada program.

Changes from July 1982

S13. Volatile variables are indicated with a pragma rather than by instantiating a generic
9procedure. In addition, such variables cannot be formal parameters of subprograms or generic

units, objects designated by an access value, or subcomponents of composite objects.
S14. Volatile variables must only have scalar or access types.
s 5. Indivisible access must be provided for volatile variables (or the pragma is ignored).
Changes from July 1980
S16. The wording makes clearer that violation of permitted assumptions about shared variables
causes a program to be considered erroneous.
Legality Rules

Violation of these rules means that the pragma is ignored; see RM 2.8/9.
Li. The variable named in a pragma SHARED must have a scalar or an access type and must

be declared by an object declaration (RM 9.11/10).
L2. The pragma SHARED must occur immediately within the declarative part or package

specification in which the named variable Is declared (RM 9.11/10).
L3. The pragma SHARED must occur before any occurrence of the name of the variable, other ,

than in an address clause.
Test Objectives and Design Guidelines

'p.

T1. Check that more than one name is not allowed in a SHARED pragma.
T2. Check that the SHARED pragma is Ignored (and the name is not evaluated) if the name .

denotes a variable designated by an access value or denoted by a formal parameter of a
subprogram or generic unit, or a subcomponent of such a variable.

9-53

%
-:2J

9.11 Shared Variables Version 1 (Dec 86)

Check that the pragrn Is Ignored If the name In the pragma is declared by a renaming .,,,.

declaration. ,:,,

9..,

S:.

43&

.-

'

%" ,

S.
m

ai

S-

S.d

.

- ' 9-F4 "

F

Version 1 (Doc 86) 10.1 Compilation Units -- Library Units

Chapter 10 -

Program Structure and Compilation Issues
,.

10.1 Compilation Units -- Library Units

Semantic Ramifications

si. RM 10.1/6 says "a subprogram body given in a compilation unit is interpreted as a
secondary unit if the program library already contains a library unit that is a subprogram for a
generic subprogram] with the same name." Otherwise, the subprogram body is interpreted as
the declaration of a library unit together with the corresponding library unit body. (The
interpolated phrase is needed to show that the rule applies to generic subprograms as well as to
nongeneric subprograms; if the phrase is not considered present, it would be impossible to
separately compile a body for a generic library subprogram. Each attempt to compile a body
would instead declare a new nongeneric subprogram.)

s2. There are several important implications of RM 10.1/6. First, the initial compilation of a
subprogram body serves to declare the subprogram as a library unit. Subsequent compilations 1-
of subprograms with the same name must conform to the declaration implied by the first
compilation:

procedure P (X : INTEGER) is
begin ... end P; -- initial compilation "

procedure P (Y : FLOAT) is -- illegal; nonconforming
begin ... end P;

The second compilation unit must be rejected because it does not conform with the specification I

that was implicitly declared when P was first compiled. Note that an attempt to compile a ,"

function body named P will similarly be rejected. Such attempted compilations are not
considered as declaring new subprograms named P because P already exists in the library.

S3. Having compiled subprogram P, a generic unit or a package named P can subsequently be
compiled without error; such a compilation removes the subprogram declaration and body from
the library and redefines P to refer to the new compilation unit (RM 10.1/4).
S4. If a library already contains a package or a generic package named P, then compilation of
a subprogram body P is allowed and serves to declare a new library unit named P;

package P is

end P;

function P return INTEGER is -- legal; replaces package P
begin ... end P;

s. If a library already contains a generic subprogram named P, then any subsequent
compilation of a subprogram body with the name P is considered a secondary unit for the
generic subprogram. Consequently, such subprogram bodies must conform to the specification
given for the generic unit:

generic I
procedure P (X INTEGER);

10-1 ,'-
I

'%%- "* .* . % ." "- .*. " . '% "% %. %" * 4' = %% "%"" "" %""" " '" -" " % " " "'h

,,

10.1 Compilation Units -- Library Units Version 1 (Dec 86)
..

procedure P (Y : FLOAT) is -- illegal; nonconforming
begin ... end P:

Se. Now suppose the subprogram body contains a context clause:
package P is

subtype T is INTEGER; -

end P; "'

with P:
function F (X : P.T) return INTEGER is
begin .. end F;

The compilation unit for F generates an implicit declaration of F that is equivalent to:

with P;
function F (X : P.T) return INTEGER;

Suppose P.T is modified (e.g., changed from INTEGER to STRING) and we recompile P. The .
recompilation of P makes F's declaration obsolete (RM 10.3/5):

"A compilation unit is potentially affected by a change in any library unit named by its
context clause. ... Compilation units potentially affected by [the successful recompilation
of another unit] are obsolete and must be recompiled unless they are no longer needed.*

An obsolete unit must not be used and therefore acts as if it were removed from the library.
Consequently, an attempt to recompile F's body (including the with clause) must succeed,
because there is no longer a subprogram named F in the library. The recompilation will declare
a new F that uses the new definition of P.T. An attempt to compile F's body without a with ..
clause naming P will fail since the P In P.T is not known as the name of a package after F's
declaration is made obsolete.

S7. The requirement that library units have unique names (RM 10.1/3) implies that subprogram
library units cannot be overloaded; recompilation of a subprogram declaration with a different
set of parameters simply replaces the earlier definition (including its subunits, if any; see RM .

procedure P (X INTEGER);
procedure P (X FLOAT); -- replace first declaration
procedure P (X INTEGER) is -- illegal; nonconforming
begin ... end P;

The procedure body is illegal because the only library unit declaration of P that exists has a
parameter of type FLOAT.
sa. The name of a library unit or a secondary unit must be an identifier since such units must
denote subprograms, packages, generic units, or task bodies, and RM 10.1/3 requires an
identifier for a library unit subprogram; RM 12.1/4 requires an identifier for a generic
subprogram; RM 7.1/2 requires an Identifier for a package (including generic packages); and
RM 9.1/3 requires that tasks be named with identifiers.

S9. Certain library units are predefined in the language (see Annex C) - STANDARD,
CALENDAR, SYSTEM, MACHINE CODE (if provided by an implementation), UNCHECKED-
_DEALLOCATION, UNCHECKEDCONVERSION, SEQUENTIAL_10, DIRECT 10, TEXT_10,
TOEXCEPTIONS, and LOW LEVEL_10. Since there is no rule forbidding recompilation of
these units, it is permitted, even though such a recompilation would make the predefined units
inaccessible. The recompilation of SYSTEM, in addition, may make some predefined library .. .
units obsolete, e.g., TEXT_10's body might depend on the SYSTEM package. Recompilation of ".. : :
SYSTEM would then make TEXT_10 unusable. 4.

10-2

6W NW

A'-.
* , % . :,",W,' .',A,'.:, A ,,,.% .* ,i ,""- ". -'.a..%,' • J-.-.- .- ",,'"'*/ / ".A" ". " . J . .. " . . " ".. .'' -

Version 1 (Dec 86) 10.1 Compilation Units -- Library Units

Si0. Library units, as well as units mentioned in with clauses, are implicitly declared in
,*.'. STANDARD (see RM 8.6/2), so no library unit can have the same name as any identifier

declared in STANDARD (since this would introduce a forbidden redeclaration in STANDARD);
however, the identifiers TRUE and FALSE can be declared as library subprograms as long as
they are not declared as parameterless functions returning predefined type BOOLEAN. (Note:
predefined TRUE and FALSE are not library units, although they are subprograms implicitly
declared in STANDARD. They are not library units because only certain compilation units are
library units (RM 10.1/3). Since TRUE and FALSE were not declared as compilation units, they
are not library units; with TRUE, for example, would be illegal in the absence of a user-defined
library unit named TRUE.)

si 1. Since a compilation unit can begin with more than one with clause, a compiler can provide
an optional compilation mode in which access to certain library units is implicitly provided by (in
effect) inserting a with clause (and optionally, a use clause), naming these units in front of every
unit compiled. These implicit insertions could provide automatic access to a standard set of
library units, e.g., the TEXT 10 package, a package of mathematical functions, or an
application-dependent set of library packages. Such a capability would have the same effect as
invoking a preprocessor that modifies compilation units before they are compiled. Nothing in
the language specification forbids or requires such a "preprocessor" option, but it is one of the
reasons that more than one with clause is permitted at the beginning of compilation units. Of
course, the use of such "options" must be under user control or the implementation will be
nonstandard.

Changes from July 1982
p. $12. A subprogram body submitted as a compilation unit is no longer interpreted as a

secondary unit if any name P has been previously declared as a library unit; it is a secondar/
unit only if the previous declaration of P is a subprogram or a generic subprogram.

Changes from July 1980

S13. The definition of a main program is clarified.

Legality Rules

L1. A subprogram that is a library unit or a subunit cannot have an operator-symbol as its
designator.

1-2. No library unit can have a name identical to one of the following names: BOOLEAN.
INTEGER, FLOAT, CHARACTER, ASCII, NATURAL, POSITIVE, STRING, DURATION,
CONSTRAINTERROR, NUMERICERROR, PROGRAM_ERROR, STORAGEERROR,
or TASKING_ERROR (see IG 8.6/T).

L3. No library unit can be a parameterless function named TRUE or FALSE that returns values
having the type predefined BOOLEAN.

L4. A package body must not be compiled before its specification has been compiled.

L5. A library unit package cannot be executed as a main program.

': Test Objectives and Design Guidelines

Ti. Check that

a. a subprogram cannot be compiled as a library unit or as a subunit if its
designator is an operatorsymbol.

b. no library unit can be named BOOLEAN, INTEGER, FLOAT, CHARACTER,
ASCII, NATURAL, POSITIVE, STRING, DURATION, CONSTRAINTERROR,

-%

"-IL ..

* . l.L.l tP J , , t r ,r %' ,, *V' .fl , 4 ,' , LSW1,W ;,, V , W.r k' W ,.rWfl 1'S US,'J.r"r w,-.

10.1 Compilation Units -- Library Units Version 1 (Dec 86)

NUMERICERROR, PROGRAMERROR, STORAGEERROR, or
TASKING ERROR. ..

c. a library package body cannot be compiled before its specification has been "',_
compiled.

d. an implicit use clause (preceded by a with clause) is not provided for any of
the standard packages, namely, CALENDAR, TEXT_10, 10_EXCEPTIONS,
SYSTEM, MACHINE_CODE, and LOWLEVEL_10.

e. an implicit with clause is not provided for any of the predefined units
CALENDAR, MACHINECODE, SYSTEM, UNCHECKED DEALLOCATION,
UNCHECKEDCONVERSION, SEQUENTIAL_10, DIRECT_10, TEXTIO, 10-
_EXCEPTIONS, and LOWLEVEL_10.

f. overloaded subprograms are not allowed as library units (nor as subunits; see
IG 10.2/Ti for subunit test). IS

g. task specifications and bodies cannot be separately compiled.
h. a package cannot be named as a main program. %

i. a package body cannot be compiled if its specification has not been first
compiled and placed in the library (see IG 10.3/T1).

T2 Check that a subunit can have the same name as a library unit or an identifier declared in
STANDARD. V.

Check that a subprogram named TRUE or FALSE can be declared as a library
subprogram if it is not a parameterless function returning values of type BOOLEAN (see IG .,,

8.6/T1).

T3. Check that more than one completely independent compilation unit can be submitted to a -
compiler in a single file. Check whether the presence of an illegal unit in a compilation
affects the compilation of another, independent unit submitted in the same compilation.

T4 Chek that a package specification and body can be submitted together for compilation.

F5. CON IaL a suoprogram specificatiuii,,,, L. ca,. be suomitted together for compilation,
T6. Check that a library unit and its subunits can be submitted together for compilation.
"7 Check that a nongeneric package specification can be compiled without its body.-
T8. Check that a generic package specification can be compiled and instantiated without its body.

bcdy.

T9. Check that a nongeneric subprogram declaration can be compiled without its body.
T10. Check that the specification of a separately compiled subprogram body must conform to

that of the declared specification. .
Implementation Guideline: Check for generic and nongeneric units.

T1 1. Check that if a subprogram body is initially compiled, subsequent attempts to compile a
subprogram body with a different parameter and a result type profile are allowed
(Al-00199).
Implementation Guideline: See IG 6.6/T2 for minimally different parameter and result type profiles.

Check that after compiling a generic or nongenedc subprogram specification, subsequent
attempts to compile a subprogram body with a different parameter and result type profile
are rejected.

10-4

. =p ,% % =%p% *l " "q% % , % . ,, %% %o " .. . •, .%,. .%4%V

Version 1 (Dec 86) 10.1.1 With Clauses

T1 2. Check whether a generic subprogram body can be submitted separately from its
IN' declaration for compilation.

T13. Check that a generic package or subprogram instantiation can be submitted for
compilation.
Implementation Guideline: Note that pragma ELABORATE will need to name the generic library unit to ensure
that the unit's body is elaborated before the instantiation is elaborated.

TI 4. Check that a subunit can be submitted for compilation in a separate file.

TI 9. Check that in a compilation containing several compilation units, the order of elaboration
need not be the same as the order of compilation (see IG 10.5/1T2).

T20. Check that if a subprogram P is compiled, subsequent compilation of a generic package,
generic subprogram, nongenedc package, or nongeneric subprogram declaration for P,
removes subprogram P (and its subunits) from the library.
Implementation Guideline: To chech. that P's body has been removed from the library, attempt to compile a
subunit for P. The attempted compilation should fail.

Check that if a generic package or a nongeneric package named P has been compiled,
subsequent compilation of a subprogram body or declaration removes the package
declaration from the library and declares a new subprogram.
Implementation Guideline: Check that the package has been removed by attempting to compile the packag-3
body.

T21. Check that any of the predefined library units can be recompiled, making the predefined
units inaccessible (see IG 8.6/Ti).

T22. Check that it a subprogram body is initially compiled with a context clause and a unit
named in the context clause is recompiled, then an attempt to compile the body again will

" ,succeed if the context clause is present.

0 Check that the recompilation of the body will fail if the body refers to the recompiled unit
but the unit is not named in the body's context clause.

Check that if the recompiled unit is not needed in the subprogram body, the body can be
successfully recompiled without mentioning the recompiled unit.

10.1.1 With Clauses

Semantic Ramifications

si. Since a with clause refers to a unit implicitly declared in STANDARD prior to the unit being
compiled (RM 8.6/2), a with clause cannot contain the name of a library unit being compiled,
e.g.,

with P;
package P is -- illegal; two implicit declarations of P

But a secondary unit can name Its library unit, since the secondary unit does not redeclare the
library unit named in the with clause:

with P;
package body P is

S2. The library unit ancestor of a subunit can also be mentioned in a with clause:

,4P.

10-5

-'.:-..

10.1.1 With Clauses Version 1 (Dec 86)

'* with P;
separate (P.Q.R) .. " d. F
package body S is

S3. The names in a use clause must have been mentioned in the preceding with clauses (RM
10.1.1/3); any package name in any preceding with clauses can be mentioned. Although the
with clauses given for a compilation unit apply to its subunits, a use clause cannot mention the .
name of a package appearing in any ancestor's with clause; the RM limits the names to those
appearing in the same context clause. Finally, the rule specifying what package names can
appear in a context specification's use clause excludes package names whose visibility is
achieved by direct declaration instead of by the effect of the preceding with clauses. The
following examples illustrate these points:

package 8 is
type TB is...

end B;

package A is
package PA is

type TA is ...
end PA;
package RR is ... end RR;

end A;

with A; (1)
package P is

X : A.PA•TA;
end P, -?-"

with B; use A; -- (2); illegal use of A
package body P is

use A; -- legal use of A
package QQ is

type TQ is ...

end QQ;
package RR is ... end RR, -- hides A.R.
use QQ, PA;
procedure PP (X TA; Y B.TB; Z TQ) is separate;

end P;

with B; use B; -- (3)

separate (P)
procedure PP (X: TA; Y : TB; Z : QQ.TQ) is

use QQ;
ZZ : TQ;

The with clause at (3) is required, because a use clause cannot be written for B unless a
preceding with clause names B. In addition, note that you cannot write use B, 00 at (3) since
the RM says that the only package names permitted in a use clause of a context specification
are those made visible by previous with clauses of the same context specification. The with
clause at (2) doesn't count at (3); the context clauses are independent. Note that the effect of
use clauses at the stub for PP carry over to the declaration of the subunit PP.

S4. A name denoting a library unit is not allowed in a context clause if the name has been
declared by a renaming declaration:

10-6

V%

Version 1 (Dec 86) 10.1.1 With Clauses

package P is

package Q renames P;
end P;

with P; use P;
with Q; -- illegal

Although 0 is the visible name of a library unit, it is not allowed in a with clause or a use clause

of a context clause.

ss. Although a unit named in a with clause is implicitly declared in STANDARD, an expanded
name denoting the unit, e.g., STANDARD.P cannot be used within a subsequent use clause of
the context clause.

s6. In effect, the only names visible in a with clause are names of library units.

package P is
package R is

X : INTEGER 5:
end R:

end P,

package R is
X : INTEGER := 7;

end R;

with P; use P; -- P.R is directly visible now
with R; -- only library unit names visible in with clauses P.

use R; -- library unit R &
procedure S is

Y INTEGER := X; -- STANDARD.R.X

Since no use clause is given for P.R, P.R.X is not directly visible.

Changes from July 1982 •

s7. A simple name declared by a renaming declaration is not allowed in a context clause.

Changes from July 1980 '-'.

s8. A sequence of use clauses is allowed In a context clause.

sq. Names in the with clauses and use clauses of a context clause must be simple names.

sio. The with clauses and use clauses of a context clause given for a package specification, a
subprogram declaration, or a generic unit also apply to the corresponding secondary unit.

Legality Rules

L1. The names appearing in with clauses can only be simple names of (previously compiled)
library packages, subprograms, and generic units.

L2. The use clause of a context clause can only name library units named in the preceding
with clauses of the context clause.

Test Objectives and Design Guidelines

T1. Check that

10-7

~ -~ ~ ~ ~ ~ ~ S. '5'.]

,',

10.1.1 With Clauses Version 1 (Dec 86)

a. the names in a with clause cannot be the names ASCII, TRUE, or FALSE
(when there is no library unit named TRUE or FALSE), nor can the name in a
use clause be ASCII.

b. a subunit or a nested package cannot be named in a with clause or use
clause.

c. a library unit, P, cannot be named in a with clause or use clause as
STANDARD.P, nor can such a library unit be named In a use clause if it has
not appeared In a preceding with clause. e
Implementation Guideline: Try one case where the name in the use clause appeared in a with
clause that is applicable to the unit being compiled, e.g., give with P for a package
specification, and then for the body, try writing use P. Try this for subunits as well.

.4

d. with STANDARD; is not permitted if there is no user-defined library unit called
STANDARD.

e. the name of a package specification, subprogram declaration (generic or
nongeneric), and subprogram body (for the first compilation) cannot be the
same as a name in a with clause attached to the unit.

f. a use clause cannot name a subprogram mentioned in a preceding with
clause.

g. a use clause cannot mention a name made visible by a preceding use clause
in the same context specification.

T2. Check that more than one with clause can appear in a context specification.

Check that two or more use clauses can appear In succession in a context clause. ..

T3. Check that a with clause provides access to previously compiled subprogram and package
library units (implicitly checked by other tests).

T5. Check that a with clause can name a library unit specified in the same or a previous with
clause.

Check that a with clause associated with a subunit can name its ancestor library unit as
well a , a hrary unit specified in a with clause of any ancestor unit. 4.

T6. Check that a with clause for a package body (generic or nongeneric) or for a generic
subprogram body can name the corresponding specification, and a use clause can also be
given.

Check that a with clause for a subprogram body can name the subprogram if a declaration
for the subprogram already exists in the library.
Implemenation Guideline: Either compile the subprogram twice or first compile an explicit declaration for the
subprogram.

17. Check that if a with clause in a subunit contains a name, e.g., RR, that has been locally
declared in one of the subunit's ancestors, the with clause's name is nonetheless
considered to refer to a library unit, and the library unit can be accessed as
STANDARD.RR.

T8. Check that a with clause and a use clause given for a package specification applies to the
body and the subunits of the body.
Implementation Guideline. Include a test for subunits of subunits.

Check that if with clauses are given both for a specification and a body, and the with .
clauses name different library units, the library units named In all the with clauses are ... >.

visible in the body and its subunits.

10-8

,.....

Version 1 (Dec 86) 10.2 Subunits of Compilation Units

T9. Check that a name declared by a renaming declaration cannot be used in a with clause or
in a use clause of a context clause.
Implementatson Guideline: The name should denote a library unit named In an ealier with clause.

T10. Check that a use clause for a subunit cannot name a package that Is only named in a with
clause of an ancestor unit.

10.2 Subunits of Compilation Units %

Semantic Ramifications

s1. RM 10.2/3 says "A body stub Is only allowed as the body of a program unit ... if the body
stub occurs immediately within either the specification of a library package or ..." Since a body
stub is not syntactically allowed in a package specification, the part of the rule mentioning
package specifications can be Ignored.

S2. Since subunits having the same ancestor library unit must have distinct names, body stubs
cannot introduce two or more overloaded body stubs within the same declarative part.

$3. Subunits of different parents having a common ancestor cannot have identical identifiers as
their names, even though the expanded name of the subunits' parents will always be distinct:

procedure P is
procedure P1 is separate;
procedure P2 is separate;

begin ... end P;

separate (P)
procedure P1 is

procedure NOT UNIQUE is separate;
begin ... end P1;

separate (P)
procedure P2 is

procedure NOTUNIQUE is separate; -- illegal
begin ... end P2;

The declaration of NOTUNIQUE is Illegal since P.P1.NOT_UNIQUE and P.P2.NOT UNIQUE
have a common ancestor unit, P.

s4. Since separately compiled subprograms cannot have operator symbol names (RM 10.1/3),
no subprogram whose designator is an operator symbol can have its body specified with a body p
stub.

SS. Because subunits are compiled as though they were substituted for the corresponding
body stub, an implementation must be careful to ensure that entities declared after a body stub
are not visible within the body for the stub:

package P is
Y : INTEGER :- 6;

end P;

package body P is
X INTEGER;
procedure Q is separate;

'/' '0

10-9 .'

p

10.2 Subunits of Compilation Units Version 1 (Dec 86)

package P is "-
Y : INTEGER :- 5; . .

end P,
procedure R is separate;

end P;

separate (P)
procedure Q in

Z : INTEGER : P.Y; -- not P.P.Y
begin ... end Q;

separate (M)
', procedure R is

Z : INTEGER :- P.Y; -- P.P.Y

Within 0, P.P is not visible, but P.P is visible within R, so within procedure R, P.Y refers to
P.P.Y.

s6. RM 10.2/8 notes that although two subunits cannot be overloaded, renaming can be used
to achieve overloading, e.g., as follows:

package S is
procedure Qi (A : INTEGER);
procedure Q2 (B : FLOAT):

and S; -

with S; use S:

package P is
procedure Q (A : INTEGER) renames Ql;
procedure Q (B : FLOAT) renames Q2; -- overloading introduced

end P;

package body S is
pr -.:ure QI (A INTEGER) is separate;
procedure Q2 (B FLOAT) is separate;

end P;

S7. The order of subunit elaboration is determined by the order in which body stubs appear in a
parent, Therefore, any Initializations caused by the subunit elaborations take place in the order
specified by the body stubs. For example:

package body P is
X : INTEGER;
package body Q is separate:

package body R is separate;
and P;

separate (P)

package body R isbegin
X :- 5; -- P.X

end R;

separate (P)
package body Q is

101
%'

"9"

10-10

:..

Version 1 (Dec 86) 10.2 Subunits of Compilation Units
0

begin
X= -- P.X

end Q;

Even if these three units are submitted together in a single compilation, after P is elaborated,
P.X has the value 5, since package body R must be elaborated after package body 0. This
example also shows that subunits do not have to be compiled in the order of their body stub
declarations.

s8. RM 10.2/4 requires that the subprogram specifications for a body stub and the
corresponding proper body conform as specified by RM 6.3.1. RM 6.3/3 requires that the
specification given in a subprogram declaration conform with that given in a corresponding body
stub. Because conformance Is defined between pairs of subprogram specifications, it is
possible for the declaration and the proper body of a subprogram to not satisfy the conformance
rules even though the rules are satisfied for the declaration/stub and stub/proper-body pairs:

package A is 6
type T is (OUR, TWO);

end A;

with A; use A;
package P is

procedure Q (X : A.T); -- 1end P,

package body P is
package B renames A;
procedure Q (X : T) is separate; -- 2

begin ... end P;

separate (P)
procedure Q (X : B.T) is -- 3
begin ... end;

The specifications at 1 and 2 conform, and so do those at 2 and 3, but 1 and 3 do not conform, .
since A and B are not declared by the same declaration (see IG 6.3.1/S).

sq. A generic unit can be instantiated before its body can be compiled since its body can be
given as a stub:

procedure P is
INT : INTEGER := 1;
FLT FLOAT := 1.0;

generic
type T is private;

C: inT
V : in out T;

package GP is
end GP;

package body GP is separate;

10-11

* ~ ~ JWV MIJW~V ~ ~ WU~W U N~ V1~~ !'U- P "l"ul Ar IM~ .T r)NrJ wJ ".? V 1N -Y-W'.r~ P'rMUN \

10.2 Subunits of Compilation Units Version 1 (Dec 86)

package GPI is new GP (INTEGER, 2, INT);
package GP2 is new GP (FLOAT, 3.0, FLT);

begin
null:

end P;

separate (P)
package body GP is
begin

V := C;
end GP;

-.

The effect of the GP1 instantiaton is to change the value of INT to 2; the GP2 instantiation
changes FLT to 3.0.

sio. The library unit named in a subunit's context clause need not be directly visible within the
subunit because it can be hidden by a declaration in some parent unit:

procedure P is -- library unit
LID : INTEGER; -- will be name of library unit
procedure PS is separate;

begin ... end P;

procedure LIE is -- library unit
begin ... end LID;

with LIE;
separate (P)
procedure PS is
begin

LID; illegal; only P.LIB is visible
STANDARD.LIB; ok
LID := 4; -- ok

end PS;

si 1. Similarly, the use clauses for a subunit are combined with the use clauses of parent units
to determine which identifiers are visible within a subunit:

package P1 is
INT : INTEGER;

end P1;

package P2 is
INT : INTEGER;

end P2;

with P1; use P1;
procedure PR is

procedure PS is separate;
begin

end PR;

10-12

. . V . V % " ° 1~ V % ;.

Version 1 (Dec 86) 10.2 Subunits of Compilation Units

with P2; use P2;
separate (PR)
procedure PS is

X : INTEGER := INT; -- illegal
begin

end PS;

The use of INT is illegal because INT is not directly visible. The use clause for P1 and the use
clause for P2 are both in effect throughout PS's body, and since INT is declared in both P1 and
P2 (and overloading is not allowed for both declarations), neither INT declaration is made
directly visible (RM 8.4/6).

Changes from July 1982

S12. The rule stating where body stubs are allowed now refers to where the body stub appears
rather than to where the declaration of the program unit being stubbed occurs.

Changes from July 1980

s 13. The effect of context clauses on visibility within proper bodies has been clarified.

Legality Rules

LI. A body stub is permitted only in the outermost declarative part of a package body,
subprogram body,or task body serving as a compilation unit (RM 10.2/3). (Note: a task
body can be a compilation unit only if it is a subunit.)

1L2. The subprogram specification given in a body stub must conform with that given for th,
proper body (RM 10.2/4).

A3. If a body stub is given as the body corresponding to a subprogram declaration, the
specification in the declaration and stub must conform (RM 6.3/3).

L4. A subunit must give the expanded name of the parent unit, i.e., the first identifier in the unit
name must be the simple name of a library unit and the last identifier must be the name of
the unit containing the body stub for the unit being compiled (RM 10.215).

L5. Two body stubs in the same declarative part cannot declare the same identifier (RM
10.2/5).

L6. The designator in a body stub must not be an operator symbol (RM 10.2/5, RM 10.1/3).
L7. Subunits having a common ancestor unit must be named with distinct identifiers (RM

10.2/5).
L8. A body stub for a package or task body is forbidden if a corresponding package or task

declaration has not appeared either earlier in the same declarative oart (RM 3.9/9) or in the
corresponding package specification (RM 7.1/4) (when the declarative part is for a package
body).

L9. Declarations appearing after a body stub are not visible within the proper body for the stub
(RM 10.2/6).

Test Objectives and Design Guidelines

T1. Check that

a. a body stub cannot be given in a declarative part enclosed by another
declarative part, e.g., in a procedure nested in a package body.

10-13

V Y. V

10.2 Subunits of Compilation Units Version 1 (Dec 86)

b. a task or package body stub cannot be given if there has been no preceding
specification for the stub.

c. two body stubs In the same declarative part cannot declare overloaded
subprograms.

d. a body stub cannot be given for a subprogram whose designator is an
operator symbol.

e. two body stubs cannot be declared with the same identifier if the stubs have a
common ancestor,
Implementation Guideline: Check when the stubs are in different declarative parts but have the
same parent unit (which need not be a library unit).

f. if the identifier of a subunit is unique in a program library and it is the parent of
another subunit, the unit name following separate cannot be just the name of
the parent.

g. when compiling a subunit of library unit P, check that STANDARD.P cannot be
used as the name following separate.

h. if a body stub is deleted from a compilation unit, the previously existing subunit
can no longer be accessed (see also IG 10.1/T20).

T2 Chock that subunits having different ancestor library units can have the same name.

T3. Check that identifiers declared prior to a subunit's body stub are visible in the subunit, but
"* those declared after the body stub are not.

T4 Check that identifiers declared In ancestors of a subunit are visible within the subunit. "6
Implementation Guideline: Try at least grandparents of the subunit.
Implementation Guideline: Chsck the effect of use clauses appearing in the grandparent and parent.

T5. Check that a with clause associated with a subunit can name a library unit specified in a
with clause of any ancestor unit (see IG 10.1.1/T5).

T6. Check that if a with clause for a subunit contains a name that is directly visible in one of the
sjb! -'I's ancestors, the with clause nam -, nonetheless considered as referring to a
library unit, not the locally declared entity (see IG 10.1.1/T7).

17. Check that subunits are elaborated in the order in which their body stubs appear, not
(necessarily) in the order in which they are compiled.

- T8 Check that if an overloaded subprogram is declared, one of the subprogram bodies can be
specified with a body stub and compiled separately.

T9 Check that a generic subunit can be specified and instantiated.
Implementation Guideline: Include a check that the unit can be instantiated before the body stub occurs.
Implementation Guideline: There are two cases: 1) when the parent and the subunit are in the same
compilation file, and 2) when they are not.

T10. Check that subunit names can be identical to identifiers declared in STANDARD, namely,
BOOLEAN, INTEGER, FLOAT, CHARACTER, ASCII, NATURAL, POSITIVE, STRING,
DURATION, CONSTRAINTERROR, NUMERICERROR, PROGRAMERROR,
STORAGEERROR, and TASKINGERROR.

T1 1. Check that a body stub must conform to a preceding declaration, and a proper body must
conform with its stub.
Implementation Guideline: Check for a mixture of generic and nongeneric units.

Check that for a subprogram declaration-stub-body triple, the declaration-stub and stub-body specifications can conform but the declaration-body specifications need not.

10-14

Z14,

Version 1 (Dec 86) 10.3 Order of Compilation

T12. Check that a body stub can serve as an implicit declaration of a subprogram (RM 6.3/3), I."

i.e., a preceding subprogram declaration is not required.
T1 3. Check that the use clauses given for ancestors of a subunit are combined with any use

clause given for a subunit itself.

Check that an identifier declared in a library package named in a use clause is not visible
in a subunit if the identifier is declared In a parent unit and is directly visible at the stub.

10.3 Order of Compilation
Semantic Ramifications

S1. If a file being compiled does not satisfy the syntax for a "compilation" (see RM 10.1/2), the
whole file can be rejected:

procedure P;

procedure Q; -- programmer meant to write is instead of
begin

end Q;

procedure R;

After processing this file, the library need not contain P, 0, or R because the sequence of lexical
elements does not satisfy the syntax for a compilation. But RM 10.4/1 says language rules are
enforced in the same manner whether compilation units are submitted as independent
compilations or together in a single compilation. And RM 10.4/2 says the library file "is updated
for each compilation unit successfully compiled." Finally, RM 10.1/7 says "the compilation units
of a compilation are compiled In the given order." These statements together imply that the
intent of the RM is to at least allow an Implementation to process a compilation as a sequenco
of compilation units, optionally followed by lexical elements that do not satisfy the syntax for a
compilation unit. Hence, If a syntax error Is discovered after processing an initial sequence of
(well-formed) compilation units, the successfully processed units can be added to the library. In
the above example, this reasoning implies that it is permitted to add procedure P to the library
despite the existence of a syntax error. It is even permitted to add procedure 0 to the library
since "procedure 0;" is a legal declaration of 0. Finally, if an implementation's syntax error
recovery mechanism allows procedure R's declaration to be identified as a compilation unit, this
subprogram can also be added to the library.
S2. If an error is internal to a subprogram compilation unit, then the unit is not added to the
library. For example,

procedure PP;

procedure QQ is
begin

if TRUE() then -- syntax error .
null;

end if;
end QQ,

procedure RR:

10-15

4 m-, 1, % % m " % =. " • " • " "ia " % = . . . - . % . . , =,

10.3 Order of Compilation Version 1 (Dec 86)

If compilation units are processed one at a time, it is likely that despite this syntax error, most
implementations will correctly detect the end of procedure 00, and will continue to successfully
process procedure RR. Such an effect is allowed and desirable so the maximum number of
errors can be detected In a single compilation submission. To detect whether procedure RR
has been added to the library, a later compilation unit or a compilation can contain:

with RR;
procedure SS is
begin

RR;

end SS;

Such a compilation cannot be compiled successfully unless RR has been added to the library.
5Note that no unit dependent on 00 can be added to the library, since 00 contains an error (RM

10.3/3).
S3. RM 10.313 says that if "any error" is detected while attempting to compile a compilation
unit, at least that unit must be rejected. The phrase "any error" can encompass errors not
necessarily in the unit being compiled. In particular, compiling or recompiling a generic unit
Wody may imply that an illegal instantiation exists in a previously compiled unit:

generic
type T is private;

package GP is
procedure PR (X T);

end GP;

with GP;
procedure M is " " -

package NGP is new GP (STRING);
begin

end M;

- ge boo ¥y GP is
X T; -- potentially illegal
procedure PR (X : T) is
begin ... end PR;

end GP;

The instantiation of GP is illegal given that GP's body declares a variable of type T (RM
12.3.2/4). However, at the time M is compiled, the instantiation is legal since the package
specification contains no uses of the formal type T that are illegal when the actual parameter is
STRING. The package body, GP, is also, when considered only in conjunction with its
specification, perfectly legal - the use of type T within the body is legal, and the declaration of
GP.PR satisfies all the rules.

S4. An implementation has two choices in this situation:

* it can reject GP's body;
e it can accept GP's body, but refuse to execute M as a main program.

It can reject GP's body on the basis that If GP's body were to be accepted, the instantiation in M
would be illegal, i.e., when compiling GP, an "error is detected" in M.
ss. On the other hand, the compiler can accept GP's body because the body, when considered

10-16

.-.'S ; , .; ,..; ..- . ;.., :.,.,... , :. :r' ; .,,,.,..;

Version 1 (Dec 86) 10.3 Order of Compilation

independently of instantiations, is quite legal. Of course, if GP's body is accepted, the
instantiation in M is still illegal and M's execution as a main program cannot be allowed. If an
attempt is made to execute M, a link-time error message should be given indicating the
presence of an illegal instantiation in M. Such a message must be issued before any library unit
is elaborated. (Detection of errors at link time satisfies the RM's requirement to detect the illegal
instantiation at "compile time" (RM 1.6/2-3), since compile time only ends when execution of the
main program begins; execution includes elaboration of library units used by the main program.)
In no case can the previously compiled unit, M, be removed from the library.
S6. If GP's body is accepted for compilation and Is added to the library, then it must be possible
to compile a replacement for this body that does not contain any object declaration for type T (or L
for any other uses of T that would make M's instantiation illegal). It must then be possible to
execute M as a main program without recompiling M.

S7. The recompilation of a generic unit body is not allowed to make obsolete any units that
have instantiated the generic unit. RM 10.3/6 says that a change to a subprogram or a package
body does not affect other compilation units (apart from subunits of the body). This rule applies
to generic as well as nongeneric units, since the syntactic terms "package body" and
"subprogram body" are used In the rule (see RM 1.5/6), and a package-body or subprogram-

body can be used for either a generic or a nongeneric unit. The rule has important
implementation consequences. Consider the following units:

generic
type T is range <>-

procedure G (X T)

with TEXT 10; use TEXT 10;
procedure G (X : T) is

package TIO is new INTEGER IO(T);
use TIO;

begin
PUT (X + X*5);
NEW LINE,

end G; I

with G;
procedure M is

procedure INT is new G(INTEGER);
procedure LNG is new G(LONGINTEGER);

beginINT (5000);

LNG (5000);
end M;

Now suppose we replace G's body with:

with TEXT10; use TEXT _10;
procedure G (X : T) is

package TIO is new FLOATIO(FLOAT);
begin

PUT(FLOAT(X) + FLOAT(X)*5.0); --

NEW LINE;
end G;

- After compiling the new body for G, It must be possible to execute M as a main procedure

10. -110-17 -
,

",,., ,-. ,, . - --" " -. ,,-"", ,-", -,,. . .-. .,- ...,-. . . ' . .2 ' 2'.'. "' , ,',...,,.':. r .'.',:,'.' .;.":-:. ., '.'.'''"' ''-,.,'''*,-

10.3 Order of Compilation Version 1 (Dec 86)

without recompiling M. Note that for most implementations, the two instantiations of G in M will
require different code bodies since different machine instructions will be used for the arithmetic . .'-
operations, and the instantiations of INTEGER_10 will require different bodies as well. When .''.
the new body for G is compiled, the code bodies for the old G must be discarded, and the calls
to INT and LNG must be linked to two new code bodies generated for the new version of
G. Note also that it is immaterial whether G's original body is compiled before or after M - both
sequences of compilations are legal and have the same semantic effect.

ss. Of course, G's new body can occur in the same compilation file as the original compilation,
so an implementation must be prepared to cope with the recompilation of generic unit bodies
even if generic bodies and specifications are required to be in the same compilation file (RM
10.3/9).

sq. The situation is no different for generic packages:

generic
type T is range <>;
VAL : T;

package GG is
X T := VAL;

end GG;

vrith GG;
procedure MM is

package INT is new GG(INTEGER, 5000);
package LNG is new GG(LONGINTEGER, 5000);

begin
if LONGINTEGER(INT.X) /= LNG.X then

-- print error message C
end if;

end MN;.

As written, MM can be executed immediately as a main program, but it would also be possible
to comoilp 4 oackage body for GG after compiling MM. Such a body could perform operations

... .cEJdure body for %0, . . int cut a function of X. If a body for
GG is provided after compiling MM, it must then be possible to execute MM without recompiling
MM Final!y, the package body for GG could be recompiled, and MM again executed without
first having to be recompiled.

sio. if the INLINE pragma is not supported by an implementation (see RM 6.3.2/4), then no
dependence is created on a body.

511. Interprocedural optimizations (i.e., optimizations whose validity depends on knowledge of
the body of a called subprogram) are only allowed when the subprogram body and units
containing calls to the subprogram are processed together in the same compilation file (RM
10.3/8). Optimizations in general are not allowed to create dependences on bodies such that if
a body is changed, code in a calling program will be Incorrect.

S12. If an implementation requires that generic declarations and bodies be compiled together in
the same compilation, then this restriction must be enforced uniformly. It cannot be limited to
just those generic units having, say, formal private type parameters. An implementation must
similarly be consistent in its requirement for compiling generic subunits together with their
parent units.
S-3. The set of units potentially affected by the recompilation of a unit is determined in a
transitive manner, since "potentially affected" is a transitive relation. It is transitive because ...:-

-.',. v

10.18 (V

Version 1 (Dec 86) 10.3 Order of Compilation

marking a unit as "potentially affected" constitutes a "change" in that unit. For example, if a
secondary unit is marked as "potentially affected," this is a change in the unit and so its
subunits, if any, must also be marked as "potentially affected." All potentially affected units are
then marked as being obsolete. An Implementation can then reduce recompilation costs if it can
determine that the "effect" of recompiling an obsolete unit will be the same as the effect of S
simply deciding that the previously compiled unit is actually not obsolete. In particular, reusing a
potentially affected unit (i.e., not marking It as obsolete) is forbidden If the recompilation of the
unit would be unsuccessful (e.g., because the unit Is no longer legal). .V

S14. Suppose that a package specification requires a body and that after compiling the body,
the specification Is recompiled. If no new body is compiled, the old body will not be used p

because it is obsolete and not needed by the new package specification (RM 10.3/5):

package P is
X : INTEGER := 7;
function F return INTEGER;

end P;

package body P is
function F return INTEGER is
begin

return 6; '
end F;

begin
X 5;

end P;

package P is -- recompilation of P's specification
X : INTEGER := 7; S

end P; .Z

The fact that a body existed for the previous version of P is not relevant. Consequently, P.X
must have the value 7 when execution of the main program begins.

si 5. Suppose now that we do compile a new body for P and then a new specification:

package body P is
begin

X := 5;
end P;

package P is
X : INTEGER 6;

end P;

The recompilation of P's specification makes P's body obsolete. Since a body is not required
for the new specification, it Is not necessary to recompile the body - the main program can
begin execution even if P does not replace the old body. Note that the last sentence of RM S
10.3/5 (which allows an implementation to sometimes reuse a potentially affected unit without .'
recompiling it) only applies to units that must be recompiled when they are made obsolete.
Since recompilation of P's body Is not required, the old body cannot be reused. In essence, the
recompilation of a package specification always makes an optional package body obsolete,
even if the old and new package specifications are Identical.

si. In general, adding declarations to a package specification, even at the end, can affect the
legality of other units that name the package specification in a use clause. The new declarations
can cause previously visible declarations to be hidden: "tt

10-19 ,,'

j,%
.,_,

10.3 Order of Compilation Version 1 (Dec 86)

package P is
X : INTEGER;

4.-%end P ; .,."-

package Q is '
Y : FLOAT;

end Q;
with P, Q; use P, Q;

procedure H is
F FLOAT :- Y: Q.Y

begin end M;

Suppose P is now modified by adding a declaration of Y:
package P is

X : INTEGER; p
Y : I TEGER;

end P;

After compiling the revised, P two Y's are potentially visible in M because of the use clause (RM
8.4/4) Since neither potentially visible Y is overloadable, neither is actually made visible (RM
8.46. So deciding whether a potentially affected unit Is actually affected by a recompilation
requires more than determining whether generated code will be affected - the modification
maj make a previously legal unit Illegal as well.
S17. A package body can be made obsolete by recompiling its package specification. It can
also be made obsolete if a unit mentioned in Its with clause is recompiled:

package P is 9 0
X INTEGER := 5;

end P;

package Q is
Y INTEGER 10;

end Q;

with P;
package body Q is
begin

Q.Y :- P.X;
end Q; 0

-- compile a new version of P
package P is

X : INTEGER :-6;
end P; All

After the compilation of the second version of P, O's body is obsolete. Since Q's specification .

does not require a body, no body for 0 need be recomplled before executing a main program
referring to packages P and 0. In fact, It would be incorrect for an implementation to require
compilation of a body for 0 since 0 does not require a body. (If a programmer wishes to ensure
that a body is always compiled for Q, a subprogram specification or incomplete type declaration
should be given in Q's private part. The presence of such a specification or type declaration -
means that a body is required.)

10-20 S'%'i

WI R. ~ ~ ~,un U. -~V'W'V WY i.. U W VWV WVWV W. VU Irv R WV WV WV VW u--'s.u mwvykuw JJVU ', V

Version 1 (Dec 86) 10.3 Order of Compilation ,

sis. If a package specification declares a task object, no package body is required, although a
body is implicitly provided if the programmer fails to provide one (RM 9.3/5). Consequently, if a

W,., programmer-provided package body is subsequently made obsolete by recompiling a library
package mentioned in its context clause, no recompilation of the package body is required:

package P is
J.

task type T;
end P;

package body P is
task body T is P7

end T;
end P;

with P;pragma ELABORATE (P);

package Q is
OBJ : P.T; -- no body required for Q
X : INTEGER 10;

end Q;

package R is
Y : INTEGER := 5;

end R;

with R;
package body Q is -- a body is provided for Q
begin

Q.X R.Y;
end Q;

-- recoipile R
package R is

Y : INTEGER 9;
end R;

Since no body is required for 0, the main program can be executed without providing an explicit
body for Q. An implicit null body is used instead of the old programmer-provided body.

Changes from July 1982

Sig. Subunits of a generic unit can be required to be part of the same compilation as the parent A
unit.

Changes from July 1980

S20. The RM states more explicitly that If an error Is detected while attempting to compile a unit,
then the unit Is rejected and not added to the library.

Legality Rules p

L1. A package specification, a subprogram declaration, or a generic unit declaration cannot be
successfully compiled If any units named In Its context clause are obsolete or have not
been successfully compiled at least once (RM 10.3/2, /5).

*. ...

10-21
-e .I .

S.K

10.3 Order of Compilation Version 1 (Dec 86)

L2. A package body cannot be successfully compiled If its specification is obsolete or has not
been successfully compiled at least once (RM 10.3/2, /5), or if any units named in its
context clause are obsolete or have not been successfully compiled at least once (RM -
10.32,/5).

L3. A subprogram body cannot be successfully compiled if its declaration is obsolete, or if any 1.
units named in the body's context clause are obsolete or have not been successfully
compiled at least once (RM 10.3/2,/5).

L4. A subunit cannot be successfully compiled if its parent unit Is obsolete or has not been
successfully compiled at least once (RM 10.3/2, /5), or if any units named in the subunit's
context clause are obsolete or have not been successfully compiled at least once (RM
10.3/2,/5).

L5. If a library package specification, a subprogram specification, or a generic unit declaration
is modified in a way that invalidates the legality or the correctness of code generated for
units using the modified declaration, then all these units must be recompiled before
execution of the main program is permitted (except for units that are no longer needed, i.e.,
package bodies for specifications that do not require a body) (RM 10.3/5).

1L6. If the parent of a subunit is modified in a way that affects the correctness of code
generated for the subunit, then the subunit must be recompiled before execution of the
main program is permitted (RM 10.3/5) unless the subunit Is no longer needed (i.e., unless
its body stub has been deleted from its parent).

a. pragma INLINE Is obeyed and an inline subprogram body is substantively modified, all
units calling the subprogram must be recompiled (RM 10.3/7).

L8. An implementation may require that generic unit bodies (together with their subunits) be
compiled together with their declarations In the same compilation file (RM 10.3/9).

Test Objectives and Design Guidelines

T1. Check that

a. a package or subprogram declaration (generic or nongeneric) cannot be
-ipiled if 'ie units mentioned in , "' cle'vjsos have not been compiled.

b. a package body cannot be compiled if its specification has not been compiled.

c. a package body cannot be compiled if any units mentioned in its with clauses
have not been compiled.

d. a subprogram body cannot be compiled if any units mentioned in its with
clauses have not been compiled.

e. a subunit cannot be compiled If its parent has not been compiled.
Implementaton Guideline: U". a subunit having more than one ancestor as well as a subunit
with a single ancestor.

f. a subunit cannot be compiled if any units mentioned in Its with clauses have
not been compiled.

T2. Check that a nongeneric package body can be compiled after compiling a unit that refers to
the package specification. (Generic units are checked in T5).

Check that the recompilation of a subprogram or package body causes the new body to be
used in place of the old body.

T3. If a package specification (or a subunit parent) is changed only with respect to its-,.'. I ,N

10-22

I..
I # . . . , ''

Version 1 (Dec 86) 10.3 Order of Compilation

comments or formatting and is then recompiled, check whether the implementation
nonetheless requires recompilation of all subordinate units.

Check whether recompiling a package specification to which declarations have been
added at the end causes the recompilation of subordinate units to be required.
Implementeion Guideline: Include one case where the new declarations cause another unit to become illegal
because of the effect of use clauses.

T4. Check that if the body of an INLINE subprogram is modified and the pragma is obeyed, all
units calling that subprogram as an inline subprogram must be recompiled.
Implementation Guideline: If the INLINE pragma is obeyed, recompiling a body should require the
recompilation of units calling the body. If it is not obeyed. no recompilation will be required and the new body
will be used. (Note: failure to obey the pragma does not make a program illegal.)
Implementation Guideline: Compile the first body before any calls are compiled (since the INLINE pragma
need not be obeyed until a body is compiled).

T5. Check that it a separately compiled generic unit body is substantively modified, no unit
instantiating it need be recompiled.
Implementation Guideline: Use a body with at least two instantiaions so the instantiations cannot conveniently •
use the same generated code. Use instantiations of integer or real I/O as shown in IG 10.3/S in one case, but
also create a case that will be effective even when an implementation does not fully support TEXT_10.
Implementation Guideline: Use one case with generic subunits (see IG 10.219 for a similar test).

T6. Check that if a package specification is substantively modified (e.g., by changing
declarations in a way that changes their type or size), previously compiled units using the
modified declarations must be recompiled.

If a package body was provided for a package that does not require a body, and if the
package specification is modified but still does not require a body, check that the original
package body is no longer used.

Similarly, check that an optional package body is no longer used after recompiling a unit
named in the body's context clause.
Implementation Guideline: Include a case where the package specification declares an object of a task type,
but the specification does not require a body.
Implementation Guideline: Write these tests in such a way that the pragma ELABORATE is not required.

T7. Check that if a subprogram declaration is substantively modified, all units invoking that
subprogram must be recompiled, and so must the subprogram body. 5

T8. Check that if the parent of a subunit is substantively modified, all its subunits must be -'.-
recompiled.

T9. Check that when compiling a subprogram library unit body or declaration, no declaration
for the subprogram is added to the library if an error is found.

T10. If a generic unit can be separately compiled for a nonprivate formal type, check that it can
also be separately compiled when the formal type is private.

Ti 1. Check whether an implementation requires generic unit bodies and subunits to be
compiled together in the same file (see IG 10.1/T1 2).

T12. Check that if a subprogram body is compiled with a context clause and some unit
mentioned in the clause is recompiled, an explicit subprogram declaration need not be
recompiled before the subprogram body can be recompiled (see IG 10.1/T22).

T1 3. Check that units Indirectly affected by a recomplation are considered obsolete..''

10-23

10.5 Elaboration of Library Units Version 1 (Dec 86)

10.4 Program Library
Semantic Ramifications

Si. Commands for reusing units of other program libraries could permit an implementation to
provide a way of adding units to a program library without submitting them first for compilation.
Such a facility might be used to add application-odiented packages to a particular library of Ada ".
programs. Or, if the program library interfaces with a version control system, these commands
might be used to indicate which versions of program units are to be used when compiling some
unit or when initiating the execution of a main program.

S2. The commands for Interrogating the status of program library units could be used to
indicate which units require recompilation, which units are missing, which units are
unreferenced, etc.

Changes from July 1982

S3. The program library is updated only for the successful compilation of a compilation unit.

Changes from July 1980

s4. The possible existence of commands for dealing with program libraries has become a note.

Test Objectives and Design Guidelines

Ti Check that the library file keeps appropriate information for checking the consistency of
separately compiled units (implicitly checked by all tests for separate compilation).

10.5 Elaboration of Library Units
Semantic Ramifications

si. Only legal programs can be executed. Consequently, before attempting to elaborate library
units required by a main program, an implementation must make sure that all required units are
present, e.g., that all packages for which bodies are required indeed have bodies, that all

4.r- rattons have bodies, that subunits are present for all parent units, and that all
jri,3 , .ec in context clauses are present. A required unit can fail to be present either
because it was never compiled (only for bodies) or because it is obsolete as a result of some
other unit's compilation (for bodies and declarations). In addition, the library units referenced
directly or indirectly as a result of the main program's context clause must be present whether or
not the units are used by the main program. For example:

procedure P is
begin

end P;

with P;
procedure MAIN is
begin

if FALSE then

end if;
end MAIN;

%

procedure P (X INTEGER 1);

10-24
,

Version 1 (Dec 86) 10.5 Elaboration of Library Units

After compiling the new declaration for P, the main program cannot be executed since no body ., :
is present for the new version of P and a body is required. Even though a compiler can
determine that P is never called In the main program, a body must be provided since P is
mentioned in MAIN's with clause.

S2. Except for the main program, if a library unit 0 is named in the context clause for unit R, le
Q's body need not be elaborated before R is elaborated. Pragma ELABORATE is the only way
to ensure that Q's body is elaborated first.
s3. It is not possible for an implementation to always elaborate a library unit's body
immediately after elaborating the unit's specification since the body might mention new library
units in its context clause:

package P is

-#,

end P;

with Q, R; %
package body P is

end P;

P's body cannot be elaborated until the specifications of 0 and R have been elaborated.

S4. Elaboration order circularities can arise by using pragma ELABORATE: .

package A is

end A;

package B is F12

end B;

with A;
pragma ELABORATE (A);
package body B is

end B;

with B;
pragma ELABORATE (B);
package body A is circularity

end A;

The circularity can only be detected after seeing the name of the unit being compiled. Some del
implementations may defer detection of such circularities until an attempt is made to execute
the main program (when an Implementation is determining the required elaboration order for all
units). Since only legal programs can be executed, the circularity must be detected and the
program rejected before any library units are elaborated.

S5. In addition, circularities can arise In other ways:

package G is
end G;

10-25

. --. N- N- % ' '

10.5 Elaboration of Library Units Version 1 (Dec 86)

package body G is
$ end G; .

with G;
pragma ELABORATE (G);

, procedure USE G;

with USE G; -- circularity introduced here
package body G is
end G;

The pragma requires that G's body be elaborated before USEG's declaration is elaborated.
The with clause for USEG requires that USEG's declaration be elaborated before G's body
(since the with clause is associated with G's body). Hence, an illegal circularity has been
introduced.

S6. The RM says the library unit named in the pragma ELABORATE "must have a body" (RM
10.5/4). Although "must have a body" seems to impose a legality condition on the use of the
pragma, RM 2.8/9 says a pragma "has no effect if ... its arguments do not correspond to what is
allowed tor the pragma." Hence, if no body is actually provided, the pragma must have no
effect (i.e.. a warning message can be printed, but execution of the main program cannot be
prevented just because an optional package body Is not present).

.;-. :, an implementation chooses to warn users when a unit named in a pragma ELABORATE
does not -rave a body, the warning must be deferred until an attempt is made to execute the
main program. For example, even If a body is present when a unit is compiled, the body can
later be made obsolete, so a check for the presence of a body cannot in general be made until
link time:

package A is

end A;

-..- bcdy A is

end A; S.

with A;
pragma ELABORATE (A);
procedure M is

end M;

-- recompile P, making A's body obsolete

When P's specification is recompiled, A's body becomes obsolete (see IG 10.3/S and RM
10.3/5). When procedure M was compiled, A had a body. However, if P is recompiled, A's
body is made obsolete, and the recompilation rules do not require that A's body be recompiled if
A's specification does not require a body, so the lack of a body can only be determined at link
time.

Se. There is one case in which a package body is implicitly provided for a package, namely,
when a package specification declares an object of a task type but no explicit body is provided. ?,
In this case, an implicit body Is provided (RM 9.3/5). When a pragma ELABORATE names such
a package, the implicit body must be elaborated, causing the tasks to be activated.

10-26

(. . .% .

Version 1 (Dec 86) 10.5 Elaboration of Library Units

S9. The fact that a package specification or body calls a subprogram in another library unit '.

does not imply that the unit's body must be elaborated first:

package A is
function F return INTEGER;

end A;

package B is
function G return INTGER;

end B;

with A;
package body B is

X : INTEGER := A.F;
function G return INTEGER is ... end G;

end B;

with B;
package body A is

Y : INTEGER B.G;
function F return INTEGER is ... end F;

end A;

In this case, if package body B Is elaborated before package body A, then PROGRAM ERROR
will be raised because F's body will not yet have been elaborated. Similarly, if package A is
elaborated before package B, PROGRAMERROR will be raised because function G's body
has not yet been elaborated. The above sequence of compilation units Is legal -- no circularity
exists in the required elaboration order; either A or B's body can be elaborated first. Animplementation must raise PROGRAMERROR for either elaboration order. If pragma
ELABORATE is specified for both bodies, however, a circularity will be created and the program
must be rejected.

Changes from July 1982

sio. The pragma ELABORATE can now accept a list of simple names.

Si. It is stated explicitly that the elaboration order for library units is not fully defined by the
language. .

Changes from July 1980

S12. A library unit named in the context clause of a subunit must be elaborated before the
subunit's ancestor library unit. 5

S13. The elaboration order of library units is now determined only by the partial ordering defined
by with clauses Instead of by all the dependence relations resulting from the elaboration of the
bodies.

S14. The pragma ELABORATE has been introduced.

S s. A program relying on the order of elaboration of library units is no longer erroneous.

Legality Rules

L1. A main program Is Illegal if any unit It needs is obsolete or absent. (A compilation unit
needs all the library units named in Its context clause. A package specification that
requires a body (see RM 7.1/4) needs a package body. A subprogram declaration or a
generic subprogram specification needs a body. A secondary unit needs any subunits it

10-27

10.5 Elaboration of Library Units Version 1 (Dec 86)

t'V
declares. Finally, if a compilation unit needs unit X, and unit X needs unit Y, then the
compilation unit also needs unit Y.)

12. A main program is illegal if the effct of a pragma ELABORATE is to require a circular .-
order of elaboration.

Test Objectives and Design Guidelines

T1. Check that a main program cannot be invoked if the use of pragma ELABORATE requires
a circular order of elaboration. ,S

Implementaton Guideline: The illegality can be detected either at compile time or at link time.

T2. Check that when several compilation units are submitted to a compiler in a single
compilation, the order of compilation need not be the same as the required order of
elaboration.

T3. Check that the elaboration of library units required by a main program is performed
consistently with the partial ordering imposed by the compilation order rules.
Imolementation Guideline: in particular, check that a library unit mentioned in the with clause of a subunit is
eaborated prior to the body of the ancestor library unit (and hence, prior to the body of the subunit's parent).

T4. Check that if pragma ELABORATE is applied to a package that declares a task object, the
implicit package body Is elaborated (and hence, the tasks are activated).

i;, .k that pragma ELABORATE is accepted and obeyed even it the unit named in the -.

prat ma does not yet have a body in the library, or if its body is obsolete.

Chece, that more than one name is allowed in a pragma ELABORATE.

T5. Check whether an implementation elaborates library unit bodies as soon as possible after
the elaboration of their specification, or whether it defers elaboration until as late as ,
possible.
Implementation Guideline: Try a case where if the body is elaborated as soon as possible, no PROGRAM-
ERROR will be raised. Include library packages, subprograms, and generic units in separate tests.

T6 Check that a program is not rejected just because there is no way to elaborate secondary
unts so PROGRAMERROR will be avoided.

L. i.e" o not usa pragm E' T ..s test. S

T. Check that the execution of a main program is not allowed if a needed unit is obsolete or
not Y.. compiled. In particular, check for obsolete library unit declarations and missing or

.sC'-: , 'ies (including subunits). Check for generic and nongeneric units.
lrpk1qnentation Guideline: Include a case where optimization might indicate that a particular library unit is
actually not needed. .,

Check tm~at if a package body is made obsolete but is not required by its package 5
specification, execution of the main program Is allowed (even if pragma ELABORATE is
specified for the package).
lmp'ementation Guideline: See IG 10.3/TS for the test without a pragma ELABORATE. (A version of this test
can be used here with a specification of pragma ELABORATE.)

Check that a unit named In a context clause must be present in the library even if the unit •
is not otherwise referenced.

T8. Check that pragma ELABORATE is ignored if any of the names given in the pragma do not
appear in a preceding context clause.
Implementatdon Guideline: Note: it is only possible to check that the test program is not considered illegal: an
implementation is allowed to obey the pragma for those names given in the pragma that have apoeared in a
precreding context clause.

10-28 ap

A. e

Version 1 (Dec 86) 10.6 Program Optimization

10.6 Program Optimization
Semantic Ramifications

s i. There is nothing In this section not covered more precisely by RM 11.6.

Changes from July 1982

S2. There are no significant changes.

Changes from July 1980

s3. There are no significant changes.

.1-..4.',.

.4

,- "-
o.°- •

*44:,

10" 291 '

Version 1 (Dec 86) 11.1 Exception Declarations a

Chapter 11
Exceptions

. 11.1 Exception Declarations

Semantic Ramifications

Si. Exception names in Ada follow Ada's normal scope and visibility rules (see RM 8.2 and RM
8.3). Hence, a local exception can be declared using the same identifier as a predefined
exception, and the local exception is distinct from the predefined exception.

s2. The RM says (RM 11.1/3) that exceptions associated with different generic instantiations
are different:

generic
package GENEXC is

EXC : exception;
end GEN EXC;

p en E

package GP2 is new GENEXC;
package GP2 is now GENEXC;

GP1 .EXC Is distinct from GP2.EXC, which implies that

when GPl.EXC I GP2.EXC =>

is legal, since the denoted exceptions are different (RM 11.2/5).

S3. It is necessary to distinguish the instantiation of a generic unit, which is a textual
occurrence of a syntactic form, from the elaboration of an instantiation. The difference is
illustrated by the following example (adapted from a comment made by G. Dismukes, February,
1981):

with TEXTIO; use TEXT 10;
procedure RAISE EXC (CALL AGAIN BOOLEAN) is

package GP is new GEN EXC; -- (1)
begin

if CALL AGAIN then
begin

RAISEEXC (CALLAGAIN => FALSE); (2)
exception

when GP.EXC => (3)
PUTLINE ("SANE");

end;
else

raise GP.EXC; (4)
end if;

end RAISE EXC;

This procedure is called as follows:

begin
RAISE EXC (CALLAGAIN => TRUE); -- (5)

exception

1 1-1

11.1 Exception Declarations Version 1 (Dec 86)

when others => -- (6)
PUT LINE ("DIFFERENT"); .":.'

end;

The instantiation at (1) will be elaborated twice, once when RAISEEXC is called from (5) and
once when RAISEEXC is called recursively at (2). After the second call, GP.EXC is raised at
(4); in the execution of (4), GP denotes the package resulting from the second elaboration of
GP's declaration. This exception is passed to the handler at (3), which names the exception
declared within the package resulting from the first elaboration of GP's declaration. Since there
is but one instantiation, the exception name given in the handler at (3) denotes the same Z Q
exception as that given in the raise statement at (4), even though the name GP denotes
different packages in both these occurrences. Therefore, this program prints "SAME". The
effect is the same if an explicit package declaration is written in place of the generic
instantiation.

s4. If an exception is declared in the visible part of a library package, the exception can be ,' a
named by separately compiled units that name the package in a context clause. An 3
implementation must ensure that different units referring to the library package treat the
package's exception as the same exception (see RM 7.2 and RM 8.3).

S5. It is possible for an exception to be propagated out of the scope of its declaration (e.g., into
a subprogram that Is unable to name the exception explicitly) and then have the exception ,
Propaaated back into its scope (see IG 11.4/S4). This means that in general, each declared
e,,t.io1 ,even those declared in separately compiled units) must have a unique run-time

Changes from July 1982

s6. PROGRAMERROR is raised if execution reaches the end of a function.

S7. NUMERICERROR can be raised when an implementation uses a predefined numeric . ..

operation to implement some construct.

Changes from July 1980

-- "s declared in generic units are distinct for each instantiation.

sq. SELECTERROR is no longer a predefined exception.

si0. PROGRAM ERROR now covers the situation SELECTERROR used to cover as well as
other exception situations.

s1 i* The elaboration of a declarative item and the execution of a subprogram call now raise
STORAGEERROR when storage is insufficient for those actions.

S12. The cases when an implementation is not required to support NUMERICERROR are
listed in RM 4.5.7/7 and RM 3.5.4/10.

Test Objectives and Design Guidelines

T1. Check that the predefined exceptions (CONSTRAINTERROR, NUMERICERROR.
PROGRAM_ERROR, STORAGE ERROR, and TASKINGERROR) may be raised
explicitly with raise statements and may have handlers written for them.

T2. Check that CONSTRAINTERROR, NUMERICERROR, PROGRAM ERRC'p
STORAGEERROR, and TASKING_ERROR are not reserved words.
Implementation Guideline: Check not only that the names can be redeclared as ,ariabies ,ut
redeclared names cannot still be used in a raise statement (see also IG 11.27TI and IG 11 3 1

T3 Check that a user-defined exception having the same name as a predehriec ...

distinct from the predefined exception.

11-2

%- -..-.

AD-MISS 64? TIE RON (TRADE NME) COMPILER VALIDATION CAPANILITY 7/9
INPLENENTERS' GUIDE VERSION ICU) SOFTECH INC WALTHAN A

L IMCLSSIFIED F/ ±2/5 UmhlhElmhlmhhI
IIIIIIIIIIIIII
IIIIIIIIIIIIIu
IIIEIIIIIEEEI
Ellllllllllll
llllllllhhlll

.1

L
A

m~136

A L6 '40 12.0

11111111111.8

liii I 125 111 4

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STADADS-~4

A

%

%'

- gm % %% % -

.0 .4 .

Version 1 (Dec 86) 11.2 Exception Handlers
S

T4. Check that an exception declared in a recursive procedure, unlike a variable declared in a
recursive procedure, is not considered different for each recursive activation of the
procedure, i.e., different recursive activations should all refer to "the same" exception
entity. Check that this holds also for exceptions declared In blocks and packages insiderecursively called procedures.

T5. Check that exceptions declared in generic packages or procedures are considered distinct
for each instantiation.

Check that an exception name declared in a generic package instantiation in a recursive
procedure denotes the same entity even when the instantiation is elaborated more than
once because of recursive calls.

T6. Check that SELECTERROR and 'FAILURE are no longer predefined exceptions.

17. Check that CONSTRAINTERROR is raised by constraint violations. (This objective is
tested wherever constraint violations occur).

T8. Check that NUMERICERROR Is raised by predefined numeric operations that cannot
deliver a correct result (see IG 4.5.3.a/T4, IG 4.5.3.b/T22, IG 4.5.3.c/T32, IG 4.5.4.a/T1 2,
IG 4.5.4.b/T22, IG 4.5.4.b/T32, IG 4.5.5.a/T4, IG 4.5.5.b/T23, IG 4.5.5.b/T34, IG
4.5.6.a/Tl3, IG 4.5.6.b/T22-T24, IG 4.5.6.ciT32, IG 4.5.6.d/T42, and IG 4.5.6.d/T52).

T9. Check that PROGRAMERROR is raised:

" if execution reaches the end of a function (see IG 6.5/T3);

* upon an attempt to call a subprogram, activate a task, or elaborate a generic
instantiation when the corresponding bodies have not yet been elaborated
(see IG 3.9/T6-T8);

e by the execution of a selective wait that has no else part when all alternatives
are closed (see IG 9.7.1/T1 7).

T10. To the extent possible and reasonable, check that STORAGEERROR is raised when:

" storage allocated to a task Is exceeded;

" storage for allocated objects Is exhausted;

" storage for a declarative item Is insufficient;

* storage for execution of a subprogram call is insufficient.

11.2 Exception Handlers
Semantic Ramifications

Changes from July 1982

si. There are no significant changes.

Changes from July 1980

S2. The term "frame" is introduced.

Legality Rules

L1. Each name occurring as an exception choice must have been declared as an exception.

.2. A set of exception choices must not refer to a particular exception more than once, either

11-3
L2. setf chice refr tan athe

,4-%

'I'

11.2 Exception Handlers Version 1 (Dec 86)

within a given exception handler or in a sequence of exception handlers within the same
frame.

L3. An others exception choice, If present, must appear as the only choice in the last handler "
of the sequence of handlers.

Test Objectives and Design Guidelines

These exception handlers should be designed so as not to raise any exceptions, either
explicitly or Implicitly. In particular, the exception being handled Is not to be re-raised.

Note: Single-level exception handling for all predefined exceptions will be checked
implicitly as a result of tests for constructs raising predefined exceptions. These tests are
associated with the RM sections where the constructs are defined. However, an additional test i" -

is defined in IG 11.4/T4.

T1. Check that the name in a handler must be an exception (predefined or programmer-
defined). (Use of the notation STANDARD.NUMERIC_ERROR, etc. in a handler is tested p
in IG 8.6/T6. Checks that a declared exception name is or Is not hidden appropriately are
performed in IG 8.3/T21 -T25.)

T2. Check that an exception cannot be referred to more than once in a single handler or in a
sequence of handlers.
Implementation Guideline: Try names of the form STANDARD.NUMERICERROR, and NUMERICERROR, p
as well as P.SINGULAR and SINGULAR (where P Is a procedure and SINGULAR is a locally defined
exception). Try names that rename exceptions as well.

T3. Check that others can only appear by itself at the end of a sequence of exception
handlers, and more than one others choice Is not allowed.

T4. Check that a

" predefined exception, or

" programmer-defined exception,

raised several (at least 3) levels Inside a hierarchy of nested blocks, can be successfully
Ih'rd- in an outer block several levels 7-y from the place of occurrence. Handlers
containing:

" a single exception-choice,

" several exception-choices, and

" others

should be tried. The handler should not itself raise any exception. One or two other
exception handlers, Including one mentioning the exception by name, should be present in
some block textually enclosing the first exception handling block.
Implementation Guideline: Try nested blocks both inside and outside an exception handler.

T5. Check that a return statement can appear in an exception handler, causing control to leaveI
the subprogram containing the handler.
Implementation Guideline: Check both functions and procedures.

T6. Check that local variables (and parameters) of a subprogram, a package, or a task are
accessible within a handler.

17. Check that an exit statement in a handler can transfer control out of a loop. ,.)

11-4
P

Version 1 (Dec 86) 11.3 Rais, Statements

11.3 Raise Statements
Semantic Ramifications

Si. The identity of an exception causing a handler to be executed must be stored so the
exception can be further propagated, if necessary, by a raise statement that does not name an
explicit exception. The storage place used to hold the Identity of the exception must, in general, %
be allocated within the handler's frame; It Is Inadequate to allocate a single location per task:

when A I B ->
begin

raise CONSTRAINT ERROR;
exception

when CONSTRAINT ERROR => null;
end;
raise; -- must raise A or B, not CONSTRAINT ERROR

Changes from July 1982 ,

s2. There are no changes.

Changes from July 1980 -

s3. There are no significant changes.

Legality Rules

L1. The innermost construct enclosing a raise statement not mentioning any exception name
must be an exception handler, not a subprogram, package, task, or generic unit.

L2. The name given in a raise statement must denote an exception.

Test Objectives and Design Guidelines

Ti. Check that the identifier mentioned in a raise statement must be an exception (predefined
or programmer-defined).
Implementation Guideline: Redeclare the predefined exception names as nonexceptions, e.g., as INTEGER.
and then try to use the redeclared names in a raise statement. In addition, try a programmer-defined integer
variable name and undeclared names in an exception handler.

T2. Check that a raise statement that does not name an exception is forbidden outside an
exception handler.
Implementation Guideline: In addition to simple cases, try raise statements in contexts like the following:

when 1 1 2->
declare

RANG3 EIRROR :exception;
pracedu: P Is -- use a package, task, and generic unit
begin

raise; -- illegal
end ;:

begin N
raise ANG.. ERROR;

exception
when RANGEERROR -> P:end: i7

T3. Check that a raise statement containing no exception name propagates the exception
being handled to another handler; use the raise statement in

• a handler specific to that exception,

11-5
S .

11.4 Exception Handling Version 1 (Dec 86)

* a handler for several exceptions including the one being propagated,

* a handler for others.

Implemontaon Guideline: Use one case where an exception is raised and handled within the handler before
the initial exception is propagated further by raise;.

T4. Check that when an Inner unit redeclares an exception name (either predefined or
programmer-defined), thereby hiding the definition previously in effect, then the hidden
definition is still available for use by component selection (from the outer module, or,
respectively, from the predefined module STANDARD).

T5. Check that a statement of the form

raise [exception.name] when condition;

is forbidden.

11.4 Exception Handling
Semantic Ramifications

si. Both RM 11.4.1 and RM 11.4.2 are discussed here. %-

S2. it is possible to propagate an exception out of a compilation unit. When the compilation
unit is a library package or a main program, and an exception is propagated, the execution of
the main prog.am Is abandoned. The RM does not define what it means to abandon execution.
In particular, it is implementation-dependent whether the exception is propagated to the external
environment. However, to help In debugging programs, such exceptions should be made -.-
available to the main program's environment. Moreover, an Implementation should preserve the -, .
context giving rise to an exception until a handler is found; if no handler exists, then the
preserved context can be used by the main program's environment to provide useful information
about the situation giving rise to the exception.

S3. For package body subunits that raise an exception, the exception is propagated to the ,environment containing the subunit's stub. For example:

procedure P is
package Q is %

end Q;
package body Q is separate;

begin ... end P:

If an exception is raised during the elaboration of O's body, the exception will be propagated to
P's caller, just as would be the case for any exception raised in P's declarativepart.

S4. Exceptions, unlike variables, can exist outside the scope of their declaration. In particular, ..
they can be propagated into scopes where they cannot be named, and in such cases, they can
be handled only by an others handler. Moreover, It Is possible to propagate an exception out of
its scope and then back into its scope (see below). The practical consequence is that all
declared exceptions must be uniquely Identifiable at run time independent of the scope in which
they are declared. For example, consider the following set of packages and procedures. They
have been designed so the exception Q.ECP is propagated out of its scope and then back into
its scope. The idea is that 0.0 calls P.F, which calls Q.H, which raises exception Q.ECP.
Since ECP is local to 0 and not known to P, it is propagated out of its scope to F and back into
its scope to G.

.,

Version 1 (Dec 86) 11.4 Exception Handling I

package P is
procedure F; -- called by Q.G

end P;

package Q is
procedure G; -- call this procedure first
procedure H; -- called by P.1'

end Q;

with P;
package body Q is

ECP : exception;
procedure G is
begin

P.F; -- call F;
exception

when ECP => ... Q.ECP can be handled here, even
after it has been propagated out
of the scope of its declaration.

end G;

procedure H is 1

begin
raise ECP: -- propagated to H's caller

end H;
begin

Q.G; -- start execution
end Q;

with Q;
package body P is .

ECP : exception; -- distinct from Q.ECP
procedure F is
begin

Q.1;
-- call H

raise ECP; -- raise P.ECP (won't be executed)
exception

when ZCP -> -- only handles P.ECP, not Q.ECP 'I'
when others -> raise; -- handles Q.ECP

end F;
end 1P;

Note that all the above units can be compiled separately or together in a declarative part
(without the with clauses) without affecting the propagation and handling of Q.ECP.

Changes from July 1982

8s. There are no significant changes.

Changes from July 1980

so. The execution of a task is completed rather than terminated when an exception is raised
but not handled within the task.

S7. If a frame is a subprogram or a block statement with dependent tasks, then an exception is
not propagated until all dependent tasks have terminated.

11-7

'e .'' ", ,.1 .'' ". * " "..' ". ". ". ". : "" " ". -,' ." .". €" ..', ", ", "" " " ", ". " .',.. -'. ". ." ".- .. .- ."-'. .- ,- ., • ,e"," ""i: I

.1 > , , .,, ., ,. , . . ,..... , ...: .,., , • >, - . .

11.4 Exception Handling Version 1 (Dec 86)

se. When a task being activated raises an exception In its declarative part, TASKINGERROR
is raised at the point of activation instead of the original exception.

Test Objectives and Design Guidelines

T1. Check that any exception raised in the sequence of statements of a subprogram body is
propagated to callers of the subprogram, not to the statically enclosing lexical environment.
Implmentadon Guideline: Both predefined and programmer-defined exceptions should be checked.
Implementation Guideline: Some of the subprograms in the dynamic call chain should have exception handlers
and some should not. Automatic propagation through more than one level of call should be attempted in some
test cases.

T2. Check that an exception raised during the elaboration of a subprogram's declarative part is
propagated to the caller of the subprogram, not to the environment statically enclosing the
subprogram's body.
Implementation Guideline: The subprogram body should contain a handler for the exception raised in the
declarative part (although this handler should not be executed).
Implementation Guideline: All predefined exceptions can occur when declarative parts are elaborated. The
compile-time processing of initializations and the checking of constraints need not be performed by the same
compiler code that processes assignment statements. However, we assume that it would be extremely unlikely
for a compiler to propagate one exception correctly and not another. Therefore only the following 3 cases need
be included in the tests: :e

" a predefined exception propagated from a function called when elaborating the declarative part;

' a predefined exception raised when elaborating a constraint and by initialization;

* a programmer-defined exception propagated out of a function called when elaborating the
declarative part.

T3. Check that exceptions raised during the elaboration of package specifications or
declarative-parts of blocks and package bodies are propagated to the environment
statically enclosing the block or package (note that no exceptions are propagated from a
task body; see RM 11.4.1/9 and IG I 1.4/T13).

As a subcase, check specifically that exceptions raised by functions invoked during the
elaboration of a declarative part are always propagated outside the declarative part.
Implementation Guideline: The block or package should have a handier for the exception being propagated ',

.l h-rdle- s'ould not be executed).

T4. Check that

" an implicitly raised exception,
San explicitly raised predefined exception, -

" an explicitly raised programmer-defined exception, and

" a programmer-declared exception having the same name as a predefined
exception

occurring in the body of a unit possessing:

" a handler specific to the exception,

e a handler for several exceptions ("A or B or C") including the one that
occurred, and

9 an others handler

is always handled locally.

T5. Check that exceptions propagated out of a handler are propagated outside the unit

11-

Version 1 (Dec 86) 11.5 Exceptions Raised During Task Communication

containing the handler, without invoking some other handler associated with that unit or
recursively re-invoking the same handler.
Implementation Guideline: There should be no blocks inside these handlers.

T6. Check that exceptions occurring in a block declared inside an exception handler follow the
rules for blocks.

T7. Check that the statement part of package bodies can raise, propagate, and handle
exceptions. Check also that if a package body's exception handler handles all exceptions
raised within the sequence of statements and does not raise an unhandled exception, no
exception is propagated out of the package body.

T8. Check that "systematic unwinding" is possible: an exception occurring deep inside a
combined static/dynamic hierarchy is handled successively by each unit in the propagation
path, each handler on the path performing its unit's "last wishes" and re-raising the
exception to allow the remaining units on the propagation path to perform their "last
wishes."
Implementation Guideline: Use blocks, packages, and subprograms.

T9. With a user-defined exception, check that the exception can:

* be handled out of its scope only with a handler for others, then be re-raised %
for dynamic propagation back into its original scope; and, finally,

* be handled again, back in scope, under its original name.

Check also that predefined exception names redeclared by the user behave similarly (with
the difference that out-of-scope a specific handler for that name refers to the predefined
exception).
Implementation Guideline: Check using separately compiled units as well as single units.

T1 0. Check that when an exception is raised in a subprogram or block with dependent tasks, no
exception is propagated until all the dependent tasks have terminated (see IG 9.4/T1).

Check that an exception Is propagated from a package body even if the body declared
some task objects that are not yet terminated (see IG 9.4/T7).

T11. Check that unhandled exceptions raised in package subunits are propagated to the
environment statically enclosing the corresponding body stub.

T12. Check that when an unhandled exception is raised in the main program, the execution of
the main program is abandoned.

TI 3. Check that exceptions raised in the declarative part of a task body raise TASKING-
_ERROR at the point of task activation, not the original exception (see IG 9.3/T4).

Check that exceptions raised In task bodies do not propagate outside the task.

T1 4. Check that when exceptions are raised during the elaboration of a library unit, execution of
the main program is abandoned.

11.5 Exceptions Raised During Task Communication
Semantic Ramifications

Changes from July 1982

Si. There are no significant changes.
V V.V

S' l

11.6 Exceptions and Optimizations Version 1 (Dec 86)

Changes from July 1980

s2. There are no significant changes.

Exception Conditions

El. If task S calls an entry in task T, TASKINGERROR is raised in S at the entry call if T is
completed at the time of the call or prior to accepting the call.

E2. During a rendezvous, TASKINGERROR is raised in the calling task if the task containing
the accept statement is abnormally terminated as the result of an abort statement.

Test Objectives and Design Guidelines

T1. If a user-defined or predefined exception is raised during a rendezvous but is not handled
within the rendezvous, check that the exception is propagated both within the calling task
(at the point of the entry call) and within the called task at the point of the accept statement.

T2. Check that TASKINGERROR is raised under the appropriate conditions:

a. when the called task is completed at the time of the call (TASKINGERROR is
raised in the calling task);

b. when the called task is not completed at the time of the call, but terminates
4" before the entry call is accepted (TASKINGERROR is raised in the calling

task);

c. wioin TASKINGERROR is raised explicitly or by propagation within the
accept statement (TASKING_ERROR is raised in both tasks);

d. when the called task is terminated by an abort statement during rendezvous .
(TASKINGERROR is raised In the calling task);

T3. Check that when the calling task is aborted during a rendezvous, no exception is raised in
the called task.
Check that when the calling task is aborted before the rendezvous has started, the entry
, I1 i - celled.

11.6 Exceptions and Optlrnizations
Semantic Ramifications

Si. The purpose of this section of the RM is to indicate that certain optimizations can be
provided by an implementation. One set of optimizations permits evaluating a function earlier
man its textual position would indicate, as long as the function would eventually be evaluated
before control leaves a certain region of text, namely the statements between begin (or do) and
exception or end. In short, a certain amount of Imprecision is allowed with respect to when an
exception is raised in such a sequence of statements. The rules allow the evaluation of
arithmetic operations In parallel or with pipelined arithmetic units even if the existence of
NUMERICERROR is not Indicated until control has entered some statement following an
arithmetic expression. The only requirement is that no exception due to evaluating some
operation be raised after control has passed out of a frame or into an inner frame. Hence, if a
programmer requires more precision over the region of text where a particular exception can be
raised, then the desired text can be enclosed in a block.
s2. The rules are written primarily with the predefined operations in mind, but they are stated
so that they apply to user-defined functions as well if a compiler can determine that they are .'' ",
functions satisfying the criteria listed in RM 11.6i2.

11-10 A

%C% N % N N.I N

Version 1 (Dec 86) 11.6 Exceptions and Optimizations

S3. Since an implementation can suppress the evaluation of operations yielding unneeded
values (RM 11.6/7), boolean expressions can always be short-circuit evaluated if no user-
defined subprograms are Invoked, e.g.,

if TRUE or A = B(50) then

need not raise CONSTRAINTERROR even if B'LAST is less than 50.
s4. Since the order of operand evaluation is not defined by the language, given

begin
D := 30;
if A - D/(A-3) or A = B(50) then ...

exception

there is no guarantee that NUMERICERROR will be raised instead of CONSTRAINTERROR
if A = 3. Either operand of or can be evaluated first. Moreover, if CONSTRAINTERROR is
raised, then there is no guarantee that D = 30 in a handler for this exception, since B(50) can be
evaluated before the assignment to D is performed. (The canonical order of evaluation requires
assigning 30 to D before evaluating B(50), but under the assumption that no predefined
operation propagates an exception (RM 11.6/4), the effect is unchanged if B(0) is evaluated
prior to the assignment to D, and so this evaluation order is allowed.) However, given

begin
D := 30;
if A = D/(A-3) or else A = B(50) then ...

exception

B(50) cannot be evaluated before D/(A-3) has been evaluated (since B(50) will not always be
evaluated in the canonical order if no exceptions are raised), and hence, if CONSTRAINT-
_ERROR is raised, D must equal 30.

Changes from July 1982

s5. There are no significant changes.

Changes from July 1980

so. The innermost enclosing frame must be the same in the alternate order as in the canonical
order, and the same exception handler must apply.

S7. Reordering of operand associations within an expression is allowed even if the reordering
removes an exception or introduces a predefined exception.
S8. An implementation can use an operation of a type with a wider range than that of the base
type of the operands so long as it delivers the correct final result. Intermediate results may lie
outside the range and NUMERIC-ERROR need not be raised.

Test Objectives and Design Guidelines

Since an Implementation need not provide any of the optimizations permitted by this
section, we do not give any test objectives for this section In this version of the IG. Later
versions will contain test objectives to check that the permitted optimizations are not applied
inappropriately.

11-11

7.7.

11.7 Suppressing Exceptions Version 1 (Dec 86)

11.7 Suppressing Exceptions
Semantic Ramifications

SI. This pragma grants permission to the compiler to suppress certain checks. It does not
issue an order to suppress the checks; therefore, the compiler can choose not to suppress the

checks.

S2. There are some checks that cannot be suppressed because the exception situation is not
covered by the wording for any check name. These situations are:

checking whether a called task is complete or terminated when an entry call is
made (RM 11.5/2);

* checking whether a task is completed abnormally during a rendezvous (RM
11.5/5);-.-

* in an array conversion, checking that the constraint for the operand's
component type equals the constraint for the type mark's component type (RM
4.6/13);

" checking that a function is left other than by returning a value or by raising an
exception (RM 6.5/2).

s3. The name used as the second argument must be a simple name or an expanded name.
'herefore, checks on record or on array components cannot be suppressed.

s4. Note also that names which are not in scope cause the pragma to be Ignored (see RM
2.8/9). (However, the compiler should issue a warning.)

S5. Note that ACCESS CHECK, DISCRIMINANT_ CHECK, INDEXCHECK, LENGTH- ,. -.

_CHECK, and RANGECHECK can be applied to any type or object, including types and
objects for which these checks do not apply. In general, the intent is to allow the suppression of - r.

checks for only the objects and types to which the specified checks apply. An implementation
must ignore SUPPRESS pragmas that attempt to suppress checks for types that do not apply.

Changes from July 1982

S6. There are no significant changes.

Changes from July 1980

S7. The name in a SUPPRESS pragma must be a simple name or an expanded name.

se. The SUPPRESS pragma can appear within a package specification.

s9. The SUPPRESS pragma can be applied to names of generic units and names of
subprograms.

sio. The effect of applying SUPPRESS to a task Is defined.

Si 1. ACCESS CHECK applies now to the use of attributes and to slices.

S12. The range check implicit in checking Index values for aggregates and actual parameter I
values of generic Instantations can now be suppressed.

S13. DIVISIONCHECK and OVERFLOWCHECK can only be suppressed for numeric types.

S14. ELABORATIONCHECK has been added.

ss. STORAGECHECK can only be suppressed for access types, task units, and
subprograms. . .

11-12
IS

-. -..--.
4..-.' ~. .. - ,,." - ".. m .|

Version I (Dec 86) 11.7 Suppressing Exceptions

Legality Rules

If any of these conditions is not satisfied, the pragma has no effect (RM 2.8/9).

L1. The identifier appearing as the first argument of a SUPPRESS pragma must be one of the
predefined names.

L2. The pragma can only appear in a declarative part of a frame or in a package specification.

L3. ACCESS CHECK, DISCRIMINANT CHECK, INDEXCHECK, LENGTH CHECK, and
RANGECHECK can only be applied to an object or a type.

L4. DIVISIONCHECK and OVERFLOWCHECK can only be applied to numeric types.

L5. ELABORATIONCHECK can only be applied to task units, generic units, and
subprograms. v

L6. STORAGECHECK can only be applied to names denoting access types, task units, and
subprograms.

Test Objectives and Design Guidelines

Since a SUPPRESS pragma need not be obeyed, the only tests defined at this time are
those needed to check that the pragma is recognized properly. Tests to evaluate whethe. -
SUPPRESS is being obeyed will be specified in later versions of the Implementers' Guide. The
currently specified tests indicate the minimum support every implementation must provide for
SUPPRESS.

Ti. Check that an identifier ending in -CHECK, but not one of the predefined check names,
cannot be given as the first argument of SUPPRESS.

Check that SUPPRESS is only permitted in a package specification or in the declarative
part of a frame.

T2. Check that any of the predefined checknames are permitted as the first argument of
SUPPRESS, namely, names beginning with ACCESS, DISCRIMINANT, INDEX, LENGTH,
RANGE, DIVISION, OVERFLOW, ELABORATION, and STORAGE and ending with -

_CHECK.
Implementation Guideline: Try a SUPPRESS pragma even when objects and types have been declared with
one of these check names.

T3. Check that the second argument of SUPPRESS can only be an object name, a type name,
or a subtype name (including task type names) when the first argument is ACCESS-
_CHECK, DISCRIMINANTCHECK, INDEXCHECK, LENGTHCHECK, or RANGE-
-CHECK.
Implementation Guideline: Include some forms of SUPPRESS with ON.

T4. Check that the second argument of SUPPRESS can only be the name of a numeric type
when the first argument is DIVISIONCHECK or OVERFLOWCHECK.

T5. Check that the second argument of SUPPRESS can only be a name denoting a task unit,
a generic unit, or a subprogram when the first argument is ELABORATIONCHECK.

T6. Check that the second argument of SUPPRESS can only be a name denoting an access
type, a task unit, or a subprogram when the first argument is STORAGECHECK.

11-13

-C

*l% " % % • • . % %, % "• ."" %". , "•" .• . 4 .. .•., - . C . • . • *r 4 '

Version 1 (Dec 86) 12.1 Generic Declarations

Chapter 12

,, ,, Generic Units

12.1 Generic Declarations
Semantic Ramifications

S1. In this section, we will consider those issues that are unique to generic declarations as a
whole. Issues that apply only to certain forms of generic parameters will be discussed in later
subsections.

S2. Although generic units have many properties similar to those of macros, a generic
declaration cannot be treated simply as a body of unanalyzed text. In particular, the legality of a "p

generic declaration is independent of whether it is ever elaborated, or ever used, in an
instantiation.

S3. In accordance with RM 8.3/5, the declaration of the generic unit is not visible either directly
or by selection within the unit's generic formal part. In addition, since a generic subprogram is
declared using a subprogram specification (preceded by a generic formal part), and since RM
8.3/16 gives a rule applicable to any subprogram specification, a generic subprogram's identifier
cannot be used within the subprogram's specification:

-- a library unit
generic

X INTEGER := F; -- illegal; RM 8.3/5
Y INTEGER STANDARD.F; -- illegal; RM 8.3/5
Z INTEGER F.X; -- illegal; RM 8.3/5
W INTEGER X; -- legal

function F (
A : INTEGER F.W; -- illegal; RM 8.3/16
B : INTEGER W) -- legal

return INTEGER;

Within F's body, F Is visible but It still cannot be used within the subprogram's specification:

function F (
A INTEGER F.W; -- still illegal; RM 8.3/16
B INTEGER W; -- legal

return INTEGER is ...

RM 8.3/16 forbids the use of any identifier F within a subprogram specification, even if the
identifier does not denote the subprogram (see IG 6.1/S for further examples). For example, the
identifier F cannot be used as the name of a record component in a component selection in a
default expression for one of F's parameters. Since RM 8.3/16 does not apply to a generic
formal part, however, such a component selection would be allowed there:

type REC is
record

F : INTEGER;
end record;

R REC;

:-:1

..-. ..,. .

:.--. :...,-,,,..- ,. , -:..:..,..,..... .: .-. ,. ..-.. ., :., ,.:'..-. -.-. , , .. ,......,.,..... .,,....,. .,.... .. ,. .-... . .,.¢

* - t C --71V

12.1 Generic Oeclarations Version 1 (Dec 86)

generic
X : INTEGER := R.F; -- legal; F denotes record component - 6--.14 ,,

function F (Y : INTEGER :- R.F); -- illegal use of F; RM 8.3/16

S4. The identifier of a generic unit hides from the beginning of the declaration's immediate
scope (see RM 8.3/14-15), i.e., from the beginning of the generic formal part (see RM 8.2/2). A
generic package is not overloadable either Inside or outside the unit. Consequently, any use of
the package's identifier within the generic formal part is illegal, since all outer entities having the
package's identifier are hidden, and the unit's name is not visible until after the end of the
generic formal part (RM 8.3/5):

function F return INTEGER;

with F;
package P is

X : INTEGER :=F -- invokes the library unit

generic
Y : INTEGER := F; -- illegal; no F is visible
W INTEGER STANDARD.F;

package F is
Z : INTEGER := F; -- illegal; only pkg F visible
V : INTEGER STANDARD.F; -- okend F;

Z INTEGER := F; -- illegal; only the generic unit is visible
-- STANDARD.F would be legal. . I..

end P;

The F named in the initialization expression for F.Y cannot denote STANDARD.F because the F
denoting STANDARD.F Is hidden by the declaration of P.F. STANDARD.F can be used in the
initialization of W, however, because generic unit F's declaration only affects direct visibility of
STANDARD.F (not visibility by selection).
35. Thb .,2 ntifier of a generic subprogram is overloadable within the generic unit, since within
the unit, the identifier is considered to denote a subprogram, not a generic unit (RM 12.1/5).
Within the generic formal part, however, the identifier is not considered overloadable, so an
implementation need not consider the parameter and return type profile in deciding what
declarations are visible:

function F return FLOAT; I

with F;
package P is

X : FLOAT F; -- invokes the library unit 2.

generic 11
Y FLOAT := F; -- illegal; STANDARD.F is hidden
W FLOAT :- F (3); -- illegal; P.F not yet visible S.

function F (A : INTEGER) return FLOAT;

Z FLOAT F; -- illegal; only the generic unit is visible
ed-- STANDARD.F would be legal. -)end P; """ i'

12-2

,",. , ,,, ,,,- -. ..+ ..,,, .., + . .. -. -. . . - -. +. .,,. , ".

.'j+e . . .:+.. . .,.' :-'.'.-- -';.' -'... :. .+"""+",-.

Version 1 (Dec 86) 12.1 Generic Declarations

Within F's generic formal part, P.F is not considered overloadable, and so hides STANDARD.F.
P.F Is also not visible within the formal part, so the initialization of Y is illegal. Similarly, P.F
would be illegal as the initialization expression for W. STANDARD.F would be allowed as the
initialization expression for Y, since it Is only the declaration of P.F that is not visible in the
generic formal part; other declarations of F are visible by selection. Within F's body, Y :- F
would be legal and so would W :- F(3), since within the body, P.F is overloadable.

Se. Although the identifier of a generic unit hides before it textually appears, a formal
subprogram parameter is visible after its declaration:

function F return INTEGER;

with F; .
package P is

generic
Y : INTEGER := F; -- illegal; STANDARD.F is hidden
with function F (X : INTEGER := 1) return INTEGER;
N : INTEGER := F; -- unambiguous; P.F.F
Z INTEGER F (3); -- legal; P.F.F

function F (A : INTEGER := 0) return INTEGER;
end P;

The initialization of W is unambiguous because STANDARD.F is hidden and P.F is not yet
visible. The only visible F Is the formal subprogram, P.F.F. (Note: the expanded name, P.F.F,
could not actually be written as W's Initialization expression since P.F is not yet visible.)

S7. Here are some more examples showing how formal parameter declarations follow the
usual visibility rules: .

fro package P is
type T is (A, B, C);
R : INTEGER;

• , -

generic
Q : INTEGER T'SIZE; -- size of STANDARD.P.T
R : INTEGER P.Q'SIZE; -- illegal; no P is

-- directly visible
S : INTEGER := P.T' SIZE; -- illegal; no P is

- - directly visible
type T is range <>;
U : INTEGER T'SIZE; -- size of P.P.T when a,

-- P.P is instantiated
U1 : INTEGER : STANDARD.P.P.T'SIZE;

illegal (see below)
V INTEGER := P.R'SIZE; illegal: no P is

directly visible
V1 : INTEGER := STANDARD.P.R'SIZE; ok (RM 8.3/13)

package P is

end P;and P ;

Within the generic formal part of P, the expanded name STANDARD.P.P is illegal because
generic unit P is neither directly nor selectively visible within its own generic formal part (see RM
8.3/5). Hence, STANDARD.P.P.T'SIZE Is Illegal.

* 12-3

12.1 Generic Declarations Version 1 (Dec 86)

so. To summarize the effect of the visibility rules for generic formal parts:

RM 8.3/5 Implies a generic unit is not visible either directly or by selection within .
its generic formal part. Hence no expanded name (e.g., STANDARD.P.P) is
allowed whose prefix (i.e., STANDARD.P) denotes a construct immediately
enclosing the generic unit and whose selector (i.e., the final P in
STANDARD.P.P) is the generic unit's Identifier. The identifier of the generic
unit is allowed to denote other entitles by selection, however, and so it can be
used:

" as the selector in an expanded name (e.g., STANDARD.P) whose prefix
(i.e., STANDARD) does not denote a construct immediately enclosing the
generic unit,

" as the selector denoting a record component (or a discriminant) (e.g.,
REC.P),

" as a choice in a record aggregate (e.g., (P => 5), and

" as a formal parameter name in a named association of a function call
(e.g., F (P -> 5)). P

(These are the only selection contexts applicable in generic parts; see RM
8.3/7-13.)

The identifier of a generic unit is not considered overloadable within its generic
formal part, and so hides all outer declarations with the same identifier. Hence,
if no formal parameter has the same identifier as that of the generic unit, then
the identifier of a generic unit is not allowed in a generic formal part as a type
mark, a primary, or a function name, nor is it allowed as the prefix of an indexed
component, a slice, a selected component, or an attribute, or as the default
name in a formal subprogram declaration.

s9. Names within the body of a generic unit are bound in the context of the body, just as for
nongeneric subprograms and packages. In particular, identifiers declared in a generic package

-',Ir'aW-r are directly visible ,'vit.hin tht corresoonding body (see IG 12.2/S).
Since the boy of a generic package or subprogram is textually separate from its declaration, P

different identifiers can be visible in the different contexts, and so different bindings can occur:

generic
type T is range <>;
X : INTEGER;

package P is
procedure R (Z : T);

end P;

X : INTEGER;
procedure R (Y : INTEGER);

package body P is
procedure R (Z : T) is ... end R; 4.-m

begin
R (X) -- equivalent to R (Y -> P.X)
R (0); -- ambiguous; R (Z >) or R (Y => 0)

end P;

12-4 3

Version I (Dec 86) 12.1 Generic Declarations

The first invocation of R is equivalent to R(P.X) because the declaration of X as a formal generic
parameter hides the outer declaration of X. The second call is ambiguous, because 0 could
have type T or type INTEGER, and there are ovedoadings of R having parameters of type T and
INTEGER. (See also IG 8,3.f/S.)

so. Within a generic subprogram or package, the generic unit has the usual properties of a
subprogram or package. In particular, entities declared within a generic subprogram or package
can be named using component selection, starting with the name of the generic unit. In addition,
for generic subprograms, calls naming the generic subprogram can be written within the unit;
subprograms that overload the unit's identifier can be declared inside the unit; and the name of
the unit can appear as an actual parameter in a generic instantiation:

generic
type U is range <>;
with function F (X : U) return U;

package P is
X : INTEGER 0;
Y : INTEGER P.X; -- legal

end P;

Z : INTEGER := P.X; -- illegal; P.X not visible

generic
type T is range <>;
function GEN FACT (X INTEGER) return INTEGER; -- overloads unit .1%

function GUN FACT (X : T) return T;

ALM% function GEN FACT (X T) return T is
procedure GINFACT (X : INTEGER) is ... end; -- overloads unit

-- and formal parameter o
package NP is new P (T, GINFACT); -- means instance of GEN FACT

begin 1te
if X>1h

return GEN FACT (X-1); -- recursion; invokes an instance
-- of STANDARD.GEN FACT

else
return 1;

end if;
end GEN-FACT;

s1 i. Within a generic unit, the name of the unit denotes an instantiation of the unit, i.e., tte
name is not considered to denote a generic unit, and so the unit cannot be instantiated within
itself:

generic
package P is

package NP is new P; -- illegal: P not generic
end P;

Direct and indirect recursive instantiations are also explicitly forbidden by RM 12.3/18 (see also
IG 12.3S).

S12. The name of a generic subprogram is considered overloadable within the unit, but not
outside the unit:

procedure EX is

12-5

. '. '.. . ' "'. .'J "-l'.' '.' .. ." .'.- ". ". ', ". " " " " -. "." ".""." " / ."''-' " " " " , ." : , - . -p

12.1 Generic Declarations Version 1 (Dec 86)

procedure P (X : FLOAT);

procedure P (Y, Z : INTEGER 4) is

generic
procedure P (W : INTEGER = 5);

procedure P (W : INTZGER : 5) is
begin

P (3); -- ambiguous
P (W => 3); -- legal
P (Y => 3); -- legal; P (3,4)
P (3.0); -- legal; ZX.P is overloaded

end P; -- IX.P.P

function P ... is ... end: -- illegal; P not overloadable
- - here

begin
P (4.0); -- illegal; EX.P hidden

end P; -- EX.P

These examples illustrate the different interpretations of a generic subprogram's name inside
and outside the unit. Inside the body, the generic identifier is overloadable. Since P's type
profie is not the same as the type profiles of either EX.P subprogram, the EX.P declarations are
not hidden within EX.P.P's body. Hence, EX.P.P overloads the EX.P declarations, and so, P(3)
is either EX.P.P (W -> 3) or EX.P (Y -> 3). Similarly, P(3.0) is equivalent to EX.P (X => 3.0).

Outside EX.P.P, P is not overloadable. Hence, the attempted declaration of function P is illegal. ."

Finally, the call P(4.0) is illegal because the only visible P within the body of EX.P is the generic
unit, EX.P.P, and a call to such a unit is forbidden from outside the unit.

The P(3) call would be legal if the generic subprogram had two formal parameters of type
INTEGER (with default values). In this case, EX.P.P and the second EX.P would have the
same type profile. Hence, the inner P would hide the second EX.P. Hence P(3) could only be
interpreted as referring to either the innermost P or to the EX.P that has a FLOAT parameter.
Since 3 is not implicitly convertible to FLOAT, the call would be resolved to the inner P.

S13. For a discussion of the situations in which a generic unit can be instantiated before its
declaration or body is completely elaborated, see IG 3.9/S. In particular, an instantiation can be .-

written prior to the textual occurrence of the corresponding body, and such an occurrence need "-
not raise an exception at run time. Examples are given later in IG 12.3.2/S.

S14. RM 7.4.4/4 imposes a restriction on the type of an out formal parameter declared "in an
explicit subprogram declaration." Subprogram -declaration is a syntactic term. In particular, the
specification of a generic formal subprogram is not a subprogram-declaration; such a
subprogram can have an out parameter of any limited type. The restriction is explicitly
extended to include generic procedure declarations:

generic

type T is limited private;
type A is array (INTEGER range <>) of T;
with procedure P (X : out T; Y : out A); -- ok

procedure Q (X : out T; Y : out A); -- illegal

Neither the declaration of parameter O.X nor Q.Y satisfy the requirements of RM 7.4.4/4.

124

;.'.

Version 1 (Dec 86) 12.1 Generic Declarations

Changes from July 1982

s15. There are no significant changes.

Changes from July 1980
Si. Formal object parameters must be declared with type marks (instead of subtype
indications).
S17. Default expressions of formal object parameters are not evaluated unless the value is
needed by an instantiation.
sis. It is clarified that within a generic unit, the name is considered to denote a nongeneric unit.
In particular, for generic subprograms, the unit's name is considered overloadable and can be
used in calls.

Legality Rules

L1. The designator of a generic subprogram must not be an operator symbol (RM 12.1/4).
1-2. Every subtype indication appearing in a formal array or an access type definition must-

have the form of a type mark (RM 12.1/4). .

L3. Outside of a generic subprogram body (RM 12.1/5), the name of the generic subprogram
must not be used in a subprogram call.

L4. Outside of a generic package (AM 12.1/5), the name of the generic package must not be
used in a use clause (see AM 8.4/1) or as the prefix of an expanded name (see AM
4.1.3/14-15). (Note: RM 4.1.3/16-18 does apply within a generic package.)

15. The Identifier denoting an object or a type declared as a generic formal parameter must be
distinct from all other identifiers declared in the same generic formal part. In addition, foi
generic subprograms, the identifier must be distinct from all identifiers declared in the
subprogram's formal and declarative parts (see AM 8.3/17 and AM 8.1); for generic
packages, the identifier must be distinct from all Identifiers declared in the package's
specification and in the body's declarative part (see AM 8.3/17).
For a generic subprogram, a formal subprogram parameter must not have the same
parameter and result type profile (see AM 6.6/1) as another subprogram declared explicitly

,, (AM 8.3/17) in the same generic formal part or in the declarative part of the generic unit's
body.
For a generic package, a formal subprogram parameter must not have the same
parameter and result type profile as another subprogram declared explicitly (AM 8.3/17) in
the same generic formal part, in the package specification, or in the declarative part of the
package body.

L6. The declaration of a generic unit is not directly visible within the unit's generic formal part

(AM 8.3/5), nor Is the generic unit itself visible by selection witlhn its generic formal part.
Consequently, if there is no formal parameter having the same identifier as the generic
unit, then the genetic unit's Identifier is not allowed within the unit's generic formal part as a
type mark; a primary; a function name in a function call; a prefix of an indexed component,
slice, selected component, or attribute; a default name in a formal subprogram declaration;
or a selector In an expanded name whose prefix denotes a construct immediately
enclosing the generic unit.

17. The identifier of a generic unit must be distinct from all other identifiers declared locally
! ,=L (AM 8.1/8) In the region containing the generic unit's declaration (AM 8.3/17).

In addition, the usual rules for subprogram and package declarations apply to the
specification of a generic subprogram and package:

12-7

" . -%):'*i ~ % ..

12.1 Generic Declarations Version 1 (Dec 86)

L8. A default expression is allowed only for formal parameters with mode In (RM 6.1/4).

L9. The base type of a default expression must be the same as the base type of its formal
parameter (RM 6.1/4).-.. -

110. A simple name is not allowed in a parameter declaration if the name refers to a formal
parameter declared earlier in the same formal part (RM 6.1/5).

L11. The simple name of a generic subprogram cannot be used within the subprogram's formal
part except to declare a formal parameter having the name of the subprogram (RM 8.3/16).
In particular, its use as a selector in a component selection, as a component simple name
in an aggregate, as a parameter name in a named parameter association, or as a simple
name in a default expression is forbidden.

L12. A generic function must only have parameters of mode In (RM 6.5/1).

L13. An out parameter of a generic subprogram must not have a limited type unless (RM
7.4.4/4):

" the type is a limited private type,

" the declaration of the generic subprogram occurs within the visible part of the
package that declares the limited private type (including within any nested
packages), and

" the full declaration of the limited private type does not declare a limited type.

L14. If a generic subprogram declaration is given in a declarative part, then a body (or body
stub) must be provided later (RM 12.2/2) in the same declarative part (RM 3.9/9).

L15. If an identifier is present at the end of a generic package specification, it must be the same
as the package identifier (RM 7.1/3).

Test Objectives and Design Guidelines

Implementation Guideline: To check that a generic declaration has a certain property, it may be necessary to
instantiate it. or even to invoke the instantiated unit.

'; Chek that a generic formal object or subprogram declaration cannot contain a reference
to itself in its initialization expression or its default name.

T2. Check that generic In parameters and attributes of generic object parameters are not
considered static.
Implementation Guideline: Try using parameters and attributes in choices, accuracy constraints, integer type
definitions, fixed point type definitions, representation specifications, or as discriminant values in an aggregate
when a variant depends on fte value. Include the use of attributes in generic formal parts.

T3. Check that the only allowed form of subtype Indication in a generic formal part is a type
mark (see IG 12.1.1/T9 and IG 12.1.2/Ti).

T4. Check that elaboration of a generic package declaration does not elaborate the
specification portion of the package.

T5. Check that the identifier of a generic unit cannot be used in its generic formal part as a type
mark, a primary in an expression, a function name in a function call, a prefix of an indexed
component, slice, selected component, or attribute, a default name in a formal subprogram
declaration, and a selector of an expanded name whose prefix denotes a unit immediately
enclosing the generic declaration.
Implementation Guideline: For a generic function, include cases to show that the function is not considered
overloadable within its generic formal part. In particular, check for declarations that are potentially visible
because of use clauses as well as for declarations given in an outer declarative region. ,.,'",.

12-8

e.
.

Version 1 (Dec 86) 12.1 Generic Declarations

Check that the generic unit's identifier can be used in its formal part as the selector in an
expanded name to denote an entity in the visible part of a package, or to denote an entity
immediately enclosed In a construct other than the construct immediately enclosing the
generic unit.

Check that the generic unit's Identifier can be used In its formal part as a selector to denote
a component of a record object, as the name of a record or discriminant component in a
record aggregate, and as the name of a formal parameter in a function call.

Check that if a formal subprogram parameter has the same identifier as the generic unit,
the identifier can be used In a later formal parameter declaration either as a default
subprogram name or In an Initialization expression.

T6. Check that a generic formal part cannot precede a subprogram body (see IG 12.2/T1).

17. Check that a generic unit cannot be instantiated inside the unit itself (see IG 12.3/T9).

If the generic unit is a subprogram, check that it can be named as a generic actual
parameter in an instantiation inside the unit (see T1 5).

T8. Check that the sequence of generic formal parameters in a generic formal part cannot be
enclosed in parentheses.

Check that the generic formal parameters in a generic formal part cannot be separated by
commas (instead of semicolons).

Check that the last generic formal parameter in a generic formal part must end with a
semicolon.

T9. Check that formal object or type parameters cannot have the same identifier.
•Implementagon Guideline: Include a case where two typos have th, same identifier but different discririnarnt

specifications.

Check that the identifiers of formal object or type parameters must be distinct from
identifiers declared In the specification and body (two cases) of a generic package.
Implementation Guideline: Include cases where the body is given as a subunit.

Check that formal object and type parameters must be distinct from identifiers declared in
the formal and declarative parts of a generic subprogram.

Check that generic formal subprograms cannot have the same parameter and result type
profile. Use two formal subprogram declarations that are identical except for one of the
following differences:

" the parameters are named differently (differences in parameter names are
ignored).

" the subtypes of a parameter are different (differences in subtype names are
ignored If the base types are the same).

" the result subtypes of two functions are different (differences in subtype
names are Ignored If the base types are the same).

" the parameter modes are different; also try reordering the parameters and .4

changing their modes.%t o
" a default expression is present/absent (the presence or absence of a default

expression does not affect the parameter profile).

Implementation Guideline: See also IG 12.1.3/'TS for legal overloading.
' Check that a formal subprogram cannot have the same profile as a subprogram declared

later in a package specification or In a generic unit body, using the above cases.

12-9

V

12.1.1 Generic Formal Objects Version I (Dec 86)
M

Check that a function declaration equivalent to an enumeration literal is not allowed.

Check that a formal subprogram cannot have the same identifier as a variable, type, F.'
subtype, constant, number, array, package, or generic subprogram declared previously in
the same declarative region.

TI0. Check that the names in a generic subprogram and package declaration (including its
body) are statically identified (i.e., bound) at the point where the generic declaration or
body textually occurs, and are not bound at the point of instantlatlon.
Implementation Guideline: Include a test where a generic declaration and its corresponding body contain the
same free identifiers, but are in different contexts, and thus have different bindings for the free identifiers.
Implementation Guideline: Binding of default subprogram names is checked in IG 12.1.3/TI.

T 1. Check that a generic subprogram (i.e., the template) cannot be used as the called
subprogram in a subprogram call outside the unit (i.e., an instantiation should be used).
Implementation Guideline: Instantiate the generic subprogram first, but then call the template instead of the
instantiated instance. Don't have any generic formal parameters in the generic formal part. Have the call's
actual parameters match the nongenaric formal parameters of the generic subprogram's specification.

Check that a generic subprogram cannot be used as an actual parameter corresponding to
a formal subprogram parameter if the instantiation is outside the generic unit.

T12. Check that the name of a generic package (i.e., the template) cannot be used outside the
generic package in use clauses, nor as a prefix in an expanded name (i.e., the name of an
instantiation should be used).
!'plementabon Guideline: Instantiate the generic package first, but then use the template name instead of the
;nstantiatsd name, first in an expanded name. and then in a use clause. Don't have any parameters in the
generic formal part.

Ti 3. Check that generic function designators cannot be operator symbols.

T14. Check that a generic subprogram cannot be overloaded outside the unit. I

Implementation Guideline: Try giving a subprogram with additional parameters.

T15. Check that the use of a generic identifier is permitted within a generic package or
subprogram, and represents the current instance of the generic when it is instantiated.
Implementation Guideline: Check subprograms in calls, and check that selected component notation using the
name ol ! , generic unit refers to the current in-.iwta: tion of the unit. Also, use the name of a generic
subprogram as an actual parameter in an instantiation.

Ti 6. Check that a task or a task type cannot be a generic unit, i.e., these forms of declaration
cannot be preceded by a generic formal part.

T1 7. Check that a generic formal parameter cannot be a subtype declaration, a derived a type
declaration, a record type declaration, or an exception declaration (see IG 12.1.2/T2).

T18. Check that a formal parameter of a generic formal subprogram can have an out parameter
of a formal limited type.
Implementation Guideline: Use both a limited private formal type and an array type.

12.1.1 Generic Formal Objects
Semantic Ramifications

Si. Although formal parameters of subprograms and generic units both have modes In and in
Out, there are several important differences between these kinds of parameters:

. for generic units, an In formal parameter is always a copy of the actual %
parameter's value. For subprogram in formal parameters, the actual parameter
may be passed by reference (RM 6.2/7) if it has a composite type.

Al%

12-10

,, , %z

Version 1 (Dec 86) 12.1.1 Generic Formal Objects

Ip

" In parameters of limited types are forbidden for generic units, but are permitted
for subprograms.

" the value of an actual generic parameter is not checked against the constraints
of a formal generic In out, parameter, but such checks are performed for
subprogram parameters.

" the subtype of a generic formal In out parameter is the base type of the type
mark used in the parameter's declaration, whereas the subtype of a
subprogram formal parameter is that denoted by the type mark. Consequently:

subtype TEN is INTEGER range 1..10;

generic
GIN TEN : in out TEN;

procedure P (SUB TEN : in out TEN);

procedure P (SUETIN : in out TEN) is
begin

case GIN TEN is
when 1..10 =>

when others => null; -- required; see RM 5.4/4-6

end case;

case SUB TEN is
when 1..10 => ...

end case; -- no others required
end;

, an In out generic formal parameter always denotes (i.e., renames) its actual
parameter, whereas a subprogram In out formal parameter having a scalar or
access type always denotes a local copy initialized with the actual parameter's
value, and may denote a local copy for other classes of type.

* It is not erroneous for different generic formal In out parameters (of the same
nonscalar or nonaccess type) to be associated with the same actual parameter;
such an association can be erroneous for a subprogram:

generic
X, Y : in out STRING;

procedure P;

procedure P is
begin '-

X : "A ";
Y (1) S);

end P;
I

R, S : STRING (1..2) :- "C";

procedure PP (X, Y : in out STRING) is (4.

begin
X :- "As";
Y :- Y(1) s (1);

end PP;

12-11
I

. .-. . - . -, - -. ,

W- _W VWWj-V W1 1W

12.1.1 Generic Formal Objects Version 1 (Dec 86)

procedure Q is new P (R, R);

An invocation such as PP (R, R) Is erroneous, but Q's instantiation is not ,. ,
erroneous (after 0 Is Invoked, A will equal "AA"). " *

It is also not erroneous for an in and an In out generic formal parameter to be
associated with the same actual parameter.

S2. If an implementation chooses to generate code for generic units prior to processing any
instantiations, it can usually, but not always, pass generic In out parameters by reference.
Pass by reference is not convenient, however, when the actual parameter does not lie on an
addressable boundary of the target machine, as, for example, when a component of a packed
BOOLEAN array or a component of a packed record type is used as an actual in out
parameter.
s3. The constraints of a generic formal In parameter are those of the formal parameter when
the formal parameter is constrained (AM 12.1.1/3) or has an access type. Otherwise (i.e., for
unconstrained formal In parameters having an array type or having a type with discriminants
and for all In out formal parameters, constrained or not), any constraints associated with a
formal parameter are those of the actual parameter. In particular, note the difference between
the semantics of constrained In out subprogram formal parameters and In out generic formal
parameters - for subprograms, the constraints of the formal parameter are used during the
subprogram's invocation; for generic units, the constraints of the formal parameter are ignored;
the actual parameter's constraints, if any, are used instead. It is particularly important to keep
this difference in mind if an implementation attempts to generate code for a generic body prior to AI
processing any instantiations.

S4. The consequences of these rules are illustrated by the following examples:

subtype ONE FIVE is INTEGER range 1..5;
UP 10 INTEGER range 1. 10;
UP 3 : INTEGER range 1..3; Z

generic
INPUT : ONE FIVE;
OUTPUT : in out ONE FIVE;

procedure P;

procedure body P is
begin

OUTPUT := INPUT; -- CONSTRAINT ERROR possible
end P;

The assignment to OUTPUT may raise CONSTRAINTERROR, even though INPUT and
OUTPUT are declared with the same subtype names. For example, the following instantiation:

procedure P1 is new P (4, UP 3);

will not raise CONSTRAINTERROR even though UP_3 and OUTPUT have different
constraints. But when P1 Is invoked, the value 4 will be checked against the constraints of
OUTPUTs actual parameter, UP_3. Since 4 exceeds UP 3's upper bound, the assignment
(and P1) will raise CONSTRAINTERROR. Now consider:

procedure P2 is new P (UP_10, UP_3);

This Instantiation will raise CONSTRAINTERROR only if the value of UP_10 exceeds 5, the '
upper bound of the formal In parameter. If the instantiation succeeds, then the invocation of P2 .
will raise CONSTRAINTERROR if the value of UP_10 exceeds 3, the upper bound of UP_3. "'"

12.12

I%

Version I (Dec 86) 12.1.1 Generic Formal Objects

s5. Now consider declarations with array types:

subtype STR3 is STRING (1..3);
STR : STRING (1..10) :- "9876543210";
generic

IN S3 : STR3;
IN-SU : STRING;
INOUT S3 : in out STR.3; .;
INOUT SU : in out STRING;

procedure Q;

procedure body Q is
V1 : CHARACTER IN S3(3);
V2 : CHARACTER : INSU(3);
V3 : CHARACTER = INOUTS3(3);
V4 : CHARACTER : INOUTSU(3);

begin
INOUT S3 : "ABCD";
INOUT-SU :="F"

end;

Since INS3 is declared as a constrained array and is an In parameter, it has the bounds of
STR3 for each instantiation:

procedure Q1 is new Q (IN S3 => STR (2..4),
IN SU => STR (2.-4);
INOUT S3 => STR (2 5),
INOUTSU -> STR (3.-.5));

Hence for 01, INS3 has the value "876", INS3'LAST = 3, and V1 = '6'. On the other hand,
since INSU is unconstrained, the bounds of INSU are determined by the bounds of the actual
parameter in each instantlation. (The actual parameter value is assigned to the formal
parameter as for a constant declaration; see RM 12.3/7). Consequently, 01.IN_SU'LAST has
the value 4, and 01 .V2 Is assigned the value 7'.
The bounds of the formal In out parameters are always those of the corresponding actual
parameters (RM 12.1.1/4). Hence, within the instantiation of 01, INOUT S3'LAST has the -*

value 5, as does INOUTSU'.AST. V3 equals 7', and V4 = 7'. After the assignment to ..
INOUTS3, STR has the value "9ABCD4321", and after the assignment to INOUTSU, STR
has the value "9ADEF4321"

s6. If a formal In parameter has discriminants, the value of its 'CONSTRAINED attribute is
TRUE (RM 3.7.4/3). The value of 'CONSTRAINED for a formal In out parameter, however,
depends solely on the actual parameter.
s7. The name of a formal In out parameter cannot be used in a static expression because In
out object parameters are not constants. Similarly, the name of a formal In parameter is not
allowed because such parameters are not constants explicitly declared by a constant
declaration (RM 4.9/6). Attributes of such parameters cannot be used in static expressions
because no attribute of an object is allowed in a static expression (RM 4.9/8).

Changes from July 1982

so. The subtype of a generic formal object of mode In Is the subtype of the formal parameter,
not the subtype of the actual parameter.

12-13

12.13 -.5

..%.5

12.1.1 Generic Formal Objects Version 1 (Dec 86)

Changes from July 1980

so. An in out formal parameter can have a limited type.

Legality Rules

Li. A default expression for a geneic formal In parameter must have the parameter's base
type (RM 12.1.1/2).

1.2. Formal In out parameter declarations must not have explicitly specified default
initializations (RM 12.1.1/2).

L3. A generic formal in parameter must not have a limited type (RM 12.1.1/3).
L4. A generic formal In parameter must not be used as an actual In out or out subprogram

parameter, or as the target of an assignment, or as an actual generic In out parameter
(RM 12.1.1/3, RM 6.4.1/3, RM 5.2/1, and RM 12.3.1/2).

L5. The identifier of a formal In parameter is not directly visible In its default expression (RM
8.3/5), and so cannot be used as a primary, as a function name in a function call, or as a
prefix of an indexed component, slice, selected component, or attribute.

L6. No generic object parameter or attribute of a generic object parameter can be used in a
static expression (RM 4.9/6,/8).

Test Objectives and Design Guidelines

T1. Check that object parameter declarations in a generic formal part cannot have the mode
out.

T2. Check that generic formal In out parameter declarations cannot have initializations. -.

T3. Check that a generic formal In parameter cannot be used as a subprogram's actual out
parameter, or as an actual (generic or subprogram) In out parameter, or as the target of an
assignment.
Implementation Guideline: Use a scalar, an array, a record, and an access type as io, parameters. For the
array and record types, try using their components as well as the entire objects in the forbidden contexts.

T4. Check that generic formal In parameter declarations cannot have a limited type (in
particular, of a limited private, task, or composite type containing such component types).

Check that an In out formal parameter can have a limited type.
T5. Check that a generic formal In parameter is a copy of the actual parameter value (see IG

12.3. 1/T20).

Check that a generic formal In out parameter denotes the actual parameter variable even
when the actual variable is not readily passed by reference (see IG 12.3.1/T6).

T6. Check that mode In is assumed when no mode is explicitly specified in a parameter
declaration in a generic formal part.

T7. Check that a default expression for a generic formal parameter must not refer to a later
parameter (neither a type nor an object) of the same generic formal part, nor can the
default expression refer to the current parameter.
Implementation GuLdeie: Use the name of the current parameter as a primary, as the function name in a
function call, or a a prefix of an indexed component. slice, selected component, and attribute.

Check that a default expression may refer to an earlier formal parameter of the same
generic formal part.

TS. Check that no attribute of a generic In or In out parameter can be used in a static ".'.'.
expression (see IG 4.9/T7).

12-14

*. j~ ~ ,I. * ~ ~%

Version I (Dec 86) 12.1.2 Generic Formal Types

pIs

Check that a generic in out formal parameter does not have a static subtype in a case
statement (see IG 5.4.b/T2).

__ Check that a generic In formal parameter declared with a static subtype is considered to
have a static subtype in a case statement (see IG 5.4.b/T2).

Check that a generic In parameter cannot be used in a static expression, even if its
subtype is static (see IG 4.9/17).

T9. Check that a range constraint, an accuracy constraint, an index constraint, or discriminant
constraint is not allowed in a formal object declaration.

T1 0. Check that the default expression for a parameter of mode in must have the same base
type as the parameter.

Check that the default expression is not evaluated when the declaration is elaborated (but
only when the default value is needed in an instantiation) (see IG 12.31 /T23).

T11. Check that after a generic unit is instantiated, the subtype of an in out object parameter is
determined by the actual parameter.
Implementation Guideline: Use scalar, access, array. record, and private types. Use both constrained and
unconstrained formal objects. Use slices as actual parameters. Try X'FIRST when X is a formal parameter ,
with a static lower bound that is different from the bound of the actual parameter.

12.1.2 Generic Formal Types
Semantic Ramifications

Si. The restriction on the form of discrete ranges in array type declarations (RM 12.1.2/2) V.
implies that the following declaration is illegal:

generictype i in array (1..5) of INTEGER; -- illegal

The range 1 -5 Is not a type mark. In addition, the RANGE attribute is not allowed: 4
generic

type T is range <>;
type AR is array (T) of INTEGER: -- legal
type AS is array (AR'RANGE) of INTEGER, -- illegal

S2. For purposes of determining the legality of a generic template, any private type declared
with discriminants is assumed to have no default discriminant values (RM 12.1.2/3): ,,..

generic
type T (D : INTEGER) is private;

package P is
X : T; -- illegal

end P;

S3. The declaration of a type implicitly declares (RM 12.1.2/13) the predefined and basic
operations associated with the type's class. These operations are available for use immediately
after the type's declaration, but the implicit operator declarations can be replaced with explicit
declarations:

12-15 "V,

1- J

12.1.2 GenerIc Formal Types Version 1 (Oec 86)

generic ...
type T is range <>; "

Y T : X - 3; -- predefined ... -

with function "-" (X, Y : T) return T; N.
Z : T := Y - X; -- redefined "-"

package P is
w : T :- Y - Z; -- redefined ... '-

end P;

The explicit declaration of "-" Is allowed by RM 8.3/17. Note that if T's actual parameter is .E-/

LONG INTEGER, the "- operation in Y's initlalizatlon will be the operation predefined for"-'S.
LONG-INTEGER; if T's actual parameter is INTEGER, a different predefined operation will be
used.

s4. The implicitly declared operations depend only on the nature of the formal parameter:

generic
type T is (<>).
X T; <
Y T := abs X); -- illegal 0 ..

The use of abs is illegal since abs is not defined for both enumeration and integer types (RM
12.1.2/9).

ss. Inside a template, all the formal types of the template are considered distinct from any
types declared outside the template (RM 12.1.2/1):

X : INTEGER : 0;

generic
type T is range <>;

package P is
Y : T :- X; -- illegal; X and Y have different types

The situation is different once a template is Instantiated:

X : INTEGER := 0; %..

generic
type T is range <>;

package P is
subtype ST is T;
Y : T := 5;

end P;

package P1 is new P (INTEGER); 5'

Z : INTEGER :- P1.! - X;

As a result of the instantiation, P1.T denotes the actual parameter, INTEGER (RM 12.3/9).
Hence, P1 .Y Is of type INTEGER, and the expression P1 .Y - X is legal.

ss. The following example Illustrates some of the finer points concerning what operations are
associated with formal types:

12-16
S"..;'V .'- - j v - -., :.'.-

'='.

Version 1 (Dec 86) 12.1.2 Generic Formal Types

generic
type T is limited private;

package LP is
subtype ST is T;
type NT is new ST;

end LP;

package LPI is new LP (INTEGER);
use LW1;

type NST is new LPI.ST;
type NNT is new LPI.NT;

X_ST, Y ST LPI.ST; -- :=, =,3
X_NT, Y NT LPI.NT; --

XNNT, i NNT NNT; --

:NST, YNST-- :, , 3

For which of these types is assignment, equality, and literal notation available? The answer fo r
the derived types depends on the class of the parent type (RM 3.4/5). LP1.ST is an integer
type, since LP1.ST denotes T's actual parameter, INTEGER. Therefore, NST has all the
operations provided for integer types. In particular, a conversion operation is declared for
converting universal integer values to NST values, so numeric literals can be used in NST
expressions. Similarly, an equality operator is implicitly declared for NST.
LP1.NT is a limited type because no assignment or equality operations are declared for NT in
the template, and so none are declared for NT in the instantiation of the template. (An
instantiation is merely a copy of the template with formal parameters bound to actuals in
accordance with RM 12.3; In particular, the elaboration of a derived type declaration in an
instantiated unit does not cause new Implicit declarations to be generated.) Since NNT's parent
type is a limited type, so Is NNT, I.e., neither assignment, equality, nor literal notation is
available for NNT.
One might be tempted to say that since LP1.ST denotes STANDARD.INTEGER, and since
LP1 .NT is derived from LP1 .ST, LP1.NT is an integer type. However, the class of LP1 .NT is
determined by the operations declared for LP1 .NT, and as we have noted, the only operations
declared for LPI.NT are those appropriate for a limited type, because these are the only
operations declared in template LP. Consequently, LP1.NT does not have an assignment or a %

predefined equality operation, and is therefore a limited type. k

s7. Among the operations declared for LP.NT are operations for converting from LP.NT to its
parent type, and vice versa (RM 3.4/5). Consequently, one can write:

X : NNT :NNT (LP. NT (3));

The parent type of LP1.NT is LP1 .ST (I.e., INTEGER), and an implicit conversion exists from
universal integerto LP1 .ST. The operation for converting to LP1 .NT is implicitly declared in the
template LP, and so is available In the instantiation LP1. Finally, conversion from LP1 .NT
values to NNT values is Implicitly declared for NNT. Note that NNT(3) would be illegal, since

there is no operation for converting universalinteger values to the type NNT.
Se. Now consider:

12-17

".e ,,,' ,. , "% ... ,'.V ,. ..."..,€:... .. ,. , -. ,....A... , ,.. , . , , - .. --. .. ,

12.1.2 Generic Formal Types Version 1 (Dec 86)

generic
* type D is (<>);
,* package DIS is

type AR is array (1..5) of D;
end DIS;

Since AR is an array of a discrete type, D, catenation and the relational operators are implicitly
declared for AR (RM 3.6.2/12). Since D Is not a boolean type, the logical operators and unary ,.
not are not implicitly declared. Now consider the following instantiation:

generic
package OUTER is

package DIS1 is new DIS (BOOLEAN); use DIS1;X:A :- ..X :AR : -.

Y BOOLEAN :X > X;
Z BOOLEAN X and X; -- illegal

end OUTER;
The use of DIS1.">', is legal since this operation is implicitly declared in DIS for AR, and so, is
declared in DISI. The use of and is illegal because no such operator is declared in DIS. The
fact that DISI .AR is an array of BOOLEAN is not relevant, since the operators declared for AR
are determined solely by the template. Finally, note that the illegal use of and must be detected ,,
whether or not OUTER is ever instantiated.
sq. A careful analysis is also needed when a formal type has discriminants:

generic
type T (A INTEGER) is private;

package P is " .,
subtype S is T;
TX T(5);
type NT is new T;
NTX : NT(6);
TXA: INTEGER TX.A; -- discriminant; Zl = 5
',,TXA : INTEGER := NTX.A: -- discriminant; Z2 = 6 '

end P;

type REC (L INTEGER) is
record

A : INTEGER := 7;
end record;

package P1 is new P (REC);

Xl P1.S(B);
X2 Pl.NT(9);

Yl INTEGER :- XI.A; -- Yl - 7: component A
Y2 INTEGER := X.L; -- Y2 = 8; discriminant L

Y3 INTEGER := X2.A; -- Y3 = 9; discriminant A
Y4 INTEGER := X2.L; -- illegal

Y5 INTEGER :- Pl.TX.A. -- Y5 = 7; component A .-- -
Y6 INTEGER := Pl.NTX.A; -- Y6 = 6; discriminant A

-. ,

I 'a
. , -12..18

. . . ., . : . i .:, ; , : " " - :- : t - .

w i ..". ,W W ,MMR U RR V MU-WM . F.W . ' V', .1W" : , , .,. . .. , . . - ,. -

Version 1 (Dec 86) 12.1.2 Generic Formal Types
I
ba

Y7 INTEGER PZ.TX.L: -- Y7 = 5; discriminant L
Y8: INTEGER := Pl.NTX.L; -- illegal

iTo understand why these answers are c'o-rect, you must consider just what operations are
implicitly declared for P1 .S and P1 .NT. Since P1 .S is another name for the formal parameter,
P1.S denotes REC. Therefore, X1 has type REC. Since the basic operations for REC are
declared after REC's declaration (i.e., not in template P), and since these include operations for
selecting component A and disciminant L, XI .A yields the value of component A. X2, however,
has type P1 .NT. The basic operations for NT are implicitly declarpd in template P, and the only
component selection operation implicitly declared in the template is the operation to select
discrminant A of the formal parameter. The fact that P1.NT's parent type is REC does not
change the basic operations declared for NT inside P and P1. After P is instantiated, the
component selection operation for T's discriminant denotes the component selection operation
for the actual parameter's discriminant (RM 12.3/15). Hence, X2.A selects the discriminant
component of X2; X2.L is illegal since there is no such component selection operation declared
in P (or Pl).

Similarly, P1 .TX.A uses the selection operation for TX's type. Since TX's type is T, and since T
denotes REC inside P1, P1 .TX.A selects the component value of TX. Inside template P, TX.A
invokes the selection operation for T's discrminant. The corresponding operation is used in P1,
and so, after P1 is elaborated, P1 .TXA = 5. Hence, P1 .TX.A does not equal P1.TXA. Finally,
P1.NTX.A uses the selection operation declared for NTX's type, P1.NT. This operation is
implicitly declared after P.NT's declaration; it selects the discrminant of objects having type NT.
This operation in P1, therefore, denotes REC's discriminant selection operation. Hence,
P1.NTX.A equals 6. For similar reasons, P1.TX.L gives TX's discriminant value, and P1.NTX.L
is illegal.

s10. Only operations declared in the visible part of an instantiated generic package can be
named from outside the package (RM 4.1.3/14,15). This includes implicitly declared operations:

generic,.--
type T is range <>;

package P is
X, Y, : T;

type NT is new T;
function "+" (L, R NT) return NT;

end P; P

package P1 is new P (INTEGER);
use P1: 1

... PI."+1 ... -- names redefined "+" for NT

... 1 -- names implicitly declared "-" for NT
X + Y ... -- names STANDARD."+" for P1.T, i.e., INTEGER
P1."+" (X, Y) ... -- illegal; no "+" for T declared in P's

- - visible part

Since T is an integer type, all the integer operations are declared implicitly for NT, and the
nonbasic implicitly declared operations can be named using expanded names. Note that this
notation is allowed inside generic units themselves:

generic
package Q is

package P2 is new P (INTEGER);

X BOOLEAN P2."<" (3, 4):

12-.:'

12-19 -

=" " e" =' o" ' " "'' ''' ' ' " -'. .'- -'- .', e .° " " " " " "" "° " - " "- "- - " "- ", - " '- . . . '' ' I
% '" % ". . = -. "=, %'°• % . . ,- . . -. , ,,. - -'. . ' , .-.- . . , • .- • -'. ,' .. o •, • %p

12.1.2 Generic Formal Types Version 1 (Dec 86)

si 1. For a formal fixed point type, multiplying operators are not declared immediately after the ..
type declaration, but instead are declared In STANDARD (RM 12.1.2/13). Hence: .-.

generic '-"-

type rP is delta <>;
package P is

X IP : 3.0; .

Y :1? := FP (X'X): -- legal
Z TP := UP (P.'*" (X, X)); -- illegal

end P;

P." is illegal because there is no implicit declaration of "*" (or "/r) after FP's declaration. P."+"
(X, X) would, however, be legal.

S12. A generic formal type is not a static type (RM 4.9/11). The use of a generic formal type as
an index subtype in an array type declaration Implies that certain forms of aggregates are illegal:

generic
type T is range <>;

package P is
type ARR is array (T range <>) of INTEGER;
W : ARR (I..4) := (1, others => 0); -- illegal aggregate 4-

X : ARR (1-.4) :- (1 => 0, 2..4 => 1); -- illegal aggregate
Y : ARR (1..4) (1..4 => 0); -- legal aggregate

end P,

The first aggregate is illegal because ARR's index subtype is T, which is a generic formal type,
and so is nonstatic. An others choice must appear as the only choice of a single component
association if the corresponding index subtype is nonstatic (RM 4.3.2/3). The second aggregate ' A'

is illegal because an expression having a formal generic type is considered nonstatic. The -

choices, 1, 2..4, and 1..4 all have type T, and so are all nonstatic. If a choice is nonstatic, it
must be the only choice of a single component association (RM 4.3.2/3). Since there are two
component associations in the second aggregate, the aggregate Is illegal. The last aggregate is
legal because a single nonstatic choice is always legal. (See Language Maintenance
Committ,. Commentary AI-00190.)

Si3. Although a formal generic type is not static, the actual type may be static, and this can
affect the legality of aggregates. Continuing with the previous example, consider the following:

subtype ST is INTEGER range 1.. 4; -- ST is static
package ST P is new P (ST);
Z STP.ARR(1..4) :- (l => 0, 2..4 => 1); -- legal

ST P.X := (1, others -> 0): -- legal

After the instantiation, the index subtype of ST_P.ARR is ST, which is static. Since STP.ARR
has a static index subtype, the Indicated aggregates are legal.

Changes from July 1982

S1 4. Each genetic formal type Is distinct from all other types.

SiS. If a formal type has disciminants, no use of the unconstrained type mark is allowed where -.

a constraint would normally be required.
Si6. For a formal fixed point type, the multiplication and division operations are declared in

STANDARD rather than after the formal type declaration.

-1 . .20

Version 1 (Dec 86) 12.1.2 Generic Formal Types

Changes from July 1980 ."-

St 7. Operations of a formal type are implicitly declared immediately after the type declaration.

Si . The operations declared for each class of type are now specified explicitly.
sig. The attributes 'IMAGE and 'VALUE are implicitly declared for all scalar formal types.

s2o. Discriminant parts for formal types are no longer allowed to have default expressions.

Legality Rules

I1. A range, accuracy, index, or discriminant constraint is forbidden when declaring the
component type of a formal array type or when declaring a formal access type (RM t_
12.1.212).

L2. Every discrete range specifying the bounds of a formal constrained array type must have
the form of a type mark (RM 12.1.2/2).

L3. A discriminant part for a formal type must not have a default expression (RM 12.1.2/3).

Test Objectives and Design Guidelines

T1. Check that a generic formal type parameter with a generic scalar, array, or access typt ,,
definition cannot have a discriminant part.

Check that a range or accuracy constraint is forbidden when declaring a generic formal
numeric type parameter.

Check that default expressions are not permitted in a discriminant part of a formal private
type.

% Check that a range, accuracy, index, or discriminant constraint is forbidden when
specifying the component type of a formal array type or the designated type of an access S
type.
Check that none of the following forms of discrete range are permitted when declanng the
bounds of a formal constrained array type: L..R, T range L..R, and T'RANGE.

T2. Check that a generic formal type parameter cannot have a record, derived, or incomplete
type definition, and cannot be declared as an exception or a subtype. 5

T3. Check that a generic formal type cannot be used recursively as a component type in an
array type definition or as the type in an access type definition.

T4. Check that formal private and limited private types may have discriminants, and that the
type of the discriminant may be given by a previous generic formal parameter (of a discret'
type). 0

T5. Check that each formal type declaration declares a distinct type.
T6. Check that an unconstrained formal type with discriminants is not allowed as the parent

type in a full declaration of a private type (see IG 7.4.1/1T4).

Check that a constrained formal type with discriminants is allowed as such a parent type S
(see IG 7.4.1/T5).

17. Check that an unconstrained formal type with discrIminants is not allowed in a variable
declaration, a component declaration (of an array or record), or an allocator.
Implementation Guideline: Include a case whore the component type is used as a component type of a formal
array type. S
Check that an unconstrained formal type with discriminants is allowed as the type of a

'po

12.1.2 Generic Formal Types Version 1 (Dec 86)

subprogram or an entry formal parameter, and as the type of a generic formal object

parameter, as a generic actual parameter, and in a membership test, in a subtype
declaration, in an access type definition, and In a derived type definition.

Check that a formal type can be used to declare a component of an array or record, and
that values can be correctly assigned to such components.

TS. Check that the discriminants of a formal parameter must all have different identifiers. %

T20. For a formal discrete type, check that the following basic operations are implicitly declared
and are therefore available within the generic unit: assignment, membership tests,
qualification, explicit conversion, 'BASE, 'FIRST, 'LAST, 'SIZE, 'ADDRESS, 'WIDTH, 'POS,
'VAL, 'SUCC, 'PRED, 'IMAGE, 'VALUE.
Implementabon Guideline: IG 4.979 checks that the attributes of a formal discrete type are nonstatic.

Check that only the following nonbasic predefined operations are implicitly declared:
relational operators. -
Implementation Guideline: To check the availability of basic operations, each should be used within the generic

,. unit. and the results checked for correctness when the unit is instantiated.
.- implementation Guideline: To check on the existence of the nonbasic operations, each should be used within

the generic unit and the results checked. In addition, a separate test should check that each can be named
with an expanded name inside the unit. Finally, a type should be derived from a formal type declared in the
visible part of a generic package, and selectively named from outside an instantiation of the package, even
when the instantiation occurs inside another generic unit.
Impi.-entation Guideline: To check that only these operations are available, try some operations that would
oe legal for the instantiated types but that are illegal for the formal type.
Implementaton Guideline: Make the above checks when the unit is instantiated with an integer, a character.
and an enumeration type that is not a character type.

*, T21. For a formal integer type, check that the following basic operations are implicitly declared -
and are therefore available within the generic unit: all the basic operations for a discrete
type (see IG 12.1.2/T20), explicit conversion to and from other numeric types, and integer
literals (i.e., implicit conversiQn from universal integer values).

IG 4.9/T9 checks that the attribute of a formal integer type are nonstatic.
Sr,',. 0-t onlv thri following nonbasi,- ,rd-"no i onerations are implicitly declared:
,W 4, .,ei,, and arithmetic op.. ,* ., . 'aid abs).

" Implementation Guidelne: Check that the second operand of *" cannot be a formal integer type.

T22. For a formal floating point type, check that the following basic operations are implicitly
declared and are therefore available within the generic unit: assignment, membership
tests, qualification, explicit conversion to and from other numeric types, real literals (implicit
conversion from universalreal to the formal type), 'BASE, 'FIRST, 'LAST, 'SIZE,
'ADDRESS, 'DIGITS, 'MANTISSA, 'EPSILON, 'EMAX, 'SMALL, 'LARGE, 'SAFEEMAX,
'SAFESMALL, 'SAFE LARGE, 'MACHINERADIX, 'MACHINEMANTISSA, 'MACHINE-
_EMAX, 'MACHINE EMIN, 'MACHINE ROUNDS, 'MACHINE OVERFLOWS.

, Check that only the following nonbasic predefined operations are implicitly declared:
relational operators and arithmetic operators (+, -, ,/,", and abs).

* T23. For a formal fixed point type, check that the following basic operations are implicitly .-
. declared and are therefore available within the generic unit: assignment, membership

tests, qualification, explicit conversion to and from other numeric types, and real literals
(i.e., implicit conversion from universal real to the formal type), 'BASE, 'FIRST, 'LAST,
'SIZE, 'ADDRESS, 'DELTA, 'MANTISSA, 'SMALL, 'LARGE, 'FORE, 'AFT, 'SAFE_SMALL,
'SAFELARGE, 'MACHINE_ROUNDS, 'MACHINE_OVERFLOWS..,

Check that only the following nonbasic predefined operations are implicitly declared: the

12-22

.:'. '-':."-".

Version 1 (Dec 86) 12.1.2 Generic Formal Types

relational operators, * with one INTEGER operand, / with the second operand of type
INTEGER, +, -, and abs.

Check that the operations for multiplying or dividing two fixed point values are not implicitly
declared in the generic unit, i.e., check that these operators cannot be named by selection
using a prefix that denotes the generic unit.

T24. For array types with a nonlimited component type (of a formal and nonformal generic type),

check that the following operations are implicitly declared and are therefore available within
the generic unit: assignment, the operation associated with aggregate notation,
membership tests, the notation associated with indexed components, qualification, explicit
conversion, 'BASE, 'SIZE, 'ADDRESS, 'FIRST, 'FIRST(N), 'LAST, 'LAST(N), 'RANGE.
'RANGE(N), 'LENGTH, 'LENGTH(N).

Check that except for assignment and aggregate notation, the above operations are
available even if the component type is limited.

Check that the nonbasic operations for equality and inequality are implicitly declared only if
the component type is not limited.
For one-dimensional arrays, check that the following:

" basic operations are implicitly declared if the component type is:

* limited or nonlimited: slicing;

* a character type: string literals.

" nonbasic operations are implicitly declared if the component type is:

a nonlimited: catenation, =,/=;

9 discrete (including a formal integer type and a formal discrete type):
predefined relational operators;

* boolean: not and the logical operators.

Check that no new operations are declared when a unit is instantiated.
T25. For a formal access type, check that the following basic operations are implicitly declared

and are therefore available within the generic unit: assignment, allocators for the access
type (when the designated type Is either a formal type or not and either has discriminants
or does not), membership tests, qualification, explicit conversion, the literal null, selection
with selector all, 'BASE, 'SIZE, 'ADDRESS, 'STORAGESIZE.

Check that only the following nonbasic predefined operations are declared: =. /
Check that the following basic operations are implicitly declared if the designated type is:

" a record type or a type with discriminants: selection of components of the
designated type;
Implementation Guideline: Include a case where the designated type is a formal type with
discriminants. Check that discriminant names of the designated types are used where the
designated type is itself a formal type with discriminants.

* an array type: indexed component selection;
" a one-dimensional array type: slices;

" a constrained array type: 'FIRST, 'FIRST(N), 'LAST, 'LAST(N), 'RANGE,
'RANGE(N), 'LENGTH, 'LENGTH(N).

12-23

'I

P .=. • . ' ", . " "- , * ". ". % ". "- % " ". "° o o °- "- % % %, % "- "- '- *. *= " % - " ', - " "- =* °=' %j% % "s " %

12.1.3 Generic Formal Subprograms Version 1 (Dec 86)

a task type: selection of an entry or entry family.

T26. For a formal nonirnited private type, check that the following basic operations are implicitly
declared: assignment, membership tests, qualification, explicit conversion, 'BASE, 'SIZE,
'CONSTRAINED, and 'ADDRESS.

For a formal limited private type, check that except for assignment, all the above basic
operations are implicitly declared.

For a formal limited or nonlimited private type with discriminants, check the following basic
operations are declared: selection of a discriminant for each discriminant and
'CONSTRAINED.
Impilmentalion Gukdeline: Check that the discriminant selection operations use the names of the formal type.
not the names of the actual type (see also IG 12.3.2/T40).

Check that no nonbasic operations are declared for a formal limited private formal type.

Check that equality and inequality are implicitly declared for a formal nonlimited private
type.

T27 Check that when deriving from a formal type, all and only the predefined operations
associated with the class of the formal type are declared for the derived type (cf. IG
12.3.2/T20-T40).

T30. Check that a formal type can only be used after its declaration.
tmplementalon Guideline: Include a case where there is an external typo declaration with the same identifier.

12.1.3 Generic Formal Subprograms

Semantic Ramifications ",:-.-, -

sI. The visibility rules for default names in formal subprogram declarations are the same as for
any other name in a generic unit, namely, a declaration of the name must be visible at the place
where the name is used in the generic declaration. The visibility of names at the place of an
instantiation is irrelevant. Consequently, if a generic formal subprogram declares a parameter

/ g a geneiic type previously do , the same generic formal part. then no
identifier, selected component, or indexed component form of name is legal as a default name.
since no subprogram outside the generc formal part can match the formal subprogram
specification:

generic
typeTia ...

with procedure P (X T) in D; -- illegal
package Q is ...

In the above example, T can be any generic type definition; there cannot be any D declared
outside the generic specification with a formal parameter of type Q.T, and so the default name is
illegal. %

S2. However, if there is a preceding formal declaration of D:

generic
type T is private;
with procedure D (X T);
with procedure P (X T) is 0; -- now legal

package ...

the D in P's declaration is identified with the preceding formal subprogram.

12-24

% %'

Version I (Dec 86) 12.1.3 Generic Formal Subprograms .

Sr

Implicitly declared operators can be named this way as well:

% :generic
type T is private;
with function EQU (L, R : T) return BOOLEAN is "1=";

package ...

The default for EQU is the predefined "-" implicitly declared for T. Note that the restrictions of
RM 6.7/4 do not apply here since EQU is not an equality operator.
S3. The situation is similar when generic units are nested inside generic units:

procedure P is
generic

type T is private;
procedure Q"

procedure Q is
procedure TARGET (X: T) is ... end; -- 1

begin
declare

procedure TARGET (X FLOAT); --

generic S
with procedure FOO (X T) is TARGET: -- 3

procedure R;

begin ... end;
end Q;

procedure NQ is new Q (FLOAT);

The default subprogram at 3 is identified with the subprogram declared at 1. since this is the
only visible TARGET subprogram with a parameter of type T. The fact that the later instantiation
identifies T with FLOAT does not change the default subprogram identification at 3 -- the
identification of names is determined by the visibility rules, and so occurs prior to the elaboration
of a template. (Note that the template for R is not elaborated until 0 is called.)

$4. It is always legal to use a box as a default subprogram parameter. When a box is used.
the default actual parameter is determined at the point of instantiation (see IG 12.3.6/S). For
example.

generic
type T is range <>;
type U is range <>:-
with function PLUS (L, R T) return T is "+": -- predefined "+
with function "+" (L, R U) return U is <>.
with function -+" (L, R T) return T is "+"; illegal 0

The default for PLUS is the "+" operator implicitly declared for formal parameter T, and this is
the predefined "+" operation. The explicit declaration of "+" for type U hides the implicit
declaration of predefined *+" for U. When the generic unit is instantiated, the formal declaration
of "+" will denote whatever "+" operation is visible for U's actual parameter. The last declaration
of *+" is illegal because the declaration of the "+* function hides all other declarations of "+* 0
having the same parameter and result type profile (RM 8.3/15), and the declaration itself is not
yet visible (RM 8.3/15); consequently, there is no visible "+" that has the required parameter and
result type profile. .",

12-25

P7; -,F

12.1.3 Generic Formal Subprograms Version 1 (Dec 86)

S5. An attribute is one form of name permitted as a default name when the formal subprogram
contains a parameter of a generic type. However, only those attributes considered to be
functions are permitted in this position, namely, 'IMAGE, 'VALUE, 'PRED, and 'SUCC (RM A). ,% :
These attributes are only defined for discrete types. Hence, a generic declaration is illegal if
these attributes are applied to a formal parameter that is not a discrete type, e.g.:

*' generic
type T is private;
with function SUCC (X : T) return T is T'SUCC; -- illegal

S6. An entry can match the default name of a generic formal procedure:

task T is
entry E (X : INTEGER);

end T;

generic
with procedure P (Y : INTEGER) is T.E; -- matches entry of T

Within the generic unit, P is considered a procedure and cannot be used in contexts that are
only legal for entry calls, i.e., P cannot be used in a timed or conditional entry call.
s It is only possible for a default subprogram to contain an expression or to require the
evatuatio of an access value if the default name denotes an entry or a member of an entry
family:

',4
generic

with procedure P is AR(r).E; -- entry of array of tasks
with procedure Q is T.E(I); -- member of entry family
with procedure R is ACC TSK.E -- access to entry of task

package P is ... end;
In all cases, the evaluation of the name (see RM 4.1/9) is performed only when the default
pim~w i ieeded ir: an instantiation (RM 12.3 6/2).

se Calls of a formal subprogram (i.e., calls occurring within the template) use the defaults
specified in the formal subprogram's declaration, independent of any defaults that may be
specified for the actual parameter. RM 6.4.2/1-2 implies that calls naming subprogram P use
the default expressions specified in P's declaration even when P denotes a subprogram
originally declared under a different name (and possibly with different defaults):

*if a parameter specification Includes a default expression for a parameter of mode In,
then corresponding subprogram calls need not include a parameter association for the
parameter. ... For any omitted parameter association, the default expression('s] ... value is
used as an implicit actual parameter."

Since a parameter_specificatlon occurs only In a subprogram -specification, the "corresponding
subprogram" is the subprogram whose declaration Is named in the call as opposed to the
subprogram denoted by the name in the call. Hence, the default expressions of the named
subprogram's declarationi are used as opposed to the default expressions (if any) of the denoted
subprogram. For most calls, the denoted and the named subprogram are the same. But this is
not the case when the named subprogram is declared by a renaming declaration or by a formal
generic parameter declaration.
s9. An implementation must keep in mind that although the default expressions of a formal
subprogram, P, are used when the name P is used in a call, the subtypes of P's parameters are

12-26

- - 4 - - - . . • o . . o , .. . •- -

Version 1 (Dec 86) 12.1.3 Generic Formal Subprograms

determined by the subprogram P denotes, not by the subtypes specified in P's declaration. (RM
12.3/f says that after instantiation, a formal subprogram parameter denotes its actual parameter.

,? Since the subtype constraint checks required when calling a subprogram (see RM 6.4.1/5-10)
are determined by the subtypes of the denoted subprogram's parameters, the required subtype
checks are determined by the subprogram denoted by the parameter, not by the formal
subprogram's parameter subtypes.) Hence:

subtype R TEN is INTEGER range 1..10;
subtype RFIITY is INTEGER range 1..50;

procedure R (X : R_TEN);

generic
type T is range <>;
with procedure P (X T T'LAST);procedure GQ;

procedure GQ is
begin

P- -- equivalent to P (T'LAST)

end;

When GO is instantiated, the call to P can raise CONSTRAINTERROR:

procedure Gi is new GQ (RFIFTY, R);

GI; -- CONSTRAINTERROR raised

Within G1, P denotes R, so the parametertess call to P inside Gi is equivalent to R '
_FIFTY'LAST). Clearly RFIFTY'LAST lies outside the range of R_TEN, so CONSTRAINT-
_ERROR must be raised. In short, as for renaming declarations, the parameter subtype of a
formal subprogram does not determine what subtype checks must be made when the formal /r..
renamed) subprogram Is called.

s10. When a default name Is given for a formal subprogram, the parameter and result type
profile of the formal subprogram is used to resolve any overloadings of the given name (R
12.3.6/1, RM 8.7/7, RM 8.7/19, and IG 8.7.b/S). After this resolution, the modes of the named
subprogram are checked against the modes of the formal subprogram. If the modes do not
match, the default name is illegal. The modes of the parameters are not used to help decide
what subprogram is denoted by the default name, nor are the names of the formal parameters
or the existence of any default expressions (RM 12.3.6/1):

package P1 is
procedure P (X INTEGER);

end PI;

package P2 is
procedure P (Y in out INTEGER);

end P2;

use P1, P2:

generic
with procedure Q (Z in INTEGER) is P; -- illegal

.'*-,d." package R is

12-27

12.1.3 Generic Formal Subprograms Version 1 (Dec 86)

The default name P is illegal. Both P1.P and P2.P are visible (because of the use clauses; see
RM 8.4/6) and they have the same parameter and result profile. The difference in the
parameter modes cannot be used to decide which P is meant. If the default name were P1 .P,
the name would be legal; the modes are the same even though the mode is indicated explicitly
in the declaration of 0 (i.e., the conformance rules of RM 6.3.1 do not apply). Finally, the
default name P2.P would be illegal because the parameter modes of P2.P and 0 are not the
same.

Si i. Use clauses provide one way to make subprograms with equivalent profiles simultaneously
visible (see IG 8.4/S). Another way is by instantiating a generic unit (see IG 12.3/S).

Changes from July 1982

S12. An enumeration literal is allowed as an actual parameter associated with a formal
subprogram declaration.

Changes from July 1980

S13. A default subprogram specified by name is associated with a name visible at the point of
the given unit's declaration, not at the point where the unit is instantiated.

Legality Rules

Li !f a name is specified as the default name for a generic formal subprogram, there must be
exactly one matching subprogram visible at the point of the generic declaration. (A visible
s.:.bprogram matches the default name if the visible name and the number of parameters
are the same, the parameters are in the same order, and corresponding parameters have
the same base type.) (RM 12.3.6/1.)

L2. The mode of each parameter of a subprogram denoted by a default name must be the
same as the mode of corresponding parameter of the formal subprogram (12.3.6/1).

L3. A default name must not be the same as the name of the formal subprogram (RM 8.3/5,
15).

L4 A generic formal subprogram must not use any of the following strings as its designator:
'. >, ,not in", "and then" "c, - lse" (RM 6.7/1).

L5. A generic formal function must only have parameters of mode In (RM 6.5/1).
L6. The identifiers of a generic formal subprogram's parameters must be distinct from each

other (RM 8.1/2 and RM 8.3/17).

L7. The designator of a formal subprogram must not appear as a name within the
subprogram's specification (RM 8.3/16).

L8. Default values may only be specified for generic formal subprogram parameters of mode in
(RM 6.1/4)and only for subprograms that do not declare operators (see RM 6.7/2).

L9. The base type of the default expression must be the same as the base type of the formal
parameter (RM 6.1/4).

L10. A default expression for a tormal parameter of a generic formal subprogram must not use a
name denoting any form parameter declared previously in the same formal part (RM
6.1/5), nor may the name of the current parameter be used (RM 8.3/5 and RM 6.1/5).

L1. Operator symbols declared as generic formal functions having two parameters must
correspond to operators that require two operands (RM 6.7/2).

L12 Operator symbols declared as generic formal functions having a single parameter must
correspond to operators that require one operand (RM 6.7/2).

I:

12-28

..

Version 1 (Dec 86) 12.1.3 Generic Formal Subprograms

1L13. If "=" is the designator of a generic formal function, its formal parameters must have the
% r, same limited type, and its result type must be predefined BOOLEAN (RM 6.7/4).

L14. The generic formal part and the declarative part of a generic subprogram cannot contain
equivalent explicit subprogram declarations (RM 8.3/17 and RM 8.1/2). (Two subprogram
declarations are equivalent if (RM 6.6):

" they both declare procedures or both declare functions; and .

" the number, order, and base types of the formal parameters are the same;
and

" for functions, the result base types are the same.)

L15. For generic packages, subprograms declared In a generic formal part, a package ..

specification, and a package body must not be equivalent (RM 8.3/17 and 8.1/2).

Test Objectives and Design Guidelines

T1. Check that default names of subprogram parameters are identified with subprograms
visible at the point of the generic declaration, not at the point of the generic instantiation.
Implementation Guideline: Check defaults specified with identifiers (including enumeration literals), operator
symbols, and character literals.
Implementation Guideline: For one case, the default subprogram should be visible via a use clause at the point N
of the declaration, but not visible at the point of instantiation.
Implementation Guideline: At least one default should match the name of a preceding generic formal
parameter, whether it is explicitly or implicitly declared.

Check that no match to a default subprogram name is found if the only difference is in:

* the number of parameters;

. the ordering of the parameter base types;

* the mode of a parameter; -,

* the base type of a parameter;

o more than one matching subprogram is visible.
Implementation Guideline: Include a case like that discussed in S1.

Check that if an overloaded identifier or operator is used as a default subprogram, the
overloading is resolved without considering the names of parameters, whether they have
default values, and whether the mode in is written explicitly in both declarations.,t"9

Check that a default name cannot be the same as the formal parameter name.
Implementation Guideline: Use both simple names and operator symbols.

T2. Check that generic default subprograms may be the following attributes, and that the
appropriate functions are used: 'IMAGE, 'VALUE, 'PRED, and 'SUCC.
Implementation Guideline: Check using types declared in the same and in an enclosing generic formal part.

Check that default generic subprograms cannot be the following attributes:

'ADDRESS 'FORE 'MANTISSA
'AFT 'LARGE 'POS
'BASE 'LAST 'POSITION
CALLABLE 'LAST (N) 'RANGE

'CONSTRAINED 'LAST BIT 'SAFE EMAX
.9 'COUNT 'LENGTH 'SAFE LARGE

'DELTA 'LENGTH (N) 'SAFE SMALL

12-29

• '%

12.1.3 Generic Formal Subprograms Version 1 (Dec 86)

'DIGITS 'MACHINZEEMAX 'SIZE
EMAX MACHINE EMIN 'SMALL

'EPSILON 'MACHINEMANTISSA 'STORAGESIZE
'FIRST 'lMACHINEOVERFLOWS 'TERMINATED
'FIRST (N) 'MACHINERADIX 'WIDTH
'FIRST-BIT 'MACHINE_ROUNDS 'VAL

Implementaion Guideline: In each case, use a generic formal subprogram whose parameter and return type
are defined appropriately.

T3. Check that the usual restrictions for subprogram declarations are enforced for formal
subprogram declarations, namely:

a. " /=",, "in", "not in", "and then", "or else", and ":=" are forbidden as designators
for generic formal functions;

b. generic formal functions cannot have parameters of mode in out or out;

c. parameter names of generic formal subprograms cannot be identical;
d. default parameter values are forbidden for generic formal subprogram

parameters of mode in out or out, and for formal subprograms whose
designator is an operator symbol;

e. the base type of a generic formal subprogram parameter and the base type of
its default value cannot be different;

f. the designator of the subprogram must not appear as a name within the
subprogram specification;

g. operator symbols declared as generic formal functions must have the correct ..-. ,.. "

number of parameters;

h. the case of literals used as operator symbols is not significant;

i. if "=, is a generic formal function, its formal parameters must have the same
limited type and its result type must be BOOLEAN;

formal subprogram declarations having the same designator and equivalent
parameter and result profiles are forbidden within a generic formal part and
between a generic formal part and either the specification and body of a
package or the declarative part of a generic subprogram; in particular, check
that parameter mode, default values, and presence or absence of constraints
is ignored (see IG 12.1/T9).

T4. Check that generic formal subprograms may have parameters of a generic formal type.
Implementation Guideline: Include all modes. IG 7.4.4/TI covers the case when the generic formal type is
limited private and the parameter mode is out.

T5. Check that default subprograms may be instances of generics.

T6. Check that a formal subprogram cannot be used in a conditional or timed entry call, even if
the generic unit is never instantiated. V

17. Check that a string literal may be used both as a default subprogram value (e.g., "=") and
as a default initial value for an array parameter, and that the proper default values are used
in an instantiation.
Implementation Guideline: The array parameter must be a one-dimensional array of a character type.

Check that an enumeration literal (both an identifier and a character literal) may be used as
a default subprogram name and as a default Initial value for an object parameter.

p.
12-30

% % % %

r'X,%P,.

Version 1 (Dec 86) 12.2 Generic Bodies

T8. Check that formal subprogram parameters may overload each other and other visible
.$,-.f* subprograms and enumeration literals within and outside of the generic unit.
V %Implementation Guideline: Check using subprograms with minimal differences, i.e., use declarations that differ

in only one of the following aspects:

" one is a function; the other is a procedure.

" one subprogram has one less parameter than the other (the omitted parameter may or may not
have a default value).

" the base type of one parameter is different.

" the parameters are ordered differently.
" the result types of two functions are different.

Ti 0. Check that a default subprogram may be an entry or a member of an entry family, and that
the appropriate entry is used.
Implementation Guideline: For some cases, the entry should be an entry of a task that is: designated by an
access value, a component of a record, and a component of an array. The particular task or entry should be
determined at the time the default is used.

Check that a default subprogram cannot be an entry family.

T1 1. Check that the default expressions of the parameters of a formal subprogram are use"
instead of the defaults (if any) of the actual subprogram parameter. %

Implementation Guideline: The default expressions should be evaluated when used in a subprogram call
(rather than when the generic unit is declared or instantiated).

Check that if parameters of default and formal subprograms have the same base type but
not the same subtype, the parameter subtypes of the subprogram denoted by the default
are used instead of the subtypes specified in the formal subprogram declaration (see also
IG 12.3.6/r5, which checks for actual parameters rather than default parameters).
Implementation Guideline: Use subtypes of scalar, record, array, and access types - both constrained and
unconstrained.

12.2 Generic Bodies
Semantic Ramifications

S1. A generic formal part cannot be provided for a generic body. Thus a generic subprogram
must have a separate declaration and body; the body can never serve to declare a generic unit
(although bodies can serve as declarations for nongeneric subprograms; see RM 6.3 and RM
10.1/3).

S2. Since a generic declaration and its body form a single declarative region (RM 8.1/2), tl,,-
scope of all declarations occurring immediately within a generic specification extends over the
associated body (RM 8.2/2). The visibility rules (RM 8.3) therefore imply that names within a
template body are statically bound, first using the context of the generic specification, and then
using the context of the body (see IG 12.1/S).

Changes from July 1982

S3. There are no significant changes. ,

Changes from July 1980

S4. There are no significant changes.

Legality Rules

.., "*."- L1. A subprogram body must be provided for each generic subprogram declaration (RM
5%12.2/2).

12-31

%" . 5.

12.3 Generic Instantiation Version 1 (Dec 86)

L2. A package body must be provided if any of the following are given as a declarative item of
a generic package specification (RM 7.1/4):

* a nongeneric subprogram declaration (RM 6.3/3), unless the subprogram is
named in an INTERFACE pragma that is accepted by the implementation (see
RM 13.9/3).

* a generic subprogram declaration (RM 12.2/2).

* a task declaration (RM 9.1/1).

" a (nested) package declaration or generic package specification that requires
a body (RM 7.1/4).

* an incomplete type declaration in the private part of a package without a
corresponding full type declaration in the same private part (RM 3.8.1/3).

L3. The body of a generic unit must not precede Its declaration (RM 3.9/9).

Test Objectives and Design Guidelines

T1. Check that a generic subprogram or package body cannot be preceded by a generic
formal part, even when the generic formal part Is copied from the corresponding generic
declaration.
Implementation Guideline: In some cases, there should be no preceding generic subprogram declaration.

T2. Check that the statements in a generic package body are not executed when the generic
body is elaborated.
Implementation Guideline: The elaboration of a nongeneric package body can change the values of global
variables and/or raise exceptions. Neither of these should occur when a generic package body is elaborated; '
only when it is instantiated.

T3. Check that names in a generic body are bound in the context of the generic declaration
(not the instantiation) (see IG 12. 1/T10).

T4. Check that the body of a generic unit must appear after its declaration. %

12.3 Generic Instantlation
Semantic Ramifications

S1. Detailed matching rules for the various kinds of generic parameters are discussed in later
subsections, as in the RM. This section covers the remaining aspects of generic instantiations.
S2. Although generic units are like macros in many ways, there are important differences; an
implementation cannot treat a generic unit as a macro because:

" the actual parameters of an instantiation are evaluated (once) in the context of
the instantiation, not in the context of their use within the Instantiated unit;

" an instantiation provides (and, for packages, executes) the body of the
instantiated unit at the point of the instantiation, even though it may be
syntactically Illegal to actually provide a body at that point (e.g., within a
package specification); %

" name binding and the effect of deriving a type (see IG 12.1.3/S) are all defined
within the context of the generic declaration, not in the context of the
instantiation;

* the instantiated unit may contain homographic declarations that would be illegal

12-32

Version 1 (Dec 86) 12.3 Generic Instantiation

if the text of the instantiated unit were written at the place of the instantiation -

(see later example).

S3. In general, the legality of a generic instantiation only depends on:

a. whether the actual parameters of the instantiation satisfy restrictions 9
associated with the formal parameters;

b. whether the name of the Instantlated unit is allowed in the declarative region
containing the instantiation (see RM 8.3/17).

c. the use within the template of a formal private or limited private type when the
actual type is:

* an unconstrained type having discriminants, or

" an unconstrained array type (see IG 12.3.2/S).

d. whether the instantlation introduces a circularity.

s4. The legality of an instantiation depends on the contents of a template only in cases (c) and
(d). If an implementation notes how formal private parameters are used in a generic unit and
what instantiations such a unit performs, this information, combined with the properties of th,
formal parameters and the name of the Instantiated unit, suffice to determine the legality of :';e
instantiation. One difficulty is that an instantiation may textually occur before the body of the
instantiated unit, and can even occur in a separately compiled unit. The problems this causes
are discussed later in conjunction with (c) and (d).

ss. The identifier declared by a package instantiation is not visible within the instantiation (RM
8.3/5), i.e., any outer declarations with that identifier are hidden and can only be named . .
selectively:

package NP is new P (NP.T); -- illegal

package NQ is new Q ((NQ -> 0)); -- legal

The declaration of NO is legal on the assumption that O's formal parameter is a record type with
component name NO.

S6. Generic subprogram Instantlations obey a stricter rule: the designator of the instantiated
subprogram cannot be used within the instantiation to denote any declaration, either directly or
by selection (RM 8.3/16):

function F return FLOAT is ... end F7

generic
type T is private;
X : FLOAT;

function G return T;

function G return T is ... end G;
I

with F, G:
package P is .,.

X : FLOAT := F; -- invokes library unit
type REC is

record
F : FLOAT 3.0;

end record;

12-33

S

***.- %, , *' ,- *, ''', ',•,.,...,.'.,,...-..,,- ,..". .. .:' ,. " . .. ,. - '

12.3 Generic Instantiation Version 1 (Dec 86)

R : REC;

function 7 is
new G (INTEGER, F); -- illegal; STANDARD.F hidden

function F is -- illegal; F not visible
new G (FLOAT, STANDARD.F); -- by selection

function F is
new G (INTEGER, P.F); -- illegal; P.F not visible

function F is
new G (INTEGER, R.F); -- illegal; no F is visible

end P;

All the instantiations of F are illegal because within each instantiation, the identifier F appears.
RM 8.3/16 says, "Within a generic Instantlation that declares a subprogram, ... every declaration
with the same designator as the subprogram Is hidden; ... where hidden in this manner, a
declaration is visible neither by selection nor directly." In each of the cases shown above, an
attempt is made to reference a declaration of F within a generic instantiation of subprogram
F. All such attempts are illegal.

When an instantiated function is denoted by an operator symbol, this restriction extends to the
use of the operator symbol In a function call and to the use of the operator in an expression:

function "+" is new G(
"+" (3.2), -- illegal use of "+"
3 + 2, -- illegal use of +

-- illegal if formal parameter
-- is a function

The last usage is not illegal if "+" denotes a string literal (e.g., if the formal parameter has the
type STRING (1 ..1)), since in such a case, "+" does not denote any declaration.

S7. When an instantiated function is declared with an operator symbol, the rules for declaring
operators apply (RM 6.7/2), i.e., default parameters are not allowed, the operator must have the
correct number of parameters, and special rules apply to the declaration of "=".

generic
type T is private;
DEFAULT : T;

function BINOP (L, R : T DEFAULT) return T;

function "*" is new BIN OP (INTEGER, 3); -- illegal; default values
function "abs" is new BINOP (INTEGER, 3); -- illegal; 2 parameters

The first instantiation is illegal because It provides default parameter values for the operands of
"". The second is illegal because it attempts to provide two parameters for a unary operator.

se. Since default values of generic formal parameters can depend on the values of previous
formal parameters, default expressions must be evaluated in the order of their occurrence in the

generic unit's declaration:

generic
X INTEGER :- 3;
Y :INTEGER: X - 1:
Z INTEGER :- X + Y,

package P is ... end P;

12-34

V4

.J,
o,,.

Version 1 (Dec 86) 12.3 Generic Instantlation

package NPi is new P (Y => 6); -- X = 3; Z = 9

package NP2 is new P (5); -- X = 5; Y = 4; Z = 9 P
p

,'

S9. As a result of an instantiation, it is possible to obtain two subprograms with identical
parameter and result type profiles:

generic
type TI is private:
type T2 is private;

package P is
procedure PROC (X TI);
procedure PROC (X : T2);

end P;

package PI is P (INTEGER, INTEGER);

The instantiated package contains two subprograms with identical profiles. This does not make
the instantation illegal, but it does mean that any calls to PI.PROC will be ambiguous, and
therefore, illegal. Note that within the body of P, PROC can be called unambiguously with
parameters of type T1 or T2, since the visibility rules bind such uses of PROC in the context -,o
the generic declaration:

package body P is
procedure PROC (X T1) is ... end PROC;

procedure PROC (X T2) is ... end PROC; ..
Z : Ti; I.,

, beginbiPROC (Z); -- where Z is of type Ti
end P;

Si. Circular instantiations are forbidden:

generic procedure F;,

generic procedure G;

with G; 'P

procedure F is
procedure NG is new G;

begin
NG;

end F;

with F;
procedure G is

procedure NF is new F; -- illegal
begin

NF;
end G;

The instantiation of F is illegal regardless of whether G is ever instantiated. An instantlation of F
can legally occur prior to the compilation of G, and F and G can both be separately compiled as
library units or subunits. For example, suppose unit P, below, is compiled after the compilation
of unit F's body:

12-35

S-,.,.,...,. ,* ,. '5",' 5,=._. .,-",' ",".. .. ." ..- '_. ". . . .,. '

12.3 Generic InstantIation Version 1 (Dec 86)

with F;
package P is

procedure NF is new F;
end P:

Unit P is legal; only G, the unit that completes the circularity, is illegal. Note that an instantiation
that creates a circularity can only appear inside a generic unit.
sI1. The circularity rule does not take potential flow of control into account. If we replace the
above body of G with:

F, procedure G is
begin

if FALSE then
declare

procedure NF is new F; -- still illegal
begin

null;
.4.,

endend;' endif ;

end G;

there is still an illegal circularity.

S12. In general, a generic unit body can be compiled or recompiled after compiling several units
that contain instantiations of the unit. Recompiling such bodies does not require recompilation
of the units containing the instantlations. See IG 10.3/S for further discussion.

Changes from July 1982

S13. An actual parameter for a formal generic subprogram may denote an enumeration literal or
entry.
S14. The evaluation order for default expressions is defined.

Changes from July 1980

s15. The mapping from formal parameters and implicit operations to actual parameters and
operations is no longer defined In terms of a replacement rule.
s16. An operator symbol is allowed In a named parameter association.

Legality Rules

L1. The name following new in a generic instantiation must be the name of a generic
subprogram or package (in particular, It must not be the name of an enclosing generic unit)
(RM 12.3/2).

L2. A generic actual parameter must be supplied for each generic formal parameter that has
no default given in the corresponding generic formal part (RM 12.3/3).

L3. The number of generic actual parameters must not exceed the number of generic formal
parameters in the corresponding generic formal part (RM 12.3/3).

L4. A named generic actual parameter must not be given for a generic formal parameter that is
already associated with an earlier positional or named generic actual parameter (RM
12.3/3 and RM 6.4/4).

L5. Named associations are not allowed for overloaded formal parameters (RM 12.3/3).
L6- Positional generic actual parameters must precede named generic actual parameters (RM

12.3/3 and RM 6.4/4).

12-36

N- N,.

Version 1 (Dec 86) 12.3 Generic Instantiation

L7. The formal parameter name in a generic association must be identical to that of a generic
formal parameter in the corresponding generic formal part (RM 12.3/3 and RM 6.4/3).

L8. Circular instantiations are forbidden, i.e., if a generic unit, A, is said to statically instantiate
unit B when A's text contains an instantiation of B or an instantiation of a unit that statically
instantiates B, a generic unit is forbidden to statically instantiate itself (RM 12.3/18).

L9. Any declaration having the designator given in an instantiation of a subprogram is not
directly or selectively visible within the instantiation (RM 8.3/16).

110. Any declaration having the identifier given in an instantiation of a package is not directly
visible in the instantiation (RM 8.3/5).

LI 1. If an instantlation declares an operator:

" the instantiated unit must not have a default parameter (RM 6.7/2);

" if the operator is a binary operator, the instantiated furncio.i must have two
parameters (RM 6.7/2);

" if the operator is a unary operator, the instantiated function must have one
parameter (RM 6.7/2);

m if the operator is equality, the formal parameters of the instantiated function
must both have the same limited type and the function must deliver a ,

BOOLEAN result (RM 6.7/4);
*the designator must not be "/=" (RM 6.7/4), "in", "not in", "and then", or "or

else" (RM 6.7/1).

Test Objectives and Design Guidelines

T1. Check that a reference to an instantiation of a generic subprogram or package cannot
precede the instantiation itself.

Check that the identifier of a package declared by an instantiation is not directly visible
within the instantiation.
Implementation Guideline: Check that the identifier cannot be used as the name of the generic unit being
instantiated or in the actual parameter list as a type mark; as a primary in an expression; as a function name in
a function call: as a prefix of an indexed component, slice, selected component, or attribute; or as a selector of
an expanded name whose prefix denotes a unit immediately enclosing the instantiation.

Check that the identifier of a package is selectively visible within the instantiation.
Implementation Guideline: Check that the identifier can be used as the selector of an expanded name whose
prefix denotes a visible package or a construct enclosing the instantiation (but not a construct immediately
enclosing the instantiation); as a selector denoting a record component; as a choice in a record aggregate: as a
formal parameter name in a function call; as a selector denoting an entry or entry family; or as a formai
parameter name of the unit being instantiated,

Check that the designator of a subprogram declared by an instantiation is not visible
directly or selectively within the instantiation.
Implementation Guideline: Use all the contexts specified above for a generic package instantiation.

T2. Check that in a generic instantiation:

" a generic actual parameter cannot be omitted if the corresponding generic
formal (object or subprogram) parameter has no default.

" the number of generic actual parameters cannot exceed the number of
generic formal parameters in the corresponding generic formal part.

" .. named generic actual parameters cannot precede or be interleaved with
positional generic actual parameters.

""I
.; ,. •% .. • ° .r € ,. . v- Jr . • - . . • . . . - - . . . = .. , ?

12.3 Generic Instantlation Version 1 (Dec 86)

" a positional or named generic actual parameter and another named generic
actual parameter cannot be specified for the same generic formal parameter.

" the formal parameter Identifier in a named generic association cannot be
different from all of the identifiers of the generic formal parameters in the
corresponding generic formal part.

Implementation Guideline: When possible, try each of the above with generic instantiations consisting of (1)
positional associations only, (2) named associations only, and (3) mixtures of positional and named
associations.

T3. Check that generic instantiations of the form P (A,,B) are forbidden, even when the omitted
generic parameter has a default.

Check that generic instantiations of the form P (AIB => C) are forbidden, even when
generic formal parameters A and B are of the same kind (object, type, or subprogram) and
match (same subtype, same kind of generic type definition, or same subprogram
specification).

T4. Check that regardless of the order of the named generic actual parameters in a generic
instantiation, each is associated with the generic formal parameter that has the same
formal parameter identifier or operator symbol.

Check that all actual parameters are evaluated prior to any default expression.

Check that defaults for formal parameters are evaluated in the order given by the generic
decaration (see IG 12.3.1/1T23 and IG 12.3.6/T2).

Check that default expressions are only evaluated if no actual parameter is present (see IG
12.3.1/T23 and IG 12.3.6/TI, /T2).

TS. Check that in a generic instantiation:

the actual parameter corresponding to a formal type or a formal subprogram
cannot be an object.

* the actual parameter corresponding to a formal object or a formal subprogram
parameter cannot be a type mark.

s the actual parameter corresponding to a formal type cannot be a subprogram
or an entry name, nor can it be a subtype indication with a range constraint, an
accuracy constraint, an index constraint, or a discriminant constraint.
Implementation Guideline: Try all classes of formal tyi' .

'the actual parameter corresponding to a formal object cannot be a type name,
a procedure name, or an entry name.

T6. Check that the name following new in a generic instantiation cannot be the name of an
instantiation or the name of a nongeneric package or subprogram.

17. Check that the names in a generic instantlation are statically identified (i.e., bound) at the
textual point of the instantlation, and are bound before being "substituted" for the
corresponding generic formal parameters in the specification and body templates.
Implementaton Guideline: Use tests that distinguish between LISP/APL/macro dynamic binding and
Algol/Pascal/Ada static binding, such as when a generic actual parameter identifier is identical to a local
identifier of a template and is used in the local identifier's declarative region.

T8. Check that a generic instantlation within a generic unit is performed correctly. (This
objective is accomplished implicitly by other tests.)

T9. Check that a generic unit may not require an instantiation of itself. "- -

12-38

".3..:."...'"* .' . 4-".,.'.' :.",-'.' '....' ,,,, '.""4 .V ," ". ." ". .' •--4",- ,. - ,,- .- 4.. " . ", .,., .

Version 1 (Dec 86) 12.3.1 Matching Rules for Formal Objects

Implementation Guideline: Use directly and indirectly circular instantiations, both when all the bodies are
declared in the same compilation unit. and when the bodies are declared in different compilation units (but
within the same compilation); use both subunits and library units. Also check that a circularity is detected even

'I,",." oif an instantiation or a generic declaration is not elaborated.

Tio. Check that for instantlations that declare an operator (see IG 6.7/Ti):

* no default parameters are allowed;
" binary operators must have two parameters;
" unary operators must have one parameter;

" the equality operator must have two parameters of the same limited type, and
must have a predefined BOOLEAN result type.

Check that instantlations of the above operators are allowed and can be used appropriately
(see IG 6.7/T2).

T1 1. Check that an instantlation with identical actual type parameters can produce subprogram
declarations having the same type profile in the instantiated unit, and that calls within the
instantiated unit are unambiguous

Check that calls from outside the instantiated unit are unambiguous if formal parameter
names are used or if only one of the equivalent programs appears in the visible part of e(
instantiated package, and otherwise are ambiguous.

T12. Check that instantiated generic subprograms can overload previously declared
subprograms and enumeration literals.

T13. Check that a specification part cannot be provided in the instantiation of a generic
subprogram.

T14. Check that "/=", "in", "not in", "and then", and "or else" cannot be declared by a genen
instantiation (see IG 6.7/Ti).

T1 5. Check that when a generic package instantiation is elaborated, statements in its package
body are executed and expressions requiring evaluation are evaluated (e.g., defaults o;
object declarations are evaluated). ,N

Ti 6. Check that an instantiated package has the properties required of a package (see tests for
Chapter 7).

T17. Check that an instantiated subprogram has the properties determined by the generic unit's
specification and body (see tests for Chapter 6).

T18. Check that named associatio3ns are not allowed for overloaded formal parameters. I
T19. Check instantlations of units within generic units, e.g., to support iterators.

12.3.1 Matching Rules for Formal Objects

Semantic Ramifications

S1. Subcomponents depending on a discriminant of an unconstrained (containing) object are
not allowed as generic actual In out parameters (RM 12.3.1/2 and 8.5/5). Such a containing
object always has a record type with default discriminants. (The object cannot have a scalar or
access type, since such types have no subcomponents. It can't have an array type or a type
without default discriminants, since all such variables must be constrained. The only type
classes left are record and private types that have default discriminants. Since discriminants

%#,.-

- P U WU h WW W~WXW'WWI W

12.3.1 Matching Rules for Formal Objects Version 1 (Dec 86)

are the only visible subcomponents of a private type, and since discriminants cannot
themselves be declared so they depend on another discriminant, the only kind of unconstrained
object that can have subcomponents depending on a discriminant is a record object whose type
has default discriminants.)

S2. The containing object itself can be (see RM 8.5/5):

* a variable declared in an object declaration;

* a component of a record variable;

* a component of an array variable;

* an In out formal parameter of a subprogram or entry; or

* a generic formal In out parameter (whether or not it is constrained).

In all but the last case, the object must have an unconstrained subtype with discriminants that
have defaults. (The case of generic formal variables is discussed later.) According to RM
3.7.1/6-7, a component of such a variable depends on a discriminant if:

e the component is declared in a variant part;

* the component is an array with one or more bounds specified by a discriminant
(of the enclosing record);

* the component has a record or private type and is declared with a discriminant
constraint that names a discriminant of the enclosing record; or

9 the component has an access type and is declared with an explicit (index or
discriminant) constraint naming a discriminant of the enclosing record.

Any subcomponent of such a component is also considered to depend on a discriminant.
However. since access types do not have (sub)components, a designated object (and its
components, if any) does not depend on a discriminant even if the access variable does depend
on a discriminant (see example below).

s. The various possibilities are illustrated in the next example:

type REC (D INTEGER := 0) is
record

A INTEGER;
case D is

when INTEGER =>
V INTEGER; -- decl in variant part

end case;
end record;

type ARREC is array (1..10) of REC;
type R RMC is

record
Z : RZC:

end record;

type ASTRING is access STRING;
type ARC is access REC;
type A AR RC is access AR RZC;
type AR RlC is access RRC;

12-40

"1

Version 1 (Dec 86) 12.3.1 Matching Rules for Formal Objects

type DIS (L POSITIVE 1) is
record

S STRING (1..L); -- dependence on discriminant ,.

R REC (L); -- dependence on discriminant I
RC REC (3);
AS A STRING (1. .L); -- dependence on discriminant "
AR A_REC (L); -- dependence on discriminant ."
ARU A REC; -- dependence on discriminant ,
V AR AR REC;

V'-R :R c; L
AC_AR :A_R_REC;
Ac R :AR Rec

end record;

X DIS;
Y DIS(5);

All of the following components depend on a discriminant of an unconstrained variable, and
hence cannot be used as an actual In out generic parameter:

" components of variable X -- X.S, X.R, X.AS, X.AR;

" components of X.S and X.R -- X.S(I), X.R.D, X.R.A., X.R.V;

* components of variable X.V_AR(I) -- X.V AR(l).V;

* components of variable X.VR.E -- X.VR.E.V (a subcomponent of variable X);

* components of variable X.ACR.E -- X.AC_R.E.V (a subcomponent of variable
X.ACR.al).

In particular, note that X.S(1) Is Illegal as an actual parameter even though since the value of L
must be at least 1, the referenced component always exists. Similarly, X.R.D and X.R.A are
illegal as actual parameters. Note also that, except for VAR(I).V and V_R.E.V, any of the
above components of variable Y are legal, since Y Is constrained. Finally, since objects of an
access type do not have components, X.AS(1), X.AR.D, and X.AR.A are all legal, even though I
X.AS and X.AR are illegal. In addition, since any designated object is constrained (RM
3.7.2/10), it is always legal to pass a component of a designated object as an actual in out

parameter. However, subcomponents of designated objects can be subject to the rule. For
example, X.AC R.E is a component of a designated object. It is also an unconstrained variable:
hence, X.AC_R.E.V is subject to the rule. S
S4. The following are the only legal subcomponents of X that can appear as an actual generic
in out parameter: X.L (the discriminant), X.RC (a component), X.RC.D, X.RC.A, and X.RC.V
(subcomponents), X.ARU, X.ARU.D, X.ARU.A, X.ARU.V , XVAR X VAR(l), X.V_R, X.V_R.E,
X.V_R.E.D, and X.V_R.E.A. In particular, note that X.VR.E Is ar, unconstrained variable
having some components that depend on a discriminant, as Is X.VAR(I).

ss. The restriction regarding subcomponents that depend on discriminants is more severe for
variables that are formal generic parameters. Such variables are always of mode In out
(otherwise, the formal object would not be a variable). But it is irrelevant whether the
discriminants of the formal object have default values or not: ,,

12-41 ,
S

12.3.1 Matching Rules for Formal Objects Version 1 (Dec 86)

type BUFFER (SIZE : NATURAL) is
record . ,

POS NATURAL :- 0;
VAL STRING (1..SIZE);

end record;

subtype BUFF 200 is BUFFER (200);
generic

X : in out BUFF_200; -- constrained
package P is

generic
Y : in out CHARACTER;

package Q is end Q;

RX : BUFF 200 renames X;
package NQ is new Q (X.VAL(103)); -- illegal
package NQ2 is new Q (RX.VAL(103)); -- illegal

end P;

Z : BUFFER(100)

package NP is new P (Z); -- legal if P is legal

X is a variable having subcomponents that depend on a discriminant, namely, X.VAL and
X.VAL(l). Since X is a formal In out parameter, these subcomponents are not allowed as actual
In out parameters, and so, the instantiation of NO is illegal. The constraint applicable to X is
immaterial. Similarly, since RX renames X, RX denotes a formal In out parameter, and so, the ,
instantiation of N02 is also illegal.

S6. Suppose we removed the illegal instantiations from P. Then the instantiation for NP will be
meaningful and legal. In addition, we could then write:

use NP;
package NQ3 is new NP.Q (RX.VAL(103));

This instantiation is not illegal because NP.RX denotes Z, and Z is a constrained variable.
However, NP. RX.VAL(103) will raise CONSTRAINTERROR, since 103 exceeds Z.VAL'LAST.
S7. Finally, suppose O.Y were an In generic formal parameter. Then the instantiations for No

and N02 would be legal. However, the instantiation for NP would raise CONSTRAINTERROR
when the instantiated unit, NP, Is elaborated; 103 exceeds the upper bound of the variablu
denoted by X (i.e., Z).

Ss. Note the difference for subprogram In out parameters:

procedure PROC (X : in out BUFFER) is
package NQ4 is new NP.Q (X.VAL(103));

This instantiation is legal since BUFFER, the type of PROC.X, does not have default
• ": discriminants. The instantiation might, of course, raise CONSTRAINT ERROR. If BUFFER's

discriminant had a default expression, then the Instantiation for N04 would be illegal.

4I'. Sq. The value of a generic In parameter Is constant throughout the existence of an
instantlation. In particular, for instantiations of generic subprograms, an implementation must
ensure that every Invocation of the subprogram uses the In parameter value provided at an
instantation. For example: e",.

"4, 12-42

4' . r""" .'-""" . ."."*-,-.-j ,...,- .- .,=lj = =o' _ .. % _% V"_ + '' . -' +% % .' -. , = ' -. ' .. ,

. "'" Version 1 (Dec 86) 12.3.1 Matching Rules for Formal Objects

generic
*type T is private;

DEF T;
procedure P (X : T := DEF);

If the generic unit P is declared as a library unit or declared inside a library package, P can be
instantiated as a library unit:

, with Q;
procedure LIBP is new P (INTEGER, Q.Y);

Every invocation of LIBP must use the value provided by Q.Y at the time of LIB_P's
instantiation.

Changes from July 1982

sio. An actual In out parameter must not be a formal parameter of mode out or a
subcomponent thereof.

Changes from July 1980

si 1. There are no significant changes.

Legality Rules

L1. Formal and actual object parameters must have the same base type (RM 12.3.1/1 and RM
12.3.1/2).

L2. An actual In out parameter must be a variable (RM 12.3.1/2).

L3. An actual In out parameter must not be a parameter of mode out or a subcompner ,
thereof (RM 12.3.1/2).

L4. If an actual In out parameter is a subcomponent of:

" a variable declared by an object declaration, a record component declaration,
or an array component declaration, and the variable has an unconstrained
record type with default discriminants (RM 12.3.1/2 and AM 8.5/5); or

" an In out subprogram or an entry formal parameter declared as an
unconstrained record type with default discriminants; or

" a generic formal in out parameter whose base type is a record type that has
discriminants (with or without defaults),

then the subcomponent is not allowed as an actual in out generic parameter if the,
subcomponent depends on a discriminant (see AM 3.7.1/6-7) of the variable, subprogram
formal parameter, or generic formal parameter, respectively.

L5. If a generic formal In parameter has an unconstrained array type. then the actual
parameter must not be an aggregate with an others choice (AM 4.3.2/5).

L6. If a generic formal In parameter has a constrained array type, the actual parameter must
not contain an association with an others choice together with other named associations
(RM 4.3.2/5).

Exception Conditions

El. CONSTRAINTERROR is raised for a formal in parameter having a scalar type if the
actual parameter's value does not lie in the range of the formal parameter's constraint.

---- ~-. -- .-

12.3.1 Matching Rules for Formal Objects Version 1 (Dec 86)

E2. CONSTRAINTERROR is raised for a formal in parameter having a non-null constrained
array type if the number of components for corresponding dimensions (of the formal and
actual parameter) is not the same.

E3. CONSTRAINTERROR is raised for a constrained formal In parameter with discriminants
if corresponding discriminant values are not equal.

E4. CONSTRAINTERROR is raised for a formal In parameter having a constrained access
type if the actual parameter's value is not null:

" the designated type is an array type, and any index bound of the designated
object does not equal the corresponding bound specified for the formal
parameter.

" the designated type is a type with discriminants and any discriminant of the
designated object does not equal the corresponding value specified for the
formal parameter.

Test Objectives and Design Guidelines

T1 Check that formal and actual parameters cannot have different base types.
Implementation Guideline: Check for both modes, and when the type is a formal generic type.

T2. Check that a generic actual In out parameter must be a variable.
Imp;,e't. ntation Guideline: Try th. following kinds of actual parameters: a declared constant (including
c..omponents of a constant); a generic In parameter; a subprogram in parameter; a loop parameter; a named
rimber. a paier.hesized variable; a function call returning a result of a scalar, array, record, access, and
private type; a sliced function result; a component of a composite function result;, an attribute; an aggregate of

variables; a qualified variable; an allocator; a record discriminant; an expression with an operator; and a
variable as the operand of a type conversion.

Check that an actual In out parameter cannot be a subcomponent of an out subprogram
or entry parameter.

T3. Check that an actual In out parameter cannot be a subcomponent of a variable that is a
record component, an array component, or an object declared with an object declaration, if
the variable has an unconstrained type with default discriminants, and the subcomponent
dep-ends on a discriminant, i.e., the subcomponent is:

* a component of the variable and the component:

* is in a variant part of the variable;

* is an array with at least one bound specified by a discriminant of the
variable;

* has a constrained record or private type with at least one discriminant
specified by a discriminant of the variable;

F. 9 has an access type with an explicit index or discriminant constraint
using a discriminant of the variable;

* a subcomponent of one of the above components.

T4. Check that an actual In out parameter cannot be a subcomponent of an unconstrained
subprogram or entry In out formal parameter if the subprogram or entry parameter has a
record type with default discriminants and the subcomponent depends on a discriminant of
the parameter's type (see the definition in T3).

T5. Check that a subcomponent of a generic In out formal parameter, F, cannot be used as an

12-44

" 1
4' ' ,

N'1 ., " , , , , .',, , , ,,, , ', , , , , , . ,_, .. '. .' " . ., - .'. . , .' . . . , , , . .. '

Version 1 (Dec 86) 12.3.1 Matching Rules for Formal Objects

actual generic In out parameter if F's base type is a record type with discriminants (the
existence of defaults is irrelevant), and the subcomponent depends on one of F's
discriminants (see the definition in T3).
Implementation Guideline: Be sure to check the case when the generic formal variable, F, is specified with a
constrained type mark and with a type that has discriminants without defaults.
Implementation Guideline: Note that F cannot have a formal generic type because no subcomponent
accessible within the generic template can be dependent on a discriminant; at most, the only visible
subcomponents of F are its discriminants.

T6. Check that an actual generic In out parameter can be:

" any subcomponent that does not depend on a discriminant, even if the
enclosing variable is unconstrained;
Implementation Guideline: The variable should be a component of a record and array, a
subprogram pararr 'ter (of mode in out), and a generic formal in out parameter.

* any subcomponent of an unconstrained variable of a record or private type if
the discriminants of the variable do not have default values and the variable is
not a formal generic In out parameter;
Implementation Guideline: Be sure to try subcomponents that depend on discriminants.

" any component of an object designated by an access value (even if the
access variable depends on a discriminant);

" a slice of an array;

" a scalar variable;
" an access variable that does not depend on a discriminant.

Check that the formal parameter denotes the actual in an instantiation.
Implementation Guideline: Try some cases where the actual variable is unlikely to lie on an adcressule
machine boundary. Also try a task object.

Check that after instantiation, the subtype of an In out formal object is the same as thr .")t
the actual parameter, whether or not the formal parameter is constrained (see IG
12.1.1/Ti 1).

T20. Check that the value of an In actual parameter is copied to the formal parameter.
Implementation Guideline: Use some cases where an implementation might use reference semartcs for
subprogram in parameters, e.g., when the parameter has a composite type.

Check that an In out formal parameter is not a copy of its actual parameter, but instead,
denotes it directly.

T21. Check that an unconstrained in parameter having an array type or a type -
discriminants has the constraints of the actual parameter.

T23. Check that default expressions for In parameters are only evaluated if there Is no actual
parameter.
Check that default expressions are evaluated in the order given by the generic declaration ,4
(see also IG 12.3.6/T2).
Implementation Guideline: Include a case where the default expression uses values of preceding formal
parameters, some of whose values are provided by actual parameters, and some by the default expressions.

Check that an actual parameter must be provided if there is no default for the formal
parameter.

T25. Check that CONSTRAINT ERROR is raised for an In parameter having a scalar type if
and only if the value of the actual parameter lies outside the range of the formal parameter.

12-45'

12.3.2 Matching Rules for Formal Private Types Version 1 (Dec 86)

Implementaton Guideline: Check for integer, enumeration, float, and fixed types.
Implementation Guideline: Check both bounds of the range. .. ,
Implementation Guideline: Check when the In parameter has a formal generic type as well as a nonformal .. % -
type.

T26. For an In parameter having a non-null constrained array type, check that CONSTRAINT-
ERROR is raised if and only if the actual parameter does not have the same number of

components (per dimension) as the formal parameter.
Implementation Guideline: In particular, check that the bounds of the formal and actual parameters need not
be the same.
Implementation Guideline: Some actual parameters should be strings and array slices.
Implementation Guideline: The In parameter should have a formal generic type as well as a nonformal type.

Check that CONSTRAINT ERROR is not raised if both formal and actual parameters are
null.

T27. For a constrained In formal parameter having a record or private type with discriminants,
check that CONSTRAINTERROR is raised if and only if corresponding discriminants of
the actual and formal parameter do not have the same values.
Implementation Guideline: Use both formal and nonformal types.

T28. For a constrained in formal parameter having an access type, check that CONSTRAINT-

_ERROR is raised if and only if the actual parameter is not null and the object designated
by the actual parameter does not satisfy the formal parameter's constraint.
Implementation Guideline: Some actual parameters in the tests should have the value null. Actual parameters
having a constrained and unconstrained access type should both be used.

12.3.2 Matching Rules for Formal Private Types

Semantic Ramifications

SI. When a generic formal type is a private type without discriminants, the corresponding
actual parameter can be an unconstrained array type or an unconstrained type with
discriminants. An instantiation with such an unconstrained type is illegal if the formal parameter
is used in a context that requires a constrained type (RM 12.3.2/4), e.g., in an object
declaration:

"V generic
type FT is private;

package P is
X : FT; -- potentially illegal

end P:

type TEXT (D INTEGER := 0) is ... ;

package PP is new P (STRING); -- illegal
package QQ is new P (TEXT); -- illegal

The first instantation is illegal because PP's declaration of X is illegal when FT is an
unconstrained array type (see RM 3.6.1/6). The second instantiation is illegel because the
declaration of X requires a type with default discrlminants, if the type is unconstrained (RM

V,3.7.2/8). The fact that the actual parameter does have default discriminants doesn't matter
since AM 12.3.2/4 says "The actual subtype must not be an unconstrained array type or an
unconstrained type with discdminants," if the formal type is used in certain ways within the
generic template. The rule applies equally to types with and without default discriminants. ..

* 12-46

e ."

% " S• % ,, 5 ' . ,' .. .% •" ,,

Version 1 (Dec 86) 12.3.2 Matching Rules for Formal Private Types

The prohibition regarding the use of FT applies to types derived from FT (directly or indirectly)
and to any name that denotes FT or a type derived from FT. For example, each Ti below is
considered equivalent to FT for purposes of this rule:

subtype Ti is FT:
type T2 is new Ti;
type T3 is new T2;
subtype T4 is T2;
type T5 is new T4;

S2. A name denoting a formal type can also be obtained by a generic instantiation:

generic
type GT is private;

package R is
subtype SGT is GT;

end R;

package NR is new R (FT);

NR.SGT is a name denoting FT.

S3. The following is a list of all contexts in which it is illegal to use T, an unconstrained arra
type or an unconstrained type with discriminants:

1. as the parent type in a derived type definition appearing in the full declaration
of a private type (see RM 7.4.1/3), e.g.,

type U is private;
private

type U is new T; -- potentially illegal

2. (if T's discriminants do not have defaults), as the subtype indication:

a. in an object declaration declaring a variable (RM 3.6.1/6 and RM
3.7.2/8) (use in a constant declaration is okay (RM 3.6.1/7 and RM
3.7.2/9));

b. in a record component declaration (RM 3.6.1/6 and RM 3.7.2/8);

c. in an array component declaration (even as a generic formal parameter)
(RM 3.6.1/6 and RM 3.7.2/8);

d. in an allocator (e.g., new T) (see RM 3.6.1/8, RM 3.7.2/10, and RM
4.8/4);

3. as an actual generic parameter when the formal parameter is a private or
limited private type (without discriminants), and the formal type parameter is
used in one of these three contexts.

s4. The following example Illustrates the potentially illegal contexts in which a formal generic
private type can be used. The presence of any of these potentially illegal constructs makes any
instantiation illegal if the actual type is an unconstrained array type or an unconstrained type
with discriminants (whether or not the discriminants have defaults):

generic
type FT is private;
C : FT;

"5-. CU: in out FT: -- ok

12-47

'-d ," " "' . ,"" , a . ,""."."-"-"-", . . . ,' . ,' . ",-. •.••-.•.- .• •.,. . . "'

12.3.2 Matching Rules for Formal Private Types Version 1 (Dec 86)

type DIS is range <>;
type D is array (DIS) of FT; -- potentially illegal (2c)

package P is
type AFT is access FT;
Y AFT :- new FT; -- potentially illegal (2d)
X TT; -- potentially illegal (2a)
type U is array (1..5) of FT; -- potentially illegal (2c)
type V is

record
A : FT; -- potentially illegal (2b)

end record;
type DER FT is new FT;
DIR_X : VRFT; -- potentially illegal (2a)

type INCO;
type PRIV is private;

generic
type NEW T is private;
Y NEWT;

package S is
X NEWT; -- potentially illegal (2a)

end S;

package Sl is new S (FT, C); -- potentially illegal (3)
type INCO is new FT; ok
Z : INCO;-- potentially illegal (2a)

private

type PRIV is new FT; -- potentially illegal (1)

end P•

An instantiation of package P with an unconstrained array type (for example) would also be
illegal if the potentially illegal declarations appeared in the package body or in some subunit of
the package body.

s5. Since a generic body need not appear before an instantiation of the unit, it is not always $

possible to decide whether an instantiation is legal without considering the complete generic
body and its subunits, if any:

generic
type FT is private;

package P is
X : INTEGER;"

end P;

procedure Q is .U
package PP is new P (STRING); -- potentially illegal

begin

end Q;

12-48

!1"'

Version 1 (Dec 86) 12.3.2 Matching Rules for Formal Private Types

package body P is
Y : FT; -- now we see the instantiation

- - of P was illegal

In essence, the instantiation of P is discovered to be illegal only after P's body is processed.
Note that P's body is itself quite legal. If the instantiation had been %

package PP is new P (INTEGER);

nothing would be illegal in the above example. (These conclusions are unchanged if 0 is turned
into a package specification, although if 0 is a package and the instantiation uses INTEGER
instead of STRING, the Instantiation will raise PROGRAMERROR (see IG 3.9/S).)

S6. Now suppose package P, procedure 0, and package body P are compiled separately. (To
do so, we would have to insert "with P;" before Q's declaration.) If ihese units are compiled in
the given order, the instantiation of P will not be illegal when 0 is compiled since there are no
potentially illegal uses of FT in P's package specification, and it is not illegal to compile 0 before
P's body (if any) has been compiled. When P's body is compiled, however, it will be discovered
that the instantiation of P in 0 is illegal, because of Y's declaration. Since 0 has already been
compiled, P's body can be rejected as unsuitable given the instantiations of P that are alread,
known to exist. (Note that RM 10.3/3 says a compilation is not successful if any errur s
detected; 10.3/3 does not require that the detected error reside in the unit being compiled. Note
also that "not successful" does not imply "illegal"; see RM 10.3/S.)
S7. Another possibility is to place the body for unit P in the library. In this case, the existence
of an illegal instantiation in 0 would only be indicated when attempting to execute a main
program that uses 0. This treatment is justified by RM 1.6/3, which requires that illegal
constructs be detected at compile time, but "compile time" is the time prior to an attempt 'o
execute the main program.

s8. RM 10.3/9 allows an implementation to require that generic bodies (and subunits) be
compiled together in a single compilation file. If an implementation imposes this requirement, it
is still possible for a generic body to be compiled after an instantiation:

generic
type T is private;

package P is
X : INTEGER;

end P;

with P;
procedure Q is

package NP is new P (INTEGER):
begin %"

end Q;

package body P is
Y T;

end P; 5.

It must be possible to execute the main program, 0, without recompiling Q or any other unit.
Although RM 10.3/8 allows an implementation to create additional dependences between units
in a single compilation file, these additional dependences are for optimization purposes. If a

12-49

12.3.2 Matching Rules for Formal Private Types Version 1 (Dec 86)

compilation file contains a set of units that can be executed as a main program in the absence
of such *dependences,* It must be possible to execute them as a main program even if the - %

additional dependences are created. In the above example, this means 0 is executable as a
main program, even though a body has been provided after P's instantiation (i.e., the provision
of the body does not make 0 obsolete, so 0 need not be recompiled). Of course, if the
instantiation in 0 has used an unconstrained array type, e.g., STRING, then the instantiation is "
illegal, and must be detected prior to execution of the main program.

sq. When a task type or a limited type with a task subcomponent is an actual parameter in an
instantlation, then a dependent task (see IG 9.41S) can be created within the instantiated unit.
Hence, the code associated with such an instantiation is likely to be quite different from the code
needed when instantiating with a type that Is not a task, or that has no task subcomponents.

si0. The check that discriminants of a formal and actual type have the same subtype can only
be suppressed by naming the actual parameter or generic unit in a SUPPRESS pragma; the
formal parameter cannot be named since a SUPPRESS pragma cannot be given in a generic
formal part (RM 11.7/3), and if the pragma is given after the occurrence of the formal parameter,
it cannot have an effect on the checks performed during an instantiation, since only checks -

occurring after the pragma can be suppressed.

Cha.,ges trom July 1982

S 1. 'The legality of an instantiation using a type with discriminants is independent of whether
tre disc'rr-,nants have defaults.

Cha, ,g.3 u," m July 1980

S12. The actual subtype corresponding to a formal type with discriminants must be
unconstrained. . -

S13. Corresponding discriminants of a formal and actual parameter must have the same base '

type, but need not have the same subtype.

Legality Rules

LI If a generic formal parameter is a nonlimited private type, the corresponding actual
,, ',e a limited typa (RM 1:3 "'2).

L2. If a formal type parameter has a discriminant part, the corresponding actual parameter
must be an unconstrained type with the same number of discriminants, and corresponding
discriminants must have the same base type (RM 12.3.2/3).

L3. Let FT be the name of a formal private or limited private type without discriminants, and let
T be the name of a type denoting either FT or a type Indirectly (or directly) derived from FT.
(Note: a type Is directly derived from its parent type. A type U is indirectly derived from a
type W if U is directly derived from W or from a type indirectly derived from W.)
If the actual parameter corresponding to FT is an unconstrained array type or an
unconstrained record, private, or limited private type with discriminants, then the
instantiation for FT is illegal if the generic unit being instantiated contains (RM 12.3.2/4):

" an allocator of the form new T (RM 3.6.1/8, RM 3.7.2/10, and RM 4.8/4);

" a full declaration of a private type when the full declaration declares a derived
type whose parent type is T (RM 7.4.1/3);

" a variable of type T declared in an object declaration (RM 3.6.1/6 and RM
3.7.2/8); - -

" a record component of type T (RM 3.7.2/8);

12-50

WVWV

Version 1 (Dec 86) 12.3.2 Matching Rules for Formal Private Types

e an array component of type T (AM 3.6.1/6);

, an instantiation with actual parameter T if the corresponding formal parameter
is used in one of these contexts (AM 12.3.2/4).

L4. An actual type parameter must have the form of a type mark (AM 12.3/2).

Exception Conditions

El. For a formal parameter with discriminants, CONSTRAINTERROR is raised if
corresponding discriminants do not have the same values for their range constraints.

Test Objectives and Design Guidelines

Ti. If a generc formal parameter is a nonlimited private type, check that the actual parameter
must not be:

" a limited private type;

" a type with subcomponents of a limited private type;

* a task type; or

" a type with subcomponents of a task type.

Implementation Guideline: Include a case where the actual parameter is a variant that does not have
subcomponents violating the above rule, even though the base type does have such components.
Implementation Guideline: Include a case where the actual parameter is a formal limited private type of an
enclosing generic unit.

T2. If a formal private or limited private type has a discriminant part, check that the actual
parameter must:

" be an unconstrained type;

" have the same number of discriminants; and

" corresponding discriminants must have the same base types.

Implementation Guideline: Include some cases where the discrminants have a formal generic type.
Implementation Guideline: Include a case where the actual parameter is constrained, but otherwise satisfies
the requirements. .

T3. If a formal private or limited private type has a discriminant part, check that the actual
parameter need not have identical discriminant names, and may have default discriminant ,,

values.

T4. Check that an instantiation is illegal if a formal parameter having a private or limited private
type without discriminants is used as the parent type in a derived type definition appearing
in a full declaration of a private type, and the actual type is an unconstrained array type or
an unconstrained type with dlscdminants that do not have aetault values. (IG 7.4.1/T4
covers the case when the formal type Is declared with discriminants.) .3
Implementation Guideline: Include types that are renamings of the formal type or that are derived directly or
indirectly from the formal type.
Implementation Guideline: Include a case where the actual parameter is a formal parameter of an enclosing
generic unit.
Implementation Guideline: Include tests where the instantiation appears after the generic body, before the -

generic body, and in a separately compiled unit that is compiled before or after the generic body. 4.

Check that instantiations are not legal under the above circumstances if the actual
J& P., parameter is an unconstrained type with default discriminant values. ,..

5.%

; .S + . .4,

,, ' +% ' * . .. , . "..,'-, .' ,.. .', .. - .-. ,,- .- , . - . ,.- . ..- ,+ .. ,+ - . . . ,. -- .+ - . . -.= Z,, ,,:.1,.-,,.,, -'o:..,:, . ,, ; -. +_- -% < .- ..-r-" +....: .:. ++ ... :..- .-... ,. +, ., ,. ,,:., ,: ,-. -+ -, .- S

v rr' r w r VR ' Xr "J ' K - .p Q- W h .~ . . 6,

12.3.2 Matching Rules for Formal Private Types Version 1 (Dec 86)

T5. Check that an instantiation is illegal if a formal parameter having a private or limited private
type without discriminants Is used: -'

" in an allocator;

" in an object declaration declaring a variable;

" in a record component declaration; or

" in an array type definition,

when the actual parameter is an unconstrained array type or an unconstrained type with
discriminants that do or do not have default values.
Implementation Guideline: Follow the guidelines for IG 12.3.2/'T4.

T6. Check that an instantiation is legal if a formal private type (with or without discriminants) is
used in a constant declaration and the actual parameter is a type with discriminants that do
and do not have defaults.

T7. Check that an instantiation is legal if a formal parameter having a limited private type
without discriminants is used to declare an object or access type in a block that contains a
selective wait with a terminate alternative, and the actual parameter's base type is either a
task type or a type with a subcomponent of a task type.

Als'; check cases where the type used to declare the object or access type is a composite
type with a subcomponent of the formal type.

T8. Check that CONSTRAINTERROR is raised if the constraints of corresponding
discriminants do not match.
Implementation Guideline: Some discriminants should have a nonformal type and some should have a formal ,--,
type declared in the same or an enclosing generic formal part.

T9. When an actual generic parameter is a task type or a type with a task subcomponent and - .
the instantiated unit creates a dependent task, check that the dependent task is handled ,.
correctly (see IG 9.4/T1 0).

When an actual generic parameter is an access type whose designated type is a task type
or a lypE with a c=mponent of a task type (arld similarly, when the designated type is a
formal type whose actual type is a task type or a type with a component of a task type),
check that a created task Is dependent on the unit that contains the actual access type
declaration (see IG 9.4/1 1).

T10. Check that an actual type parameter cannot be a subtype indication with a constraint when
the formal parameter is a private type without discriminants (see IG 12.3/T5).

T20. Check that a discrete formal type denotes its actual parameter, and operations of the
formal type are identified with corresponding operations of the actual type.
Implementation Guideline: To check this, for example, test that objects of a formal type that are declared in the
visible part of a generic package can be used (after an instantiation) in expressions with objects declared with
the actual typo.
Implementation Guideline: In addition, declare a subtype of the formal type in a package. Derive a new type
outside an instantiation of the package, using the Instantiated subtype as the parent type. Check that the
operations of the actual type are derived. In particular, check that operations not defined for the formal type
inside the template are nonetheles derived for the actual type. (Note: *not defined' means the operation is
either illegal for the formal type but not for the actual type or is given one meaning in the template (usually a
predefined meaning) and a different meaning outside the instantiation.) 4
Implementation Guideline: The actual type should be an integer type, a character type, and some other
enumeration type.

T21. Repeat T20 for formal integer types.

12-52

.,*..*...*,..*....-,

Version 1 (Dec 86) 12.3.3 Matching Rules for Formal Scalar Types

T22. Repeat T20 for formal floating point types.

T23. Repeat T20 for formal fixed point types.
' F T24. Repeat T20 for formal array types.

T25. Repeat T20 for formal access types.

T30. Repeat T20 for a formal private and limited private type when the actual parameter is an
enumeration type. ,,

T31. Repeat T30 when the actual parameter is an integer type.
T32. Repeat T30 when the actual parameter is a floating point type.
T33. Repeat T30 when the actual parameter is a fixed point type.

T34. Repeat T30 when the actual parameter is an array type.

T35. Repeat T30 when the actual parameter is an access type.

T36. Repeat T30 when the actual parameter is a type with discriminants.

T40. Repeat T20 when the formal type has disciminants.
Implementation Guideline: Cneck that operations for selecting a formal's discriminant are properly associate,
with the corresponding operations for the actual parameter (see example in IG 12.1.2/S).

12.3.3 Matching Rules for Formal Scalar Types

Semantic Ramifications

Si. Constraints that apply to an actual type parameter apply to the formal parameter after the
ito, instantiation, since the formal parameter denotes the actual parameter within the instantiated

unit (RM 12.3/9).

Changes from July 1982

S2. There are no changes.

Changes from July 1980 ,

S3. There are no significant changes.

Legality Rules

Li. If a generic type definition has the form (<>), then the corresponding. actual parameter
must be an integer or enumeration type (RM 12.3.3/1). "

1-2. If a generic type definition has the form range <>, then the corresponding actual parameter
must be an integer type (RM 12.3.3/1).

L3. If a generic type definition has the form digits <>, then the corresponding actual parameter
must be a floating point type (RM 12.3.3/1). .

L4. If a generic type definition has the form delta <>, then the corresponding actual parameter
must be a fixed point type (RM 12.3.3/1).

L5- A subtype indication containing an explicit range or accuracy constraint is not allowed as
an actual type parameter (RM 12.3/2).

Test Objectives and Design Guidelines

',.." T1. Check that a generic actual type parameter must be an enumeration or integer type if the
corresponding formal type definition has the form (<>.

12-53 5'

Ir . r!.
% %, , 0,% % " % , % % % % % "."% % ., " , . . ' '."." '-".=.. . ,- ".

12.3.4 Matching Rules for Formal Array Types Version 1 (Dec 86) A

Implementabon Guideline: In particular, check that the instantiation is illegal if the actual parameter is a generic %
formal private type (of an encloeing generic unit), 4.

T2. Check that a generic actual type parameter must be an integer type if the corresponding .,

formal type definition has the form range <>.
Implementation Guideline: In particular, check that the instantlation is illegal if the actual parameter is a generic
formal private or discrete type.

T3. Check that a generic actual type parameter must be a floating point type if the
corresponding formal type definition has the form digits <>.

T4. Check that a generic actual type parameter must be a fixed point type if the corresponding
formal type definition has the form delta <>.

T5. Check that for each form of formal scalar type, an instantiation uses the lower and upper
bounds of the actual parameter within the instantiated unit.
Implementation Guideline: Check for initial values in declarations as well as in assignments (cf. IG 3.2.1/Ti 1).

T6. Check that a subtype indication with an explicit range or accuracy constraint is not allowed
as an actual scalar type parameter (see IG 12.3/T5).

12.3.4 Matching Rules for Formal Array Types

Sernnrtlc Ramifications

SI. 'r',vn a declaration of the following form:

generic
type I is range <>; -- index type
type C is range <>; -- cowponent type

package P is
generic

type PI is range <>;
type PC is range <>;
type PA is array (PI range <>) of PC:

package Q is end Q;

type ARR is array (I range <>) of C;
subtype 15 is I range 1.-.5; -- 1
subtype C_10 is C range 5..10; -- 2

package NQ is new Q (I 5,
C 10,
ARR); -- 3, 4

end P;

there are various possibilities for raising CONSTRAINTERROR when the enclosing package,
P, is instantiated:

1. 1.5 is not compatible with I's actual range;

2. 5-10 is not compatible with C's actual range;

3. rFIRST /= 1 or I'LAST /= 5;

4. C'FIRST/= 5 or C'LAST /=10;

For the instantiation of NO, O.PA's index subtype is given by the actual parameter I5, and
¢.4

12-54

4 .04, d P, q , , .. - . % • .% - . % = % , . -, - - •

Version 1 (Dec 86) 12.3.4 Matching Rules for Formal Array Types

Q.PA's component subtype is given by the actual parameter C_10. This is why PA's index ,.
subtype has to have the bounds 1..5 and Its component subtype, the bounds 5..10. It should
also be noted that the following generic declaration is illegal because the instantiation contained
within it is illegal:

generic
type T is private;

package P is
generic

type ARR is array (NATURAL) of NATURAL;
package Q is end Q;
package NQ is new Q (T); -- illegal

end P;

T is not an array type; it is a private type, and hence does not match Q's formal type.

S2. A formal array type cannot have an unconstrained component type when the actual -..
parameter has a constrained component type:

type TEXT (L : INTEGER range 0. .500 := 0) is
record

POS INTEGER range 0 500 0;
DATA STRING (1..L);

end record;

generic
type I is range <>;
type ARR is array (I) of TEXT; -- unconstrained component type

package P is end P; '

type ARR2 is array (1..50) of TEXT(50); -- constrained component type

subtype NAT_50 is NATURAL range 1..50;

package NP is new P (NAT_50, ARR2); -- illegal

Although the base types of the formal and actual array components are the same, the
instantiation is Illegal because ARR2's component type is constrained and ARR's is not.

S3. When the component type is an access type, constraints can be imposed on objects
designated by values of the access type. Constraints on the designated type can be imposed
directly in an access type definition or indirectly on the access type itself:

type A S is access STRING;
subtype A3 S is A _ (1 .3);
type A S3 is access STRING (1..3);
subtype ATHREE S is A S (1 .THREE); -- THREE is an INTEGER variable
subtype ONE_SIX is POSITIVE range 1..6;

generic S
type Fl is array (ONE SIX) of ATBREE S; -- constrained component

package P is end P;

type ARiAS is array (1s6) of AS;
type AR2_ A3S is array (1s6) of A3 S:
type AR3 A S3 is array (1 6) of A _3:

12 -55 '-"-

%

:!...... ..

12.3.4 Matching Rules for Formal Array Types Version I (Dec 86)
..-

package P1 is new P (ARI_A_S); -- illegal
package P2 is new P (AR2_A3 S);
package P3 is new P (AR3_AS3); -- illegal -.-: '

--. . .

s4. The first Instantlation is illegal because ARI_A_S's component type is an access type
whose designated type is unconstrained, and Fl's component type is an access type whosedesignated type is constrained.

The instantiation for P3 is illegal because the base type of AR3_A_S3's component is AS3 and
the base type of Fl 's component is A S, and these are different base types.
The instantiation for P2 Is legal because the base type of A3_S and ATHREES is AS.

.4 Moreover, A3_S and ATHREES both impose a constraint on their designated types.
CONSTRAINT ERROR would be raised if the constraint values for A3_S and ATHREES were
different, i.e., if THREE did not equal 3.
s5. Similar reasoning applies when the component type is a formal type:

generic
type C is private;
type F2 is array (ONE-SIX) of C;

package Q is end Q;
package Q1 is new 9 (AS, AR3_AS3) - illegal

package Q2 is new Q (A3 S, AR_A S); -- illegal
package Q3 is new Q (A_5, ARI AS);
package Q4 is new Q (ATUREES, AR2_A3_S);

The instantiation for 01 is illegal because the base type of AR3 A S3's component is A_33,
which is different from the base type AS. The instantiation for 02 is illegal because although
ARI_A_S's component base type is the same as A3_S's base type, namely, AS, ARI_A_S's -
component type is unconstrained, and A3_S is a constrained type. The instantiation of Q4
would raise CONSTRAINT ERROR if THREE did not equal 3.

Ss. An array type can be declared to have an unconstrained component type with discriminants

if the discrminants have defaults:
type 5EC (D INTEGER :-)0) is

record
C INTEGER;

end record;
-~ type ARR is array (1..4) of REC; -- unconstrained component type

An instantiation of generic unit 0 (from the last example) will be illegal, however, if REC and
ARR are used as actual parameters:

package Q5 is new Q (REC, Afli); -- illegal
This instantiation is illegal because the component type in an array type declaration must either
be constrained or must have default discriminants. This means that formal parameter C is used
in a context that implies its actual parameter must not be an unconstrained type with
discriminants (RM 12.3.2/4). It does not matter that such an actual type exists.
S7. The check that components of a formal and actual array type have the same subtype (and
similarly, the checks for the bounds or index subtypes of corresponding dimensions) can only be
suppressed by naming the actual parameter or generic unit in a SUPPRESS pragma; the formal
parameter cannot be named since a SUPPRESS pragma cannot be given in a generic formal
part (RM 11.7/3). And, if the pragma is given after the occurrence of the formal parameter, it

12-56

.................... $.f.

:------,-; --.,- ,_: _-._-' , --,.-. -". "- '. .., -....-. . -. , . ' . .. - - .'5. '--, , _. .--' ,-, .,' .,. . --.-

Version 1 (Dec 86) 12.3.4 Matching Rules for Formal Array Types

cannot have an effect on the checks performed during an instantiation, since only checks
occurring after the pragma can be suppressed.

Changes from July 1982

se. There are no significant changes.

Changes from July 1980

s9. An instantiation is illegal if the component subtypes for the formal and actual parameters
are not both constrained or are not both unconstrained. ,'
Legality Rules

L1. An actual parameter corresponding to a formal array type parameter must be an array type
with the same number of indices (i.e., the same number of dimensions); the corresponding
index positions must have the same base type; and the component base types must be the ,-.
same (RM 12.3.4/2-4).

12. An actual array type parameter must be constrained if and only if the corresponding formal
array parameter is constrained (RM 12.3.4/2).

L3. A nonscalar component type of an actual array type parameter must be constrained if and ".
only if the component type of the formal parameter is constrained (RM 12.3.4/4).

L4. A subtype indication containing an explicit index constraint is not allowed as an actual type
parameter (RM 12.3/2).

4%

Exception Conditions

* El. CONSTRAINTERROR is raised if:

. both component types are constrained, but the constraint values are not
equal.

* both array types are unconstrained and for some index position, the index
subtype constraints of the formal and actual parameter are not equal.

e both array types are constrained, and for some index position, the bounds of
the formal and actual parameter are not equal.

Test Objectives and Design Guidelines

T1. Check that if a generic formal type is an array type, the actual parameter must also be an
array type.
Implementation Guideline: Include a case where the actual parameter is a nonarray formal parameter of a,"
enclosing generic unit. In particular, include a case where the actual parameter is a generic private type.

T2. Check that a formal and actual generic array type must have the same number of
dimensions.
Implementation Guideline: Include both constrained and unconstrained array types.
Implementation Guideline: Include a case where the actual parameter is a formal parameter of an enclosing
generic unit.

T3. Check that when the formal parameter is either constrained or unconstrained,
corresponding index positions must have the same base type.
Implementaton Guideline: Include cases where the index of the formal parameter type is a formal generic
parameter of the same or an enclosing generic formal part, and the actual parameter is either a nongeneric
type, or is a formal parameter of an enclosing unit.

T4 Check that the component base types of corresponding formal and actual generic array
* , parameters must be the same.

12-57

i4P • .".'""'/ ,'" ;'• .'..'.,':','"'":'.'.","..,,' ",, ..'..',' .''.,.',.'..- .:';...'..'e"..",. .. ", ",: " • .

12.3.5 Matching Rules for Formal Access Types Version 1 (Dec 86)

Implementation Guideline: Include all classes of base types in this test, and check that derived and parent
types are not considered the same. Be sure to include access to access types as component types.
Implementation Guideline: Do the checks for the following cases: \ ,1 *,

* the component types are not themselves generic formal types;

" the component type of the formal parameter is a formal generic type declared earlier in the same
generic formal part; S,

" ,pf
" the formal's component type is a formal type declared in an enclosing generic unit. .
* the actul's component type is a formal type declared in an enclosing generic unit and the formal's .

component type is declared eadier in the generic formal part where the array type is declared.

T5. Check that if the component type is:

a. a private, limited private, or record type with discriminants, or

b. an access type designating objects of an array type or of a type with
discriminants,

the formal and actual component types must both be either constrained or unconstrained.
implementation Guideline: Include cases with and without default discriminants, and cases where the formal's
component type is itself a formal type declared earlier in the same generic formal part; in this case, the actual
parameter must always be constrained, even if the actual parameter has default discriminants. The actual
parameter corresponding to the component type should sometimes be a formal type declared in an enclosing
unit.

T6. Check that CONSTRAINTERROR is raised if an unconstrained formal and actual array
type do not have index subtypes with the same bounds.
Implementation Guideline: Include a case where the index subtype is a formal type declared earlier in the
generic formal part and the actual type is a formal parameter of an enclosing generic unit.

T7. Check that CONSTRAINTERROR is raised if the constraints imposed on a formal array
parameter's component type do not equal those of the actual parameter.
Implementation Guideline: Check for all classes of component types that can have constraints, namely,
enumeration, integer, float, fixed, array, record, private, and access types (two cases: with index constraints
and with discriminant consb'aints). p

Implementation Guideline: Include a case where the formal's component type and the actual component type
are the same formal type.

18. Check tnMat CONSTRAINTERROR is raised if the index constraints for a constrained
formal array parameter do not equal the constraints imposed on the actual parameter.
Implementation Guideline: Include a case where the formal's index constraint and the actual's index constraint
are the same formal type.

T9. Check that a formal array type behaves correctly as an array type after an instantiation that
is legal and that does not raise CONSTRAINTERROR. (This objective is satisfied by
various tests of array types in other sections of the IG.)

T10. Check that an actual array type parameter cannot have an explicit index constraint (see IG
12.3/T5).

12.3.5 Matching Rules for Formal Access Types
Semantic Ramifications

si. There are two ways of imposing constraints on objects designated by access values: 1) by
imposing a constraint on an access type (yielding a constrained access type), and 2) by
imposing a constraint in the access type's definition:

a''

12-58

'4 ,

-, 7

Version 1 (Dec 86) 12.3.5 Matching Rules for Formal Access Types
5

type AS is access STRING;
subtype A3 S is A S (1..3); -- constrained access type
type AS3 is access STRING (I..3); -- access to a constrained type

Now consider the following generic declaration:

generic
type U is access STRING;

package PU is
X : U := new STRING (1..3);

end PU; p
and the following instantiations:

package P1 is new P (AS);
package P2 is new P (A3_S); -- illegal
package P3 is new P (AS3); -- illegal

The first instantiation is legal because U's designated (base) type is STRING, and this is also
AS's designated type. STRING is also A3 S's and A S3's designated type. However, A3_S
imposes a constraint on its designated type, and U imposes no such constraint; the instantiation
is therefore illegal; one designated type is constrained and the other is not. P3's instantiation ib
illegal for the same reason.

S2. Now consider the case where the formal generic type imposes a constraint:

THREE : INTEGER := 3;
subtype S3 is STRING (I..THREE);

generic
type FAS3 is access S3;
L : INTEGER;

package PC is
XC : FA S3 := new STRING (I..L); ,

end PC;

and consider the following instantiations:

package PC2 is new PC (AS, 3); -- illegal
package PC2 is new PC (A3S, 3);
package PC3 is new PC (A_S3, 3);

package PC4 is new PC (A3_5, 4); -- CONSTRAINT-ERROR
package PC5 is new PC (AS3, 4); -- CONSTRAINT ERROR

subtype A4 S is A S (2..4);
type A S4 is access STRING (2..4);

package PC6 is new PC (A4 S, 3); -CONSTRAINT ERROR
package PC7 is new PC (A_S4, 3); -- CONSTRAINT ERROR

The declaration of PCI is illegal because A S's designated type is unconstrained and FAS3's
designated type is constrained. The declarations of PC2 and PC3 are legal: A3_S, AS3, and
FA S3 all have the same designated type and all impose a constraint on their designated types. N
Moreover, no exception is raised because the lower and upper bounds of the imposed
constraints have the same values. Finally, no exception is raised by the allocator since the

12-59
p

• , p% %

. ""• 7 :¢ ,-'.-- . ¢,! ,- '' ', , '% ,s" " " " " " " "...,..-.,-... -. ',

12.3.5 Matching Rules for Formal Access Types Version 1 (Dec 86)

value of L in the instantiated package satisfies the constraint imposed on FAS3's designated
type.
S3. The declarations of PC4, PC5, PC6, and PC7 are all legal because FA S3, A3 S, AS3,
A4.S, and AS4 all have the same designated type and all impose constraints on the
designated type. They all raise CONSTRAINT ERROR, but for different reasons. The
instantiations for PC4 and PC5 raise CONSTRAINTERROR because the value of L in the
allocator for XC does not satisfy the constraint imposed on FAS3's designated type. The

'. instantiations for PC6 and PC7 raise CONSTRAINTERROR because the values in the
constraint imposed on FAS3's designated type are not the same as the values imposed on
A4_S's and AS4's designated types.
S4. Now consider the case where the designated type is itself an access type:

type A A3 S is access A3_S;
type AA_S3 is access AS (1..3);
type A A S is access A S;
type AA S4 is access A_$4;
type AA4 S is access A S (2..4);

Let us consider the following generic unit and instantiations:

generic
type V is access A S; -- access access STRING

package Q is
X : V := new AS'(new STRING (1..3));

end Q;

package Q1 is new Q (A A S);
package Q2 is new Q (A_A_S4); -- illegal
package Q3 is new Q (AA3 S); -- illegal
package Q4 is new Q (A A S3); -- illegal

The instantiation of 01 is clearly legal, since AS is V's designated type and that is also A A-
S's designated type. 02's declaration is illegal because the designated types are different:

,, S4's designateo .ypu is AS4, and AS4 i- i ot the same as any other access type, since
A_S4 is declared with a type declaration. It is immaterial that both AS4 and AS designate
objects of type STRING.

Q3's declaration is illegal even though A A3_S and V have the same designated base type (i.e.,
S AS). The declaration is illegal because V's designated type is unconstrained and A A3 S's

designated type is constrained. The same reasoning explains why 04's declaration is illegal,
since A3_S is just another name for AS (1 ..3).
ss. Finally, let us consider when the formal type is an access to a constrained type:

generic
Stype VC is access A3 S;

package QC is
X : VC := new AS' (new STRING (i..3));

end QC;

Now consider the following instantiations:

package QC1 is new QC (AA3_S);
. package QC2 is new QC (A_A_$3);

package QC3 is new QC (AAS): -- illegal

16

% % % %

Version 1 (Dec 86) 12.3.5 Matching Rules for Formal Access Types

package QC4 is new QC (A_AS4); -- illegal
package QC5 is new QC (A_A4_S); -- CONSTRAINTERROR
package QC6 is new QC (A_A.S4); -- CONSTRAINTERROR

The first two instantiations are legal because VC's designated type is A3_S'BASE (i.e., AS)
and this is the same as AA3_S's and A_A_S3's designated type. Moreover, VC's designated
type is constrained, and so is A A3 S's and A_A_S3's designated type. Finally, no exception is
raised by the instantiation, since the index constraint applied to VC's designated type specifies
the same index values as the index constraint applied to AA3_S's and AAS3's designated
type.

QC3's instantiation Is illegal since no constraint is Imposed on AAS's designated type, and
since VC's designated type is constrained.

QC4's instantiation is illegal since AAS4's designated type is AS4'BASE = A_S4, but VC's
designated base type is A3_S'BASE, i.e., AS, and these are not the same base types.

S6. The instantiations of QC5 and QC6 raise CONSTRAINTERROR because the values of
the constraint imposed on VC's designated type do not equal the values of the constraint -
imposed on A A4 S's and A A S4's designated type.

S7. The check that components of a formal and actual access type impose the same
constraints on the designated objects can only be suppressed by naming the actual parametc,
or the generic unit in a SUPPRESS pragma; the formal parameter cannot be named since a
SUPPRESS pragma cannot be given in a generic formal part (RM 11.7/3), and if the pragma is
given after the occurrence of the formal parameter, it cannot have an effect on the checks
performed during an instantiation, since only checks occurring after the pragma can be
suppressed.

Changes from July 1982

s8. There are no significant changes.

Changes from July 1980

s9. For the formal and actual parameter, the designated subtypes must either both be
constrained or both unconstrained.

Legality Rules

1L1. If a formal generic parameter is an access type, its corresponding actual parameter must /
also be an access type, and the formal and actual parameters must have the same q,

designated (base) type (RM 12.3.5/1).
L2 A designated nonscalar type of an actual access type parameter must be constrained

and only if the designated type of the corresponding formal parameter is constrained (RM
12.3.5/1).

L3. A subtype indication containing an explicit index or discriminant constraint is not allowed as
an actual type parameter (RM 12.3/2).

Exception Conditions

El. CONSTRAINTERROR is raised If the designated type of a formal access subtype is
constrained and the constraint values of the formal's designated subtype do not equal
those of the actual's designated subtype.

Test Objectives and Design Guidelines

-... In the following objectives, FT is a formal access type declared by type FT Is access
T. The actual parameter corresponding to FT is AU, declared as type AU Is access U.

' .2-61

"...
S. -

12.3.5 Matching Rules for Formal Access Types Version 1 (Dec 86)
"

T1. Check that if a formal generic type is an access type, the actual generic type must also be
an access type. .-- ..
Implementation Guideline: Check that FT does not match an actual parameter, W, when W is the same as
FT's designated type T, and when T and W are not generic formal types. (For example, W might be STRING
and FT might be access STRING.) Check for all type classes: enumeration, integer, float. fixed, array (vary the
index and component types; constrained and not constrained), record (with and without discriminants;
constrained and not constrained), private (with and without discriminants; constrained and not constrained),
and limited private.
Implementation Guideline: Repat the above check when T is a formal generic type declared earlier in the
same generic formal part as FT, and W is either a nonformal type or is a formal type declared in an enclosing
generic unit.
Implementation Guideline: Repeat the above check when T and W are generic formal types appearing in an
enclosing generic declaration.

T2. If the formal and actual generic parameters are both access types, check that the

designated (base) types must be the same.
Implementation Guideline: Check that FT does not match AU when both T and U are not formal generic types.
Check for all type classes of T: enumeration, integer, float, fixed, array (vary the index and component types:
constrained and not constrained), record (with and without discriminants; both T and U unconstrained, or the
actual parameter being a constrained access type when the formal is an access-to-constrained type), access,
private (with and without discriminants; constrained and not constrained), and limited private. Let T and U be
derived types in some test cases.
Implementation Guideline: Repeat some of the above checks when T is a formal generic type declared earlier
in the same generic formal part as FT.
Implementation Guideline: Repeat some of the above checks when T is a generic formal type appearing in an
enclositg generic declaration. r
Inpismentation Guideline: Repeat some of the above checks when U is a generic formal type appearing in an
enclosing generic declaration, and T is either not a generic formal type or is a formal type declared earlier in the
same generic formal part as FT.
Implementaion Guideline: Repeat some of the above checks when both T and U are formal types appearing in
an enclosing generic declaration. (Note that T might be declared as a discrete type (<>), and U as an integer "" ,
type, range <>.)

T3. If T is an array type or a type with discrlminants and the base type of U is the same as T's
base type, check that U must be constrained if and only if T is constrained.
Implementation Guideline: Note that the constraint associated with an actual parameter's designated objects P".
can either be imposed directly in the access type's definition (e.g., type AU is access STRING(..3)) or by
constraining the access type (type AS Is access STRING: subtype AU Is AS(1 ..3)). Both forms of actual
pa:a-iet.,)r constraint should be used in the test.

* lmplementation Guideline: Create tests for th. following cases:

a. T and U are not generic formal types;

b. T is a formal type declared in the same generic formal part as FT; %
c. U is a formal type of an enclosing generic declaration: T is either not a generic formal type or is a

formal type declared in the same generic formal part as FT;

Implementation Guideline: Repeat the above tests when T is itself an access type designating objects of an
array type or a type with discriminants.

T4. Check that CONSTRAINTERROR is raised when constraints imposed on T do not have
the same values as constraints imposed on U.
Implementation Guideline: Check for all type classes: enumeration, integer, float, fixed, array, record, private,
limited private, and access. Access types (at least) should be checked in a separate test.
Impiementshon Guideline: Create tests for the following cases:

a. T and U are not generic formal types;

b. T is a formal type declared in the same generic formal part as FT:

c. U is a formal type of an enclosing generic declaration; T is either not a generic formal type or is a
formal type declared in the same generic formal part as FT;

12-62

% " % % % ,' % %- % '- , "•-, , % % -. %,- -. , % ". -. ., . 4.

Version 1 (Dec 86) 12.3.6 Matching Rules for Formal Subprograms

Implementation Guideline: When checking constraints of scalar types, T or U should be a base type in some
cases.

T5. Check that all access types may be passed as an actual type parameter, and that any
constraints on the designated objects are enforced. (This test objective is satisfied by tests
associated with access type constraint checks.)

T6. Check that if T is a formal private or limited private type without discriminants, and an
allocator of the form new T appears within the generic unit, then an instantiation is illegal if
T's actual parameter is an unconstrained array type or a type with discrminants (see IG
12.3.2/T5).

17. Check that an actual access type parameter cannot have an explicit index or discriminant
constraint (see IG 12.3/T5). .

,.ft

12.3.6 Matching Rules for Formal Subprograms
Semantic Ramifications

S1. The evaluation of a name is descrbe,.r, ,'M 4.1/10. As pointed out in IG 12.1.3/S, the
time when a default subprogram name is evaluated only matters when the name denotes an
entry of a task or a member of an entry family.
S2. When evaluating the expressions or the access values supplied in a default name, it is
important to keep in mind the required order of evaluations in a generic instantiation: first the
actual parameters are evaluated in an undefined order, then any needed default expressions or
subprogram names are evaluated in the order of the formal parameter declarations (RM
12.3/17). Hence, in the following example,

generic
I : INTEGER 1;
with procedure P is T.E(I);

the default entry denoted by P is determined either by I's actual parameter value or by the
default value, 1.
S3. When a default subprogram is specified with a box, the corresponding default parameter is
determined at the point of the Instantiation, independently of whether the instantiation is ever
elaborated:

generic
type T is private:

package GP is
generic

with procedure PAR (X T) is <>; -- (1) ft.'

package Q is
end Q;

package body Q is ... end:

procedure PAR (Y INTEGER): -- (2)
procedure PAR (Z T): -- (3)

package NQ is new Q: -- uses (3)
end GP:

% % %
1 :..s.!

12.3.6 Matching Rules for Formal Subprograns Version 1 (Dec 86)U
package body GP is ... end GP:

procedure PAR (X : INTEGER) is ... end; -- (4) , 1
packa .,4P 4n new GP (INTEGER);

package NNQ is new NP.Q; -- uses (4)

This example illustrates that the default subprogram for GP.Q must be identified at the point
where Q is instanlaled. The initial declaration at (1) is legal even though there is no PAR
procedure visible that nas a parameter of type T. The instantiation for NQ uses the PAR
procedure declared at 13) as the default actual parameter. If (3) were deleted, NO's
instantiation would be iop al, and so GP would be illegal. Finally, the instantiation for NNQ uses
the PAR proced,_re .e~iared at (4), since T is known to denote INTEGER within NP, and the
only visible oeo, o,." PAR (with an IN TEGER parameter) is the one declared at (4). Note
that witnir 's-- '' the procedure declared t (2i even though the two PAR procedures
in NP ha\.. --,n6 -,rameter profile. The identification of NO's default parameter is fixed
prior :c a ,,: ... n . .,
S-,. AlWou, .- ".,r -nodes must be the same for matching subprograms, the modes
are no drng , vhether a single match exists. (Note: there are two ways to have
wo ,.s c .. r. . with the same parameter type profile and different parameter modes:

e ..- : ..;rent packages (see IG 8.4/S); and 2) via a generic package

S5. Wher. * s,, rLdve subprogram parameters, certain actual parameters can cause
imp,. , .-. ". Fcr example, most compilers will probably treat "/=" in a special
ma-e;, I e The complement of .=. Even though "/=" cannot be user-defined
directly , - , ::et;ud when .- is defined. Passing a user-defined "/-" operator may

. mear, pa,.,. rur-defined "=" functin and complementing the result. Finally,
subprogia i ' rn INLINE pragma can be passed as generic parameters, although the
pragma d, : , :, ,e obeyed in this case (RM 6.3.2/4).

S6 F,- h -, ,;nctions, the decisior aboit whether or not to invoke the function is
_ -l 1.& f .-.al :-01-. ,.lction must be invoked if it is
ajsoc,;. uer ana must not be ovoxed if it is associated with a formal

-"bpror, - . -, strings that 're opcrator symbols are potentially ambiguous
as actuad jrmal paramete , an oi!n:,ct the string interpretation is used; if it is
a cp .. " r.a , 1 ,

-" ge
. (X, Y ret n BOOLEAN;

.... ! : t ., ion G rot'urn T, "'

.,+ 'u 4-- :z;':u n INTEGER is end-

pac. ' r""w .C._ , E,,P , AG)
"-" is pa A i, tos: A , ,r-er, " r 'NTEGERF, is associated with formal

parampt - ir instance o' A7, -,ct ;,.oked. but is associated with formal
param" ---

'2-6%

Jp

WaWW WUW w •
W.. RWN. rh NURWgwg WWI

Version 1 (Dec 86) 12.3.6 Matching Rules for Formal Subprograms

S7. The parameter and result type profile of a formal subprogram parameter must be used to
help resolve an overloaded actual parameter (RM 8.7/7-8 and RM 8.7/19):

function F return NTZGR is ... end F; -- F
function F return FLOAT is ... end F; -- F2

generic
type T is private;
with function F return T;

package P is ... end P;

package P1 is new P (INTEGER, F);
package P2 is new P (FLOAT, Fl);

Both instantiations are legal. The F in P1 resolves to F1; the F in P2 resolves to F2.

Changes from July 1982

se. Parameter modes must be identical for formal and actual subprogram parameters.

sq. An enumeration literal matches a formal subprogram parameter.

Changes from July 1980

sio. The subtype of a subprogram's formal parameter or result type is not considered when
attempting to find a match to a formal subprogram parameter.
si 1. Entries are allowed as actual parameters.

Legality Rules

Li. The actual parameter corresponding to a formal subprogram must be a subprogram or an
entry having the parameter and result type profile of the formal parameter (i.e., the number
of formal parameters must be the same, corresponding formal parameters must have the
same base type, and if the formal subprogram parameter is a function, then the actual
parameter must be a function or an enumeration literal; if the formal subprogram parame'er
is a procedure, the actual parameter must be a procedure or an entry.) In addition,
corresponding parameters must have the same mode (RM 12.3.6/1).

L2. If the formal parameter has a default subprogram specified with a box and there is no
actual parameter, there must be exactly one (directly visible) subprogram, enumeration
literal, or entry having the same designator as the formal subprogram and the same
parameter and result type profile (RM 12.3.63). In addition, corresponding parameters .
must have the same mode (RM 12.3.6/1).

Test Objectives and Design Guidelines r,

T1. Check that predefined operators may be passed as actual generic subprogram
parameters.

Implementaion Guideline: In particular, check that "/-" and the aftributes 'SUCC. PRED, 'IMAGE. and
'VALUE can be passed. Include a case where the formal parameter is "-".

Check that a default subprogram name is used when there is no actual parameter (see
also T7 for tests when the default is a box).

Check that an actual parameter cannot be omitted if no default subprogram is specified.

T2. Check that entries may be passed as actual generic subprogram parameters, and the
" *-'. correct behavior is obtained when they are invoked.

12-65

12.3.6 Matching Rules for Formal Subprograms Version 1 (Dec 86) -S

Check that an expression in the name of the entry is only evaluated if there is no actual ,
parameter. ",'
Check that default names (and default expressions; see also 12.3.1/T23) are evaluated in .,; ""

the order given by the generic declaration.

T3. Check that enumeration Iterals (both identifiers and character literals) may be passed as
actual subprogram parameters.

T4. Check that the formal and actual parameter and result type profiles must not be different,
nor may the modes of corresponding parameters be different.
lmplementabon Guideline: Check with cases in which the formal and actual parameters disagree on just one of
the following aspects:

* one is a procedure and one is a function;

" the base type of one parameter is different (check when the bass type is either a formal generic
type or a nongeneric type):

" the number of parameters is different, and the omitted parameters have defaults. S

Implementation Guideline: Check that the modes are not considered when finding a match for the actual
parameter.

T5. Check that the following differences between formal and actual subprograms do not
invalidate a match:

" different parameter names;

" different parameter constraints;

" one parameter constrained and the other unconstrained (for array, record,
access, and private types); ..-.

" presence or absence of an explicit In mode indicator;

" different type marks used to specify the type of parameters.

r6. Check that the default expressions of a formal subprogram's formal parameters are used
when the formal subprogram is called in the instantiated unit (rather than any default
associated with the actual subprogram's parameters).

Check that any constraints specified for the actual subprogram's parameters are used in ,.
place of any constraints associated with the formal subprogram's parameters.

Check that when the formal subprogram's parameters are specified with a formal generic
type, the constraints (if any) of the corresponding actual subprogram's parameters are :.
used. 0

T7. Check that when a default subprogram is specified with a box, a subprogram directly
visible at the point of the instantiation is used (rather than a subprogram visible at the point
of the generic unit's declaration).

Check that the modes of corresponding parameters must match.

Check that the differences lsted in T5 do not affect a match.
Implemenfaion Guideline: The matching subprogram should sometimes be an operator symbol, and the
matching operator symbol should sometimes be only visible via a use clause and sometimes only implicitly
declared.

Check that more than one matching default subprogram is illegal.

T8 Check that the parameter and result type profile of the formal parameter is used to resolve
the actual parameter or the default (when the default is given either by name or as a box) ..,-.
(see IG 8.7.b/T59).

1'-

12-66-"--
0,4 .,

Version 1 (Dec 86) 12.3.6 Matching Rules for Formal Subprograms

Implementation Guideline: The profile should sometimes depend on a formal type parameter declared earlier
in the same generic formal part. and sometimes should depend on a formal parameter of an enclosing genericor unit. .,:, p,.-

p-.J

~i.*

•. ir .

.1

'.'.

..%

%' .

1."',

12-67 .' - "

.- ,

"o S

izi lmdl m IiliiNi~~l - - - in ' " - i : z -" :l " t

Version 1 (Dec 86) 13.1 Representation Clauses

Chapter 13

Representation Clauses and Implementation-Dependent Features

13.1 Representation Clauses
Semantic Ramifications

si. This section covers miscellaneous general issues concerning representation clauses.
Later subsections cover:

a. allowed alternate representations for a type,

b. forcing occurrences,

c. representations for derived types, and

d. the pragma PACK. ":

S2. The extent to which representation clauses are accepted by an implementation must be
specified in Aopendix F (RM 13.1/10). An implementation is allowed to reject ever
representation clause (AI-00361), and consequently, every compilation unit that contairs a
representation clause. An implementation can even reject a representation clause that specifies
what would normally be the default representation. For example:

type DT is new INTEGER;
for DT' SIZE us* 16;

The representation clause for DT can be rejected even if INTEGER'SIZE is 16 for a particu!ar
implementation (AI-00361) and even though in the absence of the representation clause
DT'SIZE would be 16.

S3. Of course, if an implementation supports representation clauses at all, a more likely reason
for rejecting a clause is that it requires a representation that the implementation is not prepared
to support. For example:

type T is
record

I : INTEGER;
end record;

for T use
record

I at 0 range 3 3 + INTEGER'SIZE - 1: -- (1)

end record;

The clause at (1) could be rejected if an implementation does not allcw integer components to
extend over word boundaries.

s4. A type representation clause applies either to a type or to a first named subtype (RM
13.1/3). This means that a type representation clause can be given for a name declared by a
type declaration because such a name either denotes a type or a first named subtype. But a
type representation clause cannot be given for every declaration that declares a type. In
particular, even though a task declaration always declares a type, the declared name does not
always denote a type; the declared name only denotes a type if the task declaration contains
the word "type* (RM 9.1/2). If the name declared by a task declaration denotes a single task

'i.," instead of a task type. no type representation clause can be given for the name. Similarly, no
,1

~.,
. .

13.1 Representation Clauses Version 1 (Dec 86)

type representation clause can be given for the anonymous array type declared by an object
declaration, e.g.: v !

S : array (1 5) of INTZGER;

No type representation clause can be given for S, since S denotes an object, not a type.
ss. No type representation clause can be given for a generic formal type because the
declaration of a type and its representation clause must occur within the same declarativepart
or package.specification. Since the declaration of a generic formal type occurs within a generic
formal part, not within a declarative part or a package specification (RM 12.1/2), no
representation clause can be given for it.
so. A representation clause cannot be given for a type mark declared by a subtype declaration
because such a type mark denotes a subtype (RM 3.3.1/1):

type NEWINT is new INTEGER;
subtype S1 is NEW -INT;
subtype S2 is NEW ZINT range 0..15;
for S' SIZE use 16; -- illegal
for S2'SIZE use 4; -- illegal

The repres6rntation clause for Si is illegal even if NEWINT'SIZE would normally be 16,
becau ;e I 1 denotes an (unconstrained) subtype, not a type. The clause for S2 is similarly
.:e 'a; tcause S2 denotes a subtype.

S7. Thure ,;an iegally be more than one representation clause for the same type or first named
subtype if the clauses do not determine the same aspects of the representation (RM 13.6/1).
For example:

type T" is (El, ,2, 33);
for Ti use (1, 5, 10); -- define enumeration representation for TI
for T1'SIZE use 4; -- define size specification for Ti

type T2 is
record

BI BOOLEAN;
B2 BOOLEAN;

end record:
for T2 use -- define record representation for T2

record
Bl at 0 range 0..0;
B2 at 0 range 1..1:

end record;
for T2'SIZE use 2: -- define size specification for T2

s8. At most two representation clauses can be given for a type since a size specification can
be given for any type class, and the other kinds of representation clauses (namely, collection
size specifications, task storage size specifications, small specifications, enumeration
representation clauses, and record representation clauses) can be given only to mutually
distinct type classes (ramey, access types, task types, fixed point types, enumeration types,
and record types).
sq. Representation clauses for first named subtypes can take into account the constraint
Rimposed on the base type. For example, consider the following declarations of first named
subtypes. ""

13-2
.5 , o

- - ". w.WMK W Wk V' 5 gi n g r.' 2%

Version 1 (Dec 86) 13.1 Representation Clauses

type Ti is range 0..15:
.t* type T2 ias digits 5 range -10.0 10.0:

type T3 is delta 0.1 range -10.0 .. 10.0;
type T4 is array (1..5) of Ti:
type T5 is new INTEGER range 0..15; %
type T6 is new STRING(1 5);

Only the values of the subtype need to be represented in stored values since any attempt to %

declare objects having a larger subtype is either illegal or raises CONSTRAINTERROR:

Xl TI'BASE; -- illegal
X2 Ti range TI'BASE'FIRST .. TI'BASE'LAST; -- CONSTRAI : ERROR
X3 T4'BASE (1..10): -- illegal
X4 T4 (1..10): -- illegal

Hence, the following representation clauses can be accepted by an implementation:

for T1'SIZE use 4;
for T2'SIZE use FLOAT' SIZE: -- assuming FLOAT'DIGITS 4
for T3'SIZE use I + 4 + 4; -- sign + integral + fractor
for T4'SIZE use 5 * T1'SIZE;
for T5'SIZE use 4:
for T6'SIZE use 5 * CHARACTER'SIZE;

S10. An implementation must reject a representation clause that is illegal or impossible for every
implementation. (An error diagnostic message ought to indicate a user error rather than an
implementation limitation.) For example:

type TI is range 0..15:
for T1'SIZE use 4:
for T1'SIZE use 5: -- illegal: size already determined

type T2 is (1l, E2, E3);
for T2' SIZE use 1: -- illegal; size too small

type T3 is
record

B1 BOOLEMAN
B2 BOOLEAN:

end record:

for T3 use
record

B1 at 0 range 2.-.2:
B2 at 0 range 4 4:

end record;
for T3'SIZE use 2; -- illegal: size too small

In the last example, an implementation could instead reject the record representation clause as
being inconsistent with the size clause. "4

si 1. A representation clause is illegal for a private type prior to its full declaration and for a type
that has a subcomponent of such an incompletely declared type (RM 7.4.1/4). A representation
clause can only be given after a private type has been completely declared. Thus, for example:

.| - 3

45 -.-- jJ€~'~f'.4%4' 5- • "'KY:.--.--...- '

13.1 Representation Clauses Version 1 (Dec 86)

N.4

package PKG is
type PT (D INTEGER 0) is private;
type PT2 is private;
for PT' SIZE use -- illegal
type RT is -- incompletely declared

record
C : PT;
D : PT2;

end record:
for RT' SIZE use ... , -- illegal

private
for PT' SIZE use ..., -- illegal
for RT'SIZE use -- illegal

type PT (D : INTEGER := 0) is record ... end record;
for PT'SIZE use -- ok
for RT'SIZE use ..., -- illegal

type PT2 is record ... end record;
-- RT is now completely declared

for RT' SIZE use •. -- ok
end PKG;
use PKG;

type DT3 is new PT;
for DT3 use record ... end record; -- illegal; private type, not

-- a record type
for DT3'SIZE use ... ; -- ok

package body PKG is
type DT4 is new PT;
for DT4 use record ... end record; -- ok
for DT4'SIZE use ... -- ok

end PKG:

S12. The syntax does not allow a representation clause after the occurrence of a body in a
declarative part (RM 3.9/2), nor is such a clause allowed in a generic formal part (RM 12.1/2).

Changes from July 1982

S 3. There are no significant changes.

Changes from July 1980

S14. A type representation clause is no longer allowed for the anonymous type declared by a
task declaration that declares a single task.

si S. A representation clause Is allowed in the visible part of a package.

Si6. A task storage size specification can no longer be given in a task specification.

Legality Rules

L1. A representation clause need not be accepted by any implementation (AI-00361).
L2. A type representation clause can only be given for a name declared explicitly in a task typqdeclaration or in a type declaration (RM 13.1/3) other than a private type declaration (RM

13-4

Version 1 (Dec 86) 13.1 Representation Clauses

7.4.1/4), incomplete type declaration (RM 3.8.1/4), or genedc formal type declaration (RM
13.1/5).

L3. A length clause specifying storage size can only be given for a task type or an access type
that is not a derived type (RM 13.2/8-10).

L4. A length clause specifying SMALL can only be given for a fixed point type (RM 13.2/12).
L5. An enumeration representation clause is only allowed for an enumeration type (RM

13.1/3). '

L6. A record representation clause is only allowed for a record type (RM 13.1/3).

L7. An address clause is only allowed for an object, subprogram, package, task unit, or entry.
At most one address clause is allowed for any given object, subprogram, paco age, task
unit, or entry (RhN 13.1/4).

L8. A representation clause can only be given for an entity declarcd eatlher and immediately
within the same declarative part, package specification, or task specification (RM 13.1/5).

L9. A representation clause cannot be given after the occurrence of a body in a declarative
part (RM 3.9/2).

L10. Mor- than one representation clause can be given explicitly for a type only if the clauses
specify different aspects of the representation. The legal combinations are a r-70
specification combined with one of the following: a collection size specification, a task
storage size specification, a small specification, an enumeration representation clause, or a
record representation clause (RM 13.6/1).

Test Objectives and Design Guidelines

Since the set of representation clauses accepted by an implementation depends on" :he
implementation, every test must be parameterized with respect to the representation clause
applied to a particular type. For each form of representation clause accepted by an
implementation, it will be possible to define a subtype indication and a corresponding
representation clause value that can be used in more than one test. In particular, such repeated,
usage is possibie when the test is checking that otherwise iogal representation clauses 6 .,
rejected when they are applied in illegal contexts (e.g., see test TI or T6).
Ti. Check that a type representation clause cannot be given for the name declared by an

object declaration (see IG 13.2.a/T1, IG 13.2.c/T1, IG 13.2.d/T1, IG 13.3/Ti, and IG
13.4/Ti) or by the declaration of a single task (see IG 13.2.a/Tl and IG 13.2.cf"l).

Check that a type representation clause cannot be given for a name declared by a subtyne
declaration (see IG 13.2.aiTl, IG 13.2.c/T1, IG 13.2.d/T1, IG 13.3/T1, and IG 13.4TI).

Check that a type representation clause cannot be given for a type declared by a private
type declaration or for a type having a component of an incompletely declared private type
prior to the complete declaration for the type (see IG 13.2.a/T1, IG 13.2.c/T1, IG 13.2.d/T1,
IG 13.3/T1, and IG 13.4/Ti).

Check that a type representation clause cannot be given for a type declared by an
incomplete type declaration prior to its full declaration (see IG 13.2.a/Tl, IG 13.2.c/T1, IG
13.2.d/T1, IG 13.3/Ti, and IG 13.4/T1).

Check that a type representation clause cannot be giver for a generic formal type even if
the clause appears in the visible part of a generic package specification (see IG 13.2.a/T1).

.-.. T2. Check that an enumeration representation clause cannot be given for a type that is not an

enumeration type (see IG 13.3/Ti).

" = m | • . . . I 71 - •.. ..

13.1.a Multiple Representations for a Type Version 1 (Dec 86)

T3. Check that a record representation clause cannot be given for a type that is not a record
type (see IG 13.4/Ti).

T4. Check that two explicit representation clauses are not allowed for the same aspect of a ".
type (see IG 13.6/Ti).

T5. Check that an address clause cannot be given for a generic subprogram, generic package,
or exception (see IG 13.5/T4).

T6. Check that a type representation clause cannot be given:

* in a package specification for a type declared in an inner package
specification;

* in a package or task specification, for a type declared in an enclosing package
specification or declarative part;

a in a package body for a type declared in the corresponding package
specification;

e after the occurrence of a body in a declarative part.

See IG 13.2.aIT3, IG 13.2.bIT3, IG 13.2.c/T3, IG 13.2.d/T3, IG 13.3/T3, and IG 13.4/T3.

T7 Check that an address clause cannot be given (see IG 13.5/T6):

* in a package specification for an object, package, etc. declared in an inner
package specification;

" in a package or task specification, for an object, package, etc. declared in an
enclosing package specification or declarative part;

" in a package body for an object, package, etc. declared in the corresponding
package specification;

" after the occurrence of a body in a declarative part. .

T8. Check that a storage representation clause cannot be given for a name declared by a
single task declaration (see IG 13.2.c/TI).

T9. Check that a representation clause can be given in the visible or private part of a package
for a type declared earlier in the same visible part.

13.1.a Multiple Representations for a Type
Semantic Ramifications

S1. An implementation can use more than one representation for values of a type whether or
not representation clauses are given. For example:

X : INTEGER range 1 .. 10 := 10;
Y : INTEGER := X + 13; -- no exception

The values of object X could be stored In a single byte, even though integer values in general
will require more space. No exception is raised for Y's Initialization expression because the
addition operation is defined for the base type INTEGER, not for X's subtype. Even if a .

representation clause is given, such a clause only affects how values of the type are stored:

type T1 is range 0.. 15; /.-*..,

for Ti use 4; ..-

13-6
-4 "

E* - - - -- - - -

,p

Version 1 (Dec 86) 13.1.b Forcing Occurrences

Expressions using values belonging to subtype T1 can compute values outside the range of TI
because these operations are declared for T1 's base type. For example, the following is legal P

and cannot raise any exception if TI 'BASE'LAST is at least 30:

Z : TI := 2*TI'LAST/3; -- final value is in Ti's range

S2. Local variables having the same base type can have different physical representations
because actual parameters can always be passed by copy, thereby allowing for any needed 0%

implicit representation conversions. In addition, the representation for a local variable need not %
be the same as the representation for an allocated variable since pointers can never designate
local variables. (An implementation does not have to worry about pointers obtained by
'ADDRESS and UNCHECKEDCONVERSION. The use of such pointers is erroneou' if any .,
language or implementation rules are violated.)

S3. From the programmer's viewpoint, possible differences in representations of stored 'Values
have no effect on the behavior of a program except for values of representation attributes, e.g.,
'SIZE; in the above example, if 8 bits are used to store values of X, then X'SIZE equals 8 even
though INTEGER'SIZE might equal 32.

s4. An implementer may sometimes find it reasonable to have different representations for the
same type in different contexts, to save on storage or time. Any such representation variations -.
affect only the time and space behavior of a program, and the values of representatio _
attributes such as SIZE.

S5. In many of the reasonable uses of multiple representations for a type, the representations
will differ only:

" in the amount of storage allocated to objects or components that have that
i .~, type. For example, if the component subtype for an array allows only values in

the range 0.. 15, an implementation might well use only 4 bits to hold each
component value. Similarly, each array object need only be allocated the
space needed for its components, as determined by its index constraint.

" in the alignment of objects or components with respect to storage boundaries.

" in the use of unsigned or biased representations vs. signed representations (for
integer types). (A biased representation could be used to represent the range
10..1 1 with a single bit, for example.)

Changes from July 1982

S6. There are no significant changes.

Changes from July 1980

S7. There are no significant changes.

Test Objectives and Design Guidelines ,,

Ti. Check whether an Implementation gives different sizes to objects having the same base
type. t
Implementation Guideline: Check for scalar, array, and constrained record types.

13.1.b Forcing Occurrences

Semantic Ramifications

Si. Certain explicit occurrences of a type name or a value of a type are considered to

"i 3-7

13.1.b Forcing Occurrences Version 1 (Dec 86)

determine (force) the representation of a type. No representation clause is allowed after a
forcing occurrence (RM 13.1/6-7). Specifically, certain occurrences of type mark TT are forcing ...,. 4'
occurrences for type T when TT is:

" a subtype of T (or T itself),

" a type that has a subcomponent of a subtype of T,

" an array type with index subtype T (AI-00321).

and when type TT is used in one of the following ways (RM 13.1/6):

a. as the type mark in an object declaration;

b. as the prefix of an attribute when the attribute is used in an expression or
range;

c. as an actual generic parameter;

d. as the type mark in the declaration of a generic formal object or generic formal
type;

e. as the type mark in a qualified expression, explicit type conversion,
membership test, or allocator, except when the expression occurs as the
argument of a pragma (AI-00186 and AI-00322);

1. when T is a subcomponent of type TT, the use of type TT in a representation
clause for type TT (such a use is only a forcing occurrence for T; it is not a
forcing occurrence for type TT);

In addition, the use of a value of type TT as an operand of a relational operator, membership
test, or explicit type conversion (Ai-00039) is a forcing occurrence for type T. (Use of a value of
type TT is not otherwise a forcing occurrence for T; see examples below.)

S2. Occurrences of type TT or T are not forcing occurrences for type T in the following contexts
(RM 13.1/6):

a ;nl i subtype declaration, when T is the type mark in the subtype indication,
Ug

subtype T1 is T range 1 5;
subtype T2 is TT (1..5);

b. in a derived type declaration, when TT is the parent type;

c. in the declaration of an array type having component or index type TT;

d. as the type mark in the declaration of a record component or discriminant;

e. as the type mark in the declaration of the formal parameter of a subprogram or
entry;

f. in the subtype indication of a deferred constant declaration;

g. when T is the simple name or attribute given in a representation clause;

h. in the argument of a pragma (whether the pragma is recognized by the
implementation or not; see AI-00186, A1-00322, and below); "5

S3. The declaration of an object Is a forcing occurrence even when the object is declared in a
generic unit:

type T is ...

13-8

Version 1 (Dec 86) 13.1.b Forcing Occurrences

generic
package PKG is

Ti : T (1) cap. of T now decided
end PKG;

for T use ...; -- (2) illegal (even if PKG is never instantiated)

S4. The explicit use of TT in an expression is normally a forcing occurrence:

type T is range 0 15;
type TT is array (1..5) of T;
I : INTEGER := TT'SIZE; -- (1) size of T also decided
for T'SIZE use ... -- (2) illegal

The occurrence of TT in line (1) is a forcing occurrence for T, since T is a subcomponent of type
TT. It would be a forcing occurrence even if the attribute were TT'LENGTH, whose value is not
affected by the size of TT. S
S5. Now suppose line (1) is replaced with a representation clause for UT:

for TT'SIZE use ...; -- (la)
for T'SIZE use ...; -- (2)

The representation clause at (2) must be rejected. The occurrence of T in line (la) is not' a
forcing occurrence for type TT, but it is a forcing occurrence for type T, since T is a S
subcomponent of type T.

S6. If the representation clauses for types T and UT appeared in the reverse order:

for T'SIZE use ..., -- (3)
for TT'SIZE use ... ; -- (4)

then the clause at line (4) could be accepted because the occurrence of T in line (3) is not a
forcing occurrence for type TT. For example, If T's size were specified as 8, then TT'SIZE could
be specified as 40. (An even larger value could be specified for TT, since the size specificatio,' -
is just an upper bound.)

S7. The occurrence of a value of a type is not usually a forcing occurrence for the type: P

type T is zange 1.-.10;
type TT is array (1..2) of T;
function F (X : TT := (1,2)) return INTEGER; -- (1) uses a TT value .
for T'SIZE use ... , -- (2) can be accepted "'2

The use of TT to specify the type of F's formal parameter is not a forcing occurrence for U , 7
for T, nor is the occurrence of values of type T in T's aggregate. The implicit conversion of the
literals 1 and 2 to type T Is not a forcing occurrence for type T because the name T does no
occur explicitly.
Ss. Sometimes the occurrence of a value is, however, considered to be a forcing occurrence
for the value's type (A1-00039). For example, consider:

procedure PROC is
type T is delta 1.0 range -10.0 .. 10.0;
OBJ : constant BOOLEAN :- PROC."-"(1.1, 1.2);
for T'SMALL use 10.0**(-BOOLZAN'POS(OBJ));

,-,, The initial value expression for OBJ is static since PROC."=" (the equality operator for type T) Sis an operator symbol that denotes a predefined operator and each actual parameter, 1.1 and

13-9

dS. ,.

13.1.b Forcing Occurrences Version 1 (Dec 86)

1.2, is a static expression. Hence, OBJ can be used in a static expression (RM 4.9/6). This
means the expression in T's representation clause Is allowed by RM 13.2/12. But Al-00039
says the representation clause Is illegal because the occurrence of values of type T as
operands of a relational operator Is considered a forcing occurrence for type T. If this were not
the case, an implementation would be placed in a difficult position because the representation
clause determines the set of model numbers for type T, and, therefore, determines the accuracy
of the relational expression. If T'SMALL Is given the value 0.1, then OBJ must be FALSE, which
means T'SMALL is specified to have the value 1.0 (a contradiction). If T'SMALL is given the
value 1.0, then the initialization expression can be evaluated to have the value TRUE or FALSE,
since 1.1 and 1.2 fall within the same model interval. But if OBJ is given the value TRUE, then
the representation clause specifies that T'SMALL has the value 0.1 (again a contradiction). The
only consistent set of values is for OBJ to have the value FALSE and T'SMALL to have the
value 1.0. Instead of forcing this kind of analysis, Al-00039 simply says the representation
clause is illegal because the initialization expression for OBJ is considered a forcing occurrence
for T. %"

sq. AI-039 says the occurrence of an operand of type T as the operand of an explicit -.

conversion is a forcing occurrence for T:

OBJ2 :constant INTEGER := INTEGER (PROC."+"(1.1, 1.2));

Si milary, i"e occurrence of a value of type T as the operand in a membership test is a forcing
CC, uWr1CU;

rT3 •constant BOOLEAN 1.1 in PROC."+"(1.1, 0.0) .. 1.2;

Sio. A function returning the value of a type can appear in a default expression without being
cor; sidered a forcing occurrence for the type:

type T is ...;
function F return T;
function G (X : T) return BOOLEAN;
type R is

record
Z : BOOLEAN G(F): -- not forcing occurrence for T

end record;
for T use ...; -- can be accepted

AI-00039 notes that the use of G in F's argument is not a forcing occurrence for type T, so the
representation clause can be accepted. Of course, PROGRAMERROR will be raised if an
object of type R is declared (without an explicit initial value) before the bodies of F and G have
been elaborated.

Si 1. If the argument of a pragma is an expression and the expression contains what would
normally be considered a forcing occurrence for a typts, then the pragma is ignored; its presence
does not affect the legality of later representation clauses (AI-00186 and AI-00322). For
example, consider:

type YES is new INTEGER range 1..10;
pragma OPTIMIZE (YES(4) + 5); -- ignored
pragma PRIORITY (YES'POS(1)); -- ignored
pragma DEBUG(YES' (1)); -- ignored
for YES'SIZE use 5; -- acceptable ''

A pragma is supposed to have no effect if its argument is not acceptable (RM 2.8(9)). In the
example with pragma OPTIMIZE, the argument is supposed to be an identifier, not an *:... -
expression. Since the argument Is not acceptable, the pragma is to have no effect. In .

13-10

2 6

Version 1 (Dec 86) 13.1.b Forcing Occurrences
I
S.

particular, the occurrence of type name YES in the pragma's argument does not affect the
legality of the later representation clause. Similarly, although the argument of the pragma %
PRIORITY is a static universal integer expression, Al-00186 requires that the pragma be
ignored because it would otherwise contain a forcing occurrence for type YES. Finally, if a
pragma is not recognized by an implementation, it is to have no effect. In particular, the pragma I

DEBUG is not language defined and may not be recognized by some implementations. If the
pragma is not recognized by an implementation, it has no effect on the legality of the later
representation clause, even though the type name seems to occur in an expression. If the
pragma is recognized by an implementation, and if the implementation requires an argument
having an integer type, AI-00186 nonetheless requires that this occurrence of the pragma be
ignored because it contains what would otherwise be considered a forcing occurrence for type
name YES. The pragma,

pragma DEBUG(YES);

would not be considered to contain a forcing occurrence because YES is not used in an
expression.

S12. An expression in a representation clause for a type is not allowed to contain a forcing
occurrence for the type (AI-00371). For example:

type T is delta 1.0 range -10.0 • 10.0;
for T'SMALL use T'DELTA/2; -- illegai

type E is (EA, EB);
for E use (MA => E'POS(KA)-I, EB => E'POS(EB)); -- illegal

Changes from July 1982

S13. An occurrence of a type name in the argument of a pragma (e.g., in the argumeu Uf
pragma PACK) is not a forcing occurrence.

Changes from July 1980

S14. The notion of a forcing occurrence is introduced and defined explicitly.
Legality Rules

L1. A representation clause for a type is illegal after a forcing occurrence for the type (RM:
13.1/5-6). A forcing occurrence for a type T is one of the following uses of type TT, wher-.E
TT is either the type T, a subtype of T, a type that has a subcomponent of type TT, or an
array type or subtype with an index subtype that is a subtype of T (A1-00321):

a. as the type mark in an object declaration;

b. as the prefix of an attribute when the attribute is used in an expression or
range;

c. as an actual generic parameter;

d. as the type mark in the declaration of a generic formal object or generic formal
type; . .

e. as the type mark in a qualified expression, an explicit type conversion, a
membership test, or an allocator, except when the expression occurs as the
argument of a pragma (AI-00186 and AI-00322);

f. when T Is a subcomponent of type TT, the use of type TT in a representation
clause for type TT (such a use is only a forcing occurrence for T; it is not a

- -" forcing occurrence for type TT);

I

I ii ' , * E,"; .*.

13. l.c Representation of Derived Types Version 1 (Dec 86)

In addition, the use of a value of type "T as an operand of a relational operator, a
membership test, or an explicit type conversion (Al-00039) is a forcing occurrence for type, - '

T.

L. A representation clause for a type Is illegal if an expression in the clause contains a forcing
occurrence for the type (AI-00371).

Test Objectives and Design Guidelines

Each of the following objectives is to be performed for each form of representation clause
and each form of type name TT whose use is a forcing occurrence for type T (see R1, above).
When possible, use representation clauses that can be accepted by an implementation if it were
not for the preceding forcing occurrence.

Ti. Check that a representation clause for type T cannot be given after type TT is used in an
object declaration.

T2. Check that a representation clause for type T cannot be given after type TT is used as the
prefix of an attribute, and the attribute is used in an expression or range that is not the
argument of a pragma.
Implementation Guideline: Include use of an attribute such as LENGTH, whose value is unaffected by the
chosen representation. ."

Implementation Guideline: Include use as a default expression in a subprogram specification (generic and
r'ongeneric) and record component declaration.

T. Check that a representation clause for type T cannot be given after type TT is used in a
generic instantiation as an actual generic parameter.

T4. Check that a representation clause for type T cannot be given after type TT is used in the
declaration of a generic formal object or generic formal type.

T5. Check that a representation clause for type T cannot be given after type TT is used in a .1'
qualified expression, an explicit type conversion, or an allocator, or when TT is used as the
type mark in a membership test.

T6. Check that a representation clause is illegal if an expression in the clause contains a
'r'.er" 'Ci the type whose representation is being specified.

Implemeitation Guideline: Include the use of a nonropresentation attribute for the type, e.g., the use of 'DELTA
in a clause specifying 'SMALL for a fixed point type.

17. Check that a representation clause for type T cannot be given after a value of type TT is
used as the operand in a membership test or relational operator.

T8. Check that occurrence of a type name in an expression of a pragma is not considered a
forcing occurrence for the type.
Implementation Guideline: Include checks using pragma names not recognized by any implementation.
Implementation Guideline: Check for all forms of representation clause: a size specification, a task storage size
specification, a collection size specification, a small specification, an enumeration representation clause, a
record representation clause, and an address clause.

13.1.c Representation of Derived Types
Semantic Ramifications

Si. A derived type inherits the representation of its parent type to the extent that the parent
type's representation has been specified with a representation clause (AI-00138). Whether or .
not some aspect of a derived type's representation is inherited, its representation can, in many
circumstances, be redefined (AI-001 38 and AI-00099; see also IG 13.2.d/S). For example:

13-12

4, . .'...".,

Version 1 (Dec 86) 13.1.c Representation of Derived Types

type T is ...
for T'SIZE use ... ; -- (1)

type DT is new T; -- (2) inherits the rep. clause (1) of T
-- (3) no forcing occurrences for DT S

for DT'SIZE use ... - (4) overrides the inherited representation

S2. If the representation of some aspect of a parent type has not been determined or has been
determined by default (e.g., because the parent type was declared in another declarative part or
because there has been a forcing occurrence), the derived and parent types can, but need not,
have the same representation. For example:

type T is
type DT is new T; -- (1) representation not yet determined
for T'SIZE use ... ; -- (2)

The representation clause at (2) applies only to T, i.e., DT is not required to have the same size
as T. S
S3. Only a size specification is legal for a type that is derived from an access type (RM 13.2/8). -'.'

For example:

type A is access INTEGER;
type DT is new A;
for DT' STORAGESIZE use 512; -- illegal
for A'STORAGE SIZE use 1024; -- ok; also determines DT'STORAGE SIZE
for A'SIZE use 32; -- ok if 32 bits is enough
for DT'SIZE use 24; -- ok if 24 bits is enough

S4. A size specification is legal for a type derived from a private type. Only the ;e
specification is meaningful for private types (since the type class is "private," and not "recori,"
"enumeration," etc.). Of course, the size specification might not be acceptable to ar.
implementation, depending on the number of bits required for the full declaration of the typE r - .. ,
the implementation's restrictions on size specifications. But, in general, if the size specificat. -r, .r
would be allowed for the full declaration, then it should be allowed for the derived type.

s5. If a parent type has derivable subprograms, then only a representation clause specifying
size, task storage size, or the value of small can be given for the derived type (RM 13.1/3. the
size of a collection cannot be specified for a derived access type in any case; RM 13.2/8). ,ae
intent of this rule is to prevent users from giving different record or enumeration representation
clauses for the parent and derived types, thereby incurring potentially expensive irnpiicit
representation conversions when invoking the derived subprograms.

S6. If an implicit representation clause Is present for a derived type, any expressions ir ,
clause are not reevaluated for the derived type (AI-00138). For example,

type type T is ... end T;
for T'STORAGE SIZE use F(INTEGER'SIZE); -- F is a function
type DT is new T;

The expression specifying the storage size for a task type need not be static. The same
representation clause is implicitly present for type DT, but even so, the expression is not
evaluated again; DT has the same storage size as T. ,,

Changes from July 1982
S7. There are no significant changes for derived types.

13-13

.,P ,

13.1.d The pragma PACK Version 1 (Dec 86)

Changes from July 1980

sa. There are no significant changes for derived types.

Legality Rules

L1. Only a representation clause specifying a type's size, storage size, or value of small can be
given for a derived type if (user-defined) subprograms have been derived (RM 13.1/3 and
RM 13.2/8).

Test Objectives and Design Guidelines

T1. Check that a collection size cannot be specified for a derived access type (see IG
13.2.b/T1).

T2. Check that an enumeration representation clause or a record representation clause cannot
be given for a derived type if the parent type has derivable subprograms (see IG 13.3/Ti 1
and IG 13.4/T10).

T3. Check that the representation of a parent type is inherited by a derived type if the parent
type's representation was determined by a representation clause or pragma PACK.

T4 Check that the representation of a derived type can be respecified even for an aspect that
is inherited from the parent type.
mplementation Guideline: The representation clause for the parent type should occur before the derived type's

-declaration.-,

'np; 4ntadon Guideline: Include a check that the parent and derived types can have different
representations if representation clauses for both types occur after the derived type declaration.
Implementation Guideline: Check that a representation clause can be given for a derived type when the parent
type is declared in another unit.

T5. Check that a size specification is allowed for a derived private type (see IG 13.2.a/T21,
IT31,/1T41,"/T51, 1T61,/T71,/T81, and/T91).

T6. Check that a storage size specification for a task type is not evaluated again for a derived r
task type.

13.1.d The pragma PACK

Semantic Ramifications
'I%-

si. The pragma PACK specifies that storage minimization should be the main criterion when "
selecting the representation of a record or an array type. The only representation clauses
affected by the pragma PACK are the size specification and the record representation clause.
The order of the representation clauses and the pragma PACK for a type is irrelevant prior to
the forcing occurrence for that type. If the pragma appears after a forcing occurrence for the
type, the implementation must Ignore the pragma (RM 2.8/9). For example:

type T is
record

B1: BOOLEAN;
B2 BOOLEAN;
B3 BOOLEAN;

end record;
for T use (1)

record
B1 at 0 range 2..2;

13-14

Version 1 (Dec 86) 13.1 .d The pragma PACK

B2 at 0 range 4.. 4;
.. end record;

-- (2)

A : T; -- (3)
pragma PACK (T); -- (4)

There is a forcing occurrence of T at (3). The pragma at (4) must be ignored since it appears
after the forcing occurrence, i.e., an implementation could choose to place component B3 at
position 5, making T'SIZE equal 5.

s2. Now suppose the pragma is moved to position (2). The effect of the pragma is
implementation dependent, but presumably, if the clause at (1) has been accepted, the
implementation can equally well place component B3 at positions 0, 1, or 3, so that the overall
length of T is 4 bits.

S3. Now suppose the pragma is given prior to the representation clause. In this case, an
implementation can obey the pragma and reject the subsequent record representation clause if
it is inconsistent with the storage representation determined in accordance with the pragma. An
implementation can also choose to obey both the pragma and the representation clause even
though the pragma occurs first, i.e., the implementation could put components 81 and B2 in the
positions specified by the representation clause and place component B3 In accordance w;,',
the pragma. This flexibility is consistent with the view in A1-00361 that an implementation is tree
to decide under what circumstances it will accept a representation clause.

S4. Another pragma whose position is governed by the rules for a representation clause is the
CONTROLLED pragma. The only restriction is that the pragma is not allowed for a derived type
(RM 4.8/11), i.e., is ignored if a derived type is named (see RM 2.8/9).

- Changes from July 1982

s5. The pragma PACK now takes, as the argument, a simple name that is a type; an expanded
name is not allowed.

s6. The pragma PACK is allowed to affect the mapping of components onto storage as well -
the gaps between consecutive storage components.

Changes from July 1980

S7. There are no significant changes.

Test Oblectlves and Design Guidelines

T1. Check whether a pragma PACK is obeyed for certain kinds of types, e.g.,

* an array having a BOOLEAN or CHARACTER component type; check
whether the minimum space is used;

* a record having components that are just of type BOOLEAN or type
CHARACTER; check whether the minimum space is used;

* a record having a combination of BOOLEAN components and components
having a small Integer subtype;

* an array whose component subtype allows storage within a single byte.

T2. Check that a pragma PACK need not be obeyed when its argument is an expanded name.

T3. Check that a pragma PACK Is ignored after a forcing occurrence.

T4. Check whether occurrence of a pragma PACK prior to a record representation clause
makes the representation clause illegal.

13-15

" i i If II i - - -" - ". . . '. .. ' -

13.2 Length Clauses Version 1 (Dec 86)

T5. Check that a pragma PACK is not considered illegal if it occurs after a forcing occurrence.

13.2 Length Clauses
Semantic Ramifications

si. Each form of length clause is discussed separately In subsequent subsections. This
section covers material that is common to all length clauses.

S2. Only a simple expression is allowed in a length clause. This syntactic restriction has no
consequences of practical interest, since the simple expression must have a numeric type, and
any form of expression that has a numeric type and uses only predefined operators and function
calls will always be a simple expression (see RM 4.4/2). However, if a relational operator or
logical operator is overloaded to deliver a numeric type, then it is possible to write nonstatic
numeric expressions that are not, syntactically, simple-expressions:

package PECULIAR is
type T is new INTEGER;
function "<" (L, R : T) return T;

end PECULIAR;

with PECULIAR; use PECULIAR:
procedure P is

task type TT;
for TT'STORAGESIZE use T'(5) < 3; -- illegal

end P:

The representation clause is illegal because it is syntactically an expression, not a simple
expression. The expression must be enclosed in parentheses to be a simple expression.

*" S3. The prefix of the attribute that appears in a length clause must be the simple name of a
type. An expanded name, or the name T'BASE, is not allowed (AI-00300; not yet approved).

. S4. An implementation-defined attribute is not allowed as the attribute designator in a length
W. -M 13.2/3 says only SIZE, STO, AGE_SIZE, and SMALL are allowed. The

intent is that implementation-defined representation specifications be supported by pragmas.

Changes from July 1982

S5. A length clause is not allowed for a task unit that denotes a single task.

S6. The wording has been clarified to limit which attributes can appear in length clauses. In
particular, an implementation-defined attribute is not allowed.

Changes from July 1980

S7. The form of expression that appears after use in a length clause must be a simple
expression instead of an expression.

Legality Rules

L1 The attribute designator in a length clause must be one of the following: SIZE, STORAGE- '-

_SIZE, or SMALL (RM 13.2/3).

L2. The prefix of the attribute in a length clause must denote a type or a first named subtype,
but the type must not be a generic formal type, an incomplete type, or an incompletely
declared private type (RM 13.2/3, RM 13.1/5, RM 7.4.1/4, and RM 3.8.1/4; see also IG --

13.1IS).

13-16

'% " " , ',""-" ","'.""-'"."' "- . .-',-" .".. -'. ". "- .,".-" .".-" -".-".-".-%- '.'-, -'. .- .- " "'.''... .',.- ,-' '.' .-..'..'' ,' : "" "-'..'.,' ,-.-

Version 1 (Dec 86) 13.2.a Size Specifications -"

L3. The prefix of the attribute in a length clause cannot be an expanded name or the attnbute
T'BASE; it must be a simple name (AI-00300; not yet approved).

L4. The expression in a length clause must have a numeric type (RM 13.2/3).

Test Objectives and Design Guidelines

Ti. Check that a length clause is not allowed for any attribute designator other than SIZE,
STORAGESIZE, or SMALL.
Implementation Guideiine: In particular, check the following attributes:

* for a prefix that denotes an object: ADDRESS: 11

* for a prefix that denotes an integer type: FIRST (to indicate the lowest value in : .az.odrepresentation) and STORAGE-SIZE;

* for a prefix that denotes a fixed or floating point type: MACHINEEMAX MACHINEEMIN".
MACHINEMANTISSA, MACHINE_OVERFLOWS, MACHINE. RADIY. MV'A(HINEROUNDS, -%
SAFEEMAX, SAFE_LARGE, or SAFE SMALL. -

T2. Check that the form of expression in a length clause :.iust be a simple expression (see IG
13.2.b/T14 and IG 13.2.c/T1'4V

13.2.a Size Specifications
Semantic Ramifications

S1. A size specification for a type T gives an upper bound (in bits) for the size of objects of type
T. In the absence of a size specification, the upper bound is determined by the implementation.
An implementation must not use more than the specified maximum, but it is permitted to i,.
fewer bits as long as it uses enough to uniquely represent each value of type T (or subtypt f
when T is a first named subtype; see IG 13.1.a/S). The following examples illustrate somntc
minimum sizes.

type T1 is range 0 .15; -- minimum size is 4 (unsigned rep.)
type T2 is range 7..10; -- minimum size is 2 (biased rep.)

If an implementation only supports signed integer representations, then a minimal size
specification would be rejected, i.e., an implementation need not support the logically minirral
required size.

S2. An implementation may determine whether a size specification for an array type includes -.

only the components of an array or whether it must also include any array descriptors ,;
vectors) (see also IG 13.4/S). For an unconstrained array type T, the specified size mL :
large enough to represent the largest possible array of type T (i.e., the array whose bounds ,"
'FIRST to 'LAST of the corresponding index subtypes). For example:

type T3 is array (1..8) of BOOLEAN; -- min. size is 8
subtype EIGHT is INTEGER range 1.. 8;
type T4 is

array (EIGHT range <>) of INTEGER range 0..3; -- min. size is 8*2

Since a specified size is only an upper bound, array objects of type T4 need only be allocated
enough bits to represent their actual components:

A5 : T4 (3..6); -- min. size is 4*2

- " S3. When a derived type declaration for T is given in terms of a subtype of the parent type, only
tie subtype values need to be represented, e.g.,

-
.
'7."

13.2.a Size SPecIfiCations version 1 (Dec 86)

type T5 is now INTEGER range 0. .15; -- min. size is 4
type T6 is new CHARACTER

range CBARACTER'VAL(O) .. CHARACTER'VAL(7); -- min. size is 3

s4. A size specification is legal for a subtype if the subtype has a static constraint, even if the
subtype itself is not static (RM 13.2/6). For example (SD means static range, dynamic name):

SS constant INTEGER range 0. .15 :=7; -- SS is static
SD :INTEGER range 0. .255 :-7; -- SD is not static
DD constant INTEGER range 0. .SD := 3; -- DD is not static

* type Ti is new INTEGER range 0. .SS; -- static range 0. .7,
-minimum size is 3

* type T2 is new INTEGER range 0.. SD; -- nonstatic range,
-size specification illegal

type T3is new INTEGER range 0. .DD; -- nonstatic range,
size specification illegal

type DTI is new Ti range 0. .3; -- static subtype and range
-- minimium size is 2

* typ DT2 is new T2 range 0. .3; -- static constraint <
a ize specification

legal

A size spec.)5cation is legal for DT2 even though T2 is a nonstatic subtype and even though DT2
is, tecnnica !y speaking, therefore a nonstatic subtype (RM 4.9/11).

ss. A size specification is illegal for a type if any of its constraints, subcomponent constraints,
or index subtypes are nonstatic. For example:

generic
type T is range <>; -- nonstatic type

package PEG isI
type DT is new T; -- nonstatic typeO
type Al is array (T range <>) of INTEGER: -- nonstatic ir-Jex

-- subtype
type A2 is array (l. .8) of T; nonstat4-

edtype A3 is new Al (l..8); - nonstaw '9

* Size specifications are illegal for DT, Al, A2, and A3 even it PKG is rieve, r '

index constraint for A3 is nonstatlc because the index subtype !s not statv qV -
representation clause is allowed for formal type T in any case see ,

S6. A component subtype constraint that depends on a dtc--a-
specification cannot be given for record containing such constri-,-

subtype TEN is INTEGER range I Ic
tyeREC (D0 TEN) is
tyerecord

C STRING (1
end record

tyoDREC as now ARC'3

forcn~ IkCSZtas*'~-APA'i

for -REC S.11 -,.I* "P& -T

M0-Ml9 64? THE AN (TRADE NAME) COMPILER VALIDATION CAPABILITY 6 4
3 ONOUI DCLEMENTERSW DIDE VERSION 1(U) SOFTECH INC NLTN AM

UNCLASSIFIED F/O 12/3 ML

mhE0CE hhjhhEI

5J

MICROCOPY RESOLUTION TEsT CHART

NATIONA&L BURlEAU O
F.

STANDANDItJ-191 -

,,..

If _F
9 ~

1111 - £5 1321112
lipi %i I

IIr %3
11111AL

Version 1 (Dec 86) 13.2.a Size Specifications

S7. A constraint specified for an access type applies to its designated type. If a size
specification is allowed for an access type, it Is allowed if a constraint is present, whether the
constraint is static or not.

type ACCiSTR is access STRING (1..DD); -- nonstatic constraint
type ACC2 STR is access STRING;

type D ACC2_STR is new ACC2.STR (1..DD);

If a size specification is allowed for ACC2_STR, there is no reason It should not also be allowed
for ACCiSTR and DACC2_STR.

Se. A size specification for a composite type T can affect the size of the storage area allocated
to each component as well as the sizes of the gaps between the components. For example,
when a component type has a static discrete subtype, each component need only occupy
enough space to hold its range of possible values: 0"

type T is array (1..5) of INTEGER range 0..15;
for T use 5*4;

Since each component need occupy only four bits (in unsigned representation), the size
specification could be accepted for T. On the other hand, an implementation could reject the
size specification on the basis that any subtype of INTEGER must occupy INTEGER'SIZE bits.
so 20 bits are insufficient to hold the full array.

sq. If a component subtype is a composite type, a length clause for the containing type need
not affect the representation of the component. For example:

subtype FIFTEEN is INTEGER range 0..15; 's.

subtype FIVE is INTEGER range 1.-.5;
type R is

record
B1 : FIFTEEN; -- four bits suffice
B2 : FIFTEEN; -- four bits suffice

end record;
type A is array (1..5) of R;

The two components of R could be packed into a single byte, but an implementation might not
usually perform such packing because it takes additional time to access a component val, 'e.
On the other hand, suppose the following is given as a representation clause for A:

for A use FIVE'LAST * (2 * FIFTEZN'SIZZ);
X : R := A(3):

Suppose that FIFTEEN'SIZE equals 4, i.e., that an implementation is able to store values
having subtype FIFTEEN in four bits. An Implementation might consider the length clause for A
to be an indication that the record type should be packed when used as a component of type A
(since this Is the only way the representation clause can be obeyed). But outside A, the
implementation might use an unpacked representation by default. If so, the assignment
required for X's Initialization implies that a representation conversion is first performed for
component A(3). (The expression in the representation clause could not be A'LENGTH * (2 *
FIFTEEN'SIZE) since the prefix of LENGTH Is not a scalar type, and so A'LENGTH is not
allowed in a static expression; see RM 4.9/8).

s1o. Of course, if the programmer gives a specific length clause for record type R, this clause
should be obeyed when the type is used as a component of another type. For example,
suppose the programmer indicates that byte alignment is desired for components of type R:

13-19

13.2.a Size Specifications Version 1 (Dec 86)

for R use
record

31 at 0 range 0..7; ,
B2 at 0 range 8..15; 00-

end record; S

Then the minimum size for type R is 16, and a representation clause for type A should not be
accepted if fewer than 16*5 bits Is specified.

S1 1. A size specification is allowed for a task type. Such a specification refers to the
representation used for a task object. Since the value of a task object designates a task (RM
9.2/2), such an object is likely to have the same representation as a pointer, and if so,
restrictions on size specifications for task types are likely to be the same as restrictions on size
specifications for access types. If a composite type has a component of a task type, then any
size specification for the composite type will have to take into account the representation for
task type values.

S12. A size specification is not allowed for a single task:

task SINGLE is ... end SINGLE;

SINGLE denotes a task, not a task type, and so cannot be named in a size specification. I..'.

si. Since a size specification gives an upper bound on the number of bits used to represent
values of the type, an implementation can use fewer bits if It so desires. If so, the value of the
size attrlbLte ':r the type may be less than the value given in the size specification (but cannot
be more): "-"

type T is ...;
for T use 32;
X : INTEGER := T'SIZE; 0

The value of X must be less than or equal to 32.

S14. When a sufficiently small collection size has been specified for an access type, access
values might be represented in biased notation (i.e., as a relative value from a base address
associated with the collection). If an implementation supports such a representation for access
values, then a size specification for an access type can be used to obtain a biased pointer S

representation. (Such pointers are sometimes called offset pointers.) For example: -. °,,"

type T is access ...,
for T'STORAGE SIZE use 32 768; -- bytes
for T'SIZZ use 16;

The size specification could be accepted for a machine such as the IBM S/370 for which
ADDRESS'SIZE is 24.

sis. The RM imposes no requirement on the relative order in which a collection size and size
specification should appear. In the previous example, the size specification might be rejected if
it occurs before the storage size specification on the grounds that access values generally
require 24 bits. On the other hand, an implementation could wait until the representation of T
must be determined (e.g., by a forcing occurrence) before deciding whether the size
specification can be accepted. If this strategy Is used, then the collection size specification can
appear after the size specification.

Changes from July 1982

S16. A size specification is explicitly allowed for a first named subtype.
-.".%"

13-20

W, . .,, - 'I

Version 1 (Dec 86) 13.2.a Size Specifications
p

S17. A size specification is allowed to affect the amount of storage allocated for each
component of a composite type.

Changes from July 1980

SiS. A size specification is not allowed for a composite type if a constraint on any
subcomponent of the type Is not static.

S1g. A size specification is not allowed for an unconstrained array type if an index subtype is not
static.

Legality Rules

The following restrctions apply to size specifications of the form:

for T'SIZZ use siple.exprossion;

L. T must denote a type or a first named subtype, but the type must not be a generic formal

type, an incomplete type, or an incompletely declared private type (RM 13.2/3, RM 13.1/5,
RM 7.4.1/4, and RM 3.8.1/4; see also 10 13.1/S).

L2. T cannot be an expanded name or the attribute T'BASE; it must be a simple name
(AI-00300; not yet approved).

L3. The expression must be static and must have an integer type (RM 13.2/5).

L4. The value of the expression must be at least equal to the minimum number of bits needed .

to uniquely represent the values of (sub)type T (RM 13.2/5).

L5. Any constraints on T and on its subcomponents must be static. If T is an unconstrained
array type, its index subtypes must also be static (RM 13.2/6).

L6. A size specification can be rejected if an implementation chooses not to support it
(AI-00361).

L7. Two size specifications cannot be given for the same type (RM 13.6/1).

Test Objectives and Design Guidelines

Ti. Check that a size specification cannot be given for:

" a prefix that is an expanded name; .

* the prefix T'BASE;

" a name declared by an object declaration;
Implementation GuideMine: Include a check for an object declared with a constrained array type
definition, since the base type Is anonymous in this case.

" a name declared by a single task declaration;

" a name declared by a subtype declaration;
" a type declared by a private type declaration prior to the full declaration of the

type;
" a type having a subcomponent of an incompletely declared private type, prior

to the complete declaration of the composite type;

" a type declared by an incomplete type declaration prior to its full declaration;

" a type having a subcomponent of an incompletely declared private type. prior
WM to the complete declaration of the composite type;

13-21

%. %. %-." ,

13.2.a Size Specifications Version 1 (Dec 86)

a generic formal type.
Implementation Guideline: The size specification should not occur in the generic formal part. ..

Implementation Guideline: In each case, use a clause that, if possible, would be allowed for the actual type or :
for the completely declared type.

T2. Check that two size specifications cannot be given for the same type.
Implementaion Guideline: Check for each kind of type: enumeration, integer, fixed point, floating point, array.
record, access, derived private, and task type. When possible, the first size specification should be one that is
accepted by the implementation; the second specification should be identical to the first.

T3. Check that a size specification cannot be given:

" in a package specification for a type declared in an inner package
specification;

" in a package or task specification, for a type declared in an enclosing package
specification or declarative part;

" in a package body for a type declared in the corresponding package
specification;

" after the occurrence of a body in a declarative part.

T4. Check that a size specification cannot be given after a forcing occurrence for a type (see
IG 13.1 .b/Tl -T7).

T5. Check that a size specification can be given after an occurrence of the type name in an
expression of a pragma (see IG 13.1 .bIT8).

T6. Check that the expression in a size specification must be static and must have an integertype. -' '

T1 1. Check that a size specification cannot be given for a type that has a nonstatic constraint.
In particular, check:

a derived enumeration, integer, fixed point, or floating point type that has a lo
nonstatic range constraint or a nonstatic parent type mark.

an array type (derived or not) that has a nonstatic index constraint.
Implementation Guideline: Include a case where the Index subtype is not static but the discrete
range in the index constraint is static. Include a check that A'RANGE. A'FIRST, and A'LAST is
not allowed when A Is an army type or object, even if A has a static index constraint.

" a derived record or private type that has a nonstatic discriminant constraint.
Implementation Guideline: Include a case where the discriminant value is static but the
discriminant subtype Is not.

N
T12. Check that a size specification cannot be given for an unconstrained array type that has a

nonstatic index subtype.
Implementseon Guide m: Include a check for a derived unconstrained array type.

T13. Check that a size specification cannot be given for an array, record, or derived private type
that has a subcomponent with a nonstatic constraint. In particular, check:

" an array type thtM has a nonstatic component or subcomponent constraint.

" a record type that has a component or subcomponent with a nonstatic
constraint.

" a record type that has a component or subcomponent constraint that depends
on a discrimlnant. "."-" .,

13-22

• .

--- a..

Version 1 (Dec 86) 13.2.a Size Specifications
0

e a derived record or private type that has a subcomponent with a nonstatic
constraint.

06 * a derived constrained or unconstrained array type that has a subcomponent
with a nonstatic constraint. S

Implementation Guideline: Check for the following formn of constraint and component type: scalar type (range
constraint), array type (index constraint), record or private type (discriminant constraint). Note the various
forms of nonstatic constraint checked in T1 1.

Size Specifications for Enumeration Types

T21. Check whether a size specification can be given for an enumeration type and that
operations on values of such a type are not affected by the representation clause. in ..In-.
particular, if a size specification is allowed, check that:

" a similar but not necessarily identical specification can be given for a derived
enumeration type.

" a similar specification can be given for a derived private type whose full
declaration is an enumeration type. %

* the size specification can be given in the visible or private part of a package
for a type declared in the visible part.

Implementation Guideline: In checking that the clause does not affect the specified behavior of the type, check •
that there are no semantic anomalies when the type is used to declare an object, subprogram parameter, array
component, or record component. Check that a value of the type can be used correctly in a relational
expression or with the attributes PRED, SUCC, PO, VAL, IMAGE, and VALUE. Check that all these
operations are performed correctly even when the type Is passed as a generic actual parameter. Check that
implicit representation conversions are performed correctly for derived subprograms.

Implementation Guideline: Repeat the checks for size specifications given in a generic unit. 0

T22. Repeat the checks of T21 for the smallest size appropriate for a signed and for an
unsigned representation. ~.. "4'.

T23. If a size specification can be given for an enumeration type and an enumeration.
representation clause can also be given, repeat the checks of T21 when an enumeration.
representation clause has been given together with a size specification.
Implementation Guideline: The size specification should appear after the enumeration representation clause.

T24. Repeat the checks of T23 for the smallest size appropriate for a signed and for a.
unsigned representation.

T25. Check that a size specification is rejected If it is too small for an enumeration type when ,"
enumeration representation clause is given for the type.

Check that a size specification is rejected If it is too small to represent each value of at.
enumeration type that has been given a user-defined representation.
Implementation Guideline: When an enumeration representation clause is present, the size specification' "

should occur after the enumeration clause.

T26. If a size specification can be given after an enumeration representation clause, check
whether it can also be given before the same clause.

Size Specifications for Integer Types

T31. Check whether a size specification can be given for an integer type and that operations on
values of such a type are not affected by the representation clause. In particular, If a size
specification Is allowed, check that:

13.23 ""
.6"j

13.2.a Size Specifications Version 1 (Dec 86)

" a similar but not necessarily identical specification can be given for a derived
integer type.

" a similar specification can be given for a derived private type whose full
declaration is an Integer type.

" the size specification can be given In the visible or private part of a package
for a type declared in the visible part.

Implementlado, Guideline: In checking that the clause does not affect the specified behavior of the type, check
that there are no semantic anomalies wnnen the type is used to declare an object, subprogram parameter, array
component, or record component. Check that a value of the type can be used correctly in a relational
expression. arithmetic operalion, or with the attributes PRED. SUCC, P08, VAL, IMAGE, and VALUE. Check
that all these operations are performed correctly even when the type is passed as a generic actual parameter.
Check that implicit representation conversions are performed correctly for derived subprograms.
Implementation Guideline: Repeat the checks for size specifications given in a generic unit.

T32. Repeat the checks of T31 for the smallest size appropriate for a signed and for an
unsigned representation.

T35. Check that a size specification is rejected if it is too small for an integer type.

Size Specifications for Floating Point Types

- T4 [Check whether a size specification can be given for a floating point type and that
uperations on values of such a type are not affected by the representation clause. In
partiCular, if a size specification Is allowed, check that:

" a similar but not necessarily identical specification can be given for a derived
floating point type.

" a similar specification can be given for a derived private type whose full
declaration is a floating point type.

" the size specification can be given in the visible or private part of a package C.
for a type declared in the visible part.
, '--? *'i r Guidefire: In checking that the cla.' e dres not affect the specified behavior of the type, check

tmat ihoo,' dre no semantic anomalies when the type is uzed to declare an object, a subprogram parameter, an
array component, or a record component. Check that a value of the type can be used correctly in a relational
expression or an arithmetic expression. Check that all these operations are performed correctly even when the
type is passed as a generic actual parameter. Check that implicit representation conversions are performed
correctly for derived subprograms.
Implementation Guideline: Repeat the checks for size specifications given in a generic unit.

T42. Repeat the checks of T41 for the smallest size appropriate for a signed and for an
unsigned representation.

T45. Check that a size specification is rejectc J if it is too small for a floating point type.

Size Specifications for Fixed Point Types

T51. Check whether a size specification can be given for a fixed point type and that operations
on values of such a type are not affected by the representation clause. In particular, if a
size specification is allowed, check that: -

" a similar but not necessarily identical specification can be given for a derived
fixed point type.

" a similar specification can be given for a derived private type whose full
declaration is a fixed point type.

13-24a."

.% '% - ' .% % "*% % .% ". ..% ,',,, . -.. o"% .'% *°. % . ° "% "., % % . • * • . . .• % , , .

Version 1 (Dec 86) 13.2.a Size Specifications

* the size specification can be given in the visible or private part of a package .9,

for a type declared in the visible part.

Implementation Guideline: In checking that the clause does not affect the specified behavior of the type. check
that there are no semantic anomalies when the type is used to declare an object, a subprogram parameter, an
array component, or a record component. Check that a value of the type can be used correctly in a relational .
or arithmetic expression. Check that all these operations are performed correctly even when the type is passed
as a generic actual perameter. Check that implicit representation conversions are performed correctly for
derived subprograms.
Implementaion Guideline: Repeat the checks for size specifications given in a generic unit.

T52. Repeat the checks of T51 for the smallest size appropriate for a signed and for an
unsigned representation.

T53. If a size specification can be given for a fixed point type and a specification of small can
also be given, repeat the checks of T51 when a small specification has been given
together with a size specification.

T54. Repeat the checks of T53 for the smallest size appropriate for a signed and for an
unsigned representation. I

T55. Check that a size specification is rejected if it is too small for a fixed point type when no
specification of SMALL has been given.

Check that a size specification is rejected if it is too small to represent each value of a fix'ed
point type that has been given a specification of SMALL.

T56. If a size specification can be given after a small specification, check whether it can also be
given before the same size specification.

Size Specifications for Array Types

qu oT61. Check whether a size specification can be given for an array type and that operations on
values of such a type are not affected by the representation clause. In particular, if a size
specification is allowed, check whether:

the specified size can imply that gaps between components are compressed
or eliminated.
Implementation Guideline: Check for arrays with a BOOLEAN component type and a STRING
component (when the string does not occupy an integral number of words).

" the specified size can imply that array components are stored in a smaller
amount of space than would be used for an object declaration having the
component subtype.
Implementation Guideline: Declare a component with an integer, enumeration, array, and p
record subtype.

For each allowed size specification, check that:

" a similar but not necessarily identical specification can be given for a derived
array type.

" a similar specification can be given for a derived private type whose full
declaration is an array type.

" the size specification can be given in the visible or private part of a package
for a type declared In the visible part.

Implementation Guideline: In checking that the clause does not affect the specified behavior of the type, check
that there are no semantic anomalies when the type is used to declare an object, a subprogram parameter, an

,,, array component, or a record component. Check that a value of the type can be used correctly in a relational

13-25
° I ',

'..:

*~ ~ 4? ' p P~.% 9

13.2.a Size Specifications Version 1 (Dec 86)

or logical expression. Check that components can be set and read. Check that all these operations are
performed correctly even when the type is passed as a generic actual parameter and/or a subprogram
parameter.

T62. Repeat the checks of T61 for size specifications given in a generic unit.

T63. Repeat the checks of T61 for a type that has derivable subprograms, and check that any
implicit representation conversions are performed correctly when the derived subprograms
are called. Kr

T64. Repeat the checks of T61 when the component type itself has been given a size
specification.

T65. Repeat the checks of T62 when the component type itself has been given a size
specification.

T66. Repeat the checks of T63 when the component type itself has been given a size
specification.

T67. Check that a size specification is rejected if it is too small for an array type.

Size Specifications for Record Types
"p

Interactions with record representation clauses are tested in IG 13.4/T61.

V I* eck whether a size specification can be given for a record type and that operations on
, 'ues of such a type are not affected by the representation clause. In particular, if a size

spec.;ication is allowed, check whether:

* the specified size can imply that gaps between components are compressed
or eliminated.
Implementation Guideline: Check for records with BOOLEAN components and STRING
components (when the string does not occupy an integral number of words).

* the specified size can imply that array components are stored in a smaller
amount of space than would be used for an object declaration having the
component subtype.

Declare comrnoE "9< -7th nc r, er umeration, array, and record

For each allowed size specification, check that:

• a similar but not necessarily identical specification can be given for a derived
record type.

* a similar specification can be given for a derived private type whose full
declaration is a record type.

• the size specification can be given in the visible or private part of a package
for a type declared in the visible part.

Implementafon Guideline: In checking that the clause does not affect the specified behavior of the type, check
that there are no semantic anomalies when the type is used to declare an object, a subprogram parameter, an
array component, or a record component. Check that a value of the type can be used correctly in a relational ,
expression. Check that components can be set and read. Check that all these operations are performed ,
correctly even when the type is passed as a generic actual parameter and/or subprogram parameter.

T72. Repeat the checks of T71 for size specifications given in a generic unit.

T73. Repeat the checks of T71 for a type that has derivable subprograms, and check that any
implicit representation conversions are performed correctly when the derived subprograms
are called.

13-26

Version 1 (Dec 86) 13.2.a Size Specifications

174. Repeat the checks of T71 when the component type itself has been given a size
specification.

175. Repeat the checks of T72 when a component type itself has been given a size
specification.

176. Repeat the checks of T73 when a component type itself has been given a size
specification. I

177. Check that a size specification is rejected it It is too small for a record type.

Size Specifications for Access Types

T81. Check whether a size specification can be given for an access type and that operations on
values of such a type are not affected by the representation clause. In particular, if a size
specification is allowed, check that:

" a similar but not necessarily identical specification can be given for a derived
access type.

" a similar specification can be given for a derived private type whose full
declaration is an access type.

, the size specification can be given in the visible or private part of a package
for a type declared in the visible part.

Implementation Guideline: In checking that the clause does not affect the specified behavior of the type, check
that there are no semantic anomalies when the type is used to declare an object, a subprogram parameter, an P
array component, or a record component. Check that a value of the type can be used correctly in a relational I.-,

expression. Check that designated objects can be accessed. Check that all these operations are performed
correctly even when the type is passed as a generic actual parameter. Check that implicit representator.

Iconversions are performed correctly for derived subprograms.
Implementation Guideline: Repeat the checks for size specifications given in a generic unit.

T83. If a size specification can be given for an access type and a collection size specification
can also be given, repeat the checks of T81 when both a collection size and a size have
been specified.
Implementation Guideline: The collection size specification should appear before the size specification.

T84. Repeat the checks of T83 for the smallest size appropriate for a signed and to- an
unsigned representation.

T85. Check that a size specification is rejected if it is too small for an access type (for the default
representation). J-

Check that a size specification is rejected it it Is too small to represent each value ot
access type for which a collection size has been specified.
Implementation Guideline: When a collection size has been specified, the size specification should occur aft*
the collection size specification.

T86. If a size specification can be given after a collection size specification, check whether it can
also be given before the same collection size specification.

T87. If a size specification can be given for a derived, unconstrained access type, check that it
can also be given for a derived access type whose parent type is constrained with a
nonstatic Index or discriminant constraint.

13-27

13.2.b Collection Size Specifications Version 1 (Dec 86)

Size Specifications for Task Types

T91. Check whether a size specification can be given for a task type and that operations on
values of such a type are not affected by the representation clause. In particuiar, if a size s

specification is allowed, check that:

" a similar but not necessarily identical specification can be given for a derived
task type.

" a similar specification can be given for a derived private type whose full
declaration is a task type.

" the size specification can be given in the private part of a package for a type Z.
declared in the visible part.

Implementation Guideline: In checking that the clause does not affect the specified behavior of the type, check
that there are no semantic anomalies when the type is used to declare an object, a subprogram parameter, an
array component, or a record component. Check that a value of the type can be used correctly in a relational
expression or entry call. Check that all those operations are performed correctly even when the type is passed
as a generic actual parameter. Check that implicit representation conversions are performed correctly for
oenved subprograms.
Implerretabon Guideline: Repeat the checks for size specifications given in a generic unit.

T99 Chci tona, a size specification is rejected if It is too small for a task type.

13.2.1. C.1lestion Size Specifications

Semantic Ramifications

S1. A collection size specification is not permitted for a derived access type because the
derived type shares its collection with its parent access type (see RM 3.419 and RM 13.2/8). For
this reason. if a collection size Is specified for a parent type, the derived type has the same
collection size, even if the collection size for the parent type occurs after the derivation. For
example:

type T is access STRING;
; Di' is new T;

for T'STORAGZ_SIZE use 32 768;

Since STOHAGESIZE has been specified for parent type T, DT'STORAGESIZE
T'STOR.AGE SIZE =32_768.

s2. If the specified collection size is too small or too large for an implementation to support it,
the implementation can either:

* reject the length clause,

* if too large, raise STORAGEERROR when the collection is allocated,

* if too small, raise STORAGE ERROR when an allocator fails to find sufficient
free space within the collection.

S3. If a collection size is specified, an implementation may be able to represent access values
in fewer bits (as offset pointers). If so, a size specification may be given for an access type that
specifies fewer bits than would usually be needed for an access value. Such a size
specification could only be allowed if the collection size is specified with a static expression.

S4. Only a simple expression is allowed in a length clause. This syntactic restriction has no
consequences of practical Interest since the simple expression must have a numeric type, and

13-28

*~~~~~~~~~~~~~~%~~~~~1 1~ *%~ ~ % ' 4 , ~ ~ ~ ~ 8 -- % - * .4. .. ~,

Version 1 (Dec 86) 13.2.b Collection Size Specifications

any form of expression that has a numeric type and uses only predefined operations will always
be a simple expression (see RM 4.4/2). However, if a relational operator or logical operator is
overloaded to deliver a numeric type, then it is possible to write nonstatic expressions that are
not, syntactically, simpleexpressions:

package PECULIAR in reur T
tyqpe T is now INTEGER:, !.

function "<" (L, R : T) return T; 2

end PECULIAR;

with PECULIAR; use PECULIAR;
procedure P is

type TT is access INTEGER;
for TT'STORAGE SIZE use T' (5) < 3; -- illegal

end P;

The representation clause is Illegal because it is syntactically an expression, not a simple
expression. The expression must be enclosed in parentheses to be a simple expression.
Changes from July 1982
S5. There are no significant changes.

Changes from July 1980
s6. A collection size specification is not allowed for a type derived from an access type. .

S7. The collection size specification also indicates the storage space needed to contain all
objects designated by values of other types derived from the access type, directly or indirectly.
Legality Rules

The following restrictions apply to collection size specifications of the form:
for T'STORAGE SIZE use simple expression; ""

Li. T must denote an access type, but not a derived access type (RM 13.2/8).
L2. T cannot be an expanded name or the attribute T'BASE; it must be a simple narne

(AI-00300; not yet approved).
13. The expression must have an integer type (RM 13.2/8).
L4. A collection size specification can be rejected if an implementation chooses not to sup,,r,

it (AI-00361). -,.
L5. Two collection size specifications cannot be given for the same access type (RM 13.61)
Test Objectives and Design Guidelines

T1. Check that a collection size specification cannot be given for:

* a prefix that is an expanded name;
e the prefix T'BASE; -
e a derived access type or a derived private type whose full declaration is an
access type;

* a name declared by an object declaration having an access type;
e a name declared by a subtype declaration;

13-29

"Ole.

13.2.b Collection Size Specifications Version 1 (Dec 86)

" a type declared by a private type declaration prior to the full declaration of the
type;

" a type declared by an incomplete type declaration prior to its full declaration;

* a generic formal access type.
Implementation Guideline: The size specification should not occur in the generic formal part.

Implementation Guideline: In each case, use a clause that, if possible, would be allowed for the actual type or
for the completely declared type.

T2. Check that two collection size specifications cannot be given for the same type.

T3. Check that a collection size specification cannot be given:

a in a package specification for a type declared in an inner package
specification;

* in a package or task specification, for a type declared in an enclosing package
specification or declarative part;

nt a package body for a type declared in the corresponding package
specification;

- arter the occurrence of a body in a declarative part.

T4. i. r-kk that a collection size specification cannot be given after a forcing occurrence for
!:'. ! e iG 13.1.b/T1-T7).

T3. Check that a collection size specification can be given after an occurrence of the type
name in an expression of a pragma (see IG 13.1 .b/T8).

T1 1. Ch.3cK whether a collection size specification can be given for an access type and that
operations on values of the access type are not affected by the representation clause. In -

particular, if a size specification is allowed, check that a collection size specification can
also be given in the visible or private part of a package for an access type declared in the
visible part.

.on G'x .1e1 ".;: !n checking that the ra c r. rot affect the specified behavior of the type, check
trna, trarr are no semantic anomalies when the access type is used to declare an object or subprogram
pararmter. Check that a value of the type can be used correctly in a relational expression, and that an
allocator -an be avaluated correctly. Check that all these operations are performed correctly even for a derived
access type and for an access type that is passed as a generic actual parameter. Check that allocators work
corrert, when called for a aerived access type.

Check that the expression In a collection size specification need not be static.
Implementation Guideline: Repeat the checks for a collection size specification given in a generic unit.

T12. Check whether a size specification can be given together with a collection size
specification (see IG 13.2.aIT83 and /T84,.

TI 3. If a size specification can be given after a collection size specification, check whether it can
also be given before the same collection size specification (see IG 13.2.a/T86).

T1 4. Check that the expression in a collection size specification must be a simple expression.

Ti 5. If a collection size is too small for holding a single value of the designated type, check
whether the representation clause is rejected (when the expression has a static value) or if
STORAGEERROR is raised when the representation clause is elaborated.

If the collection size Is large enough to hold some values of the designated type, check that
STORAGEERROR Is raised by an allocator when insufficient storage is available.

T1 6. Check that if a collection size is given for a parent type, the derived type has the same
collection size.

13-30

~E ~ 4*~ ~ - -. -'I

Version 1 (Dec 86) 13.2.c Task Storage Size Specifications

Implementaton Guideline: Include a check when the parent type collection size is specified after the derived

type declaration.

13.2.c Task Storage Size Specifications
Semantic Ramifications

Si. If a specified task storage size is larger or smaller than an implementation can support, the .-implementation can either:

reject the length clause (e.g., if the value is static and negative, or if the
specified value is static and greater than some implementation-defined P
maximum value). ,,

if too large, raise STORAGE ERROR when the task's storage is allocated, or
raise NUMERICERROR (or CONSTRAINTERROR; see A1-00387) when the
expression is evaluated.

" if too small, raise STORAGEERROR when a task activation/execution fails to
find sufficient free space within the storage allocated for the task. (Of course, if
STORAGEERROR is raised during the activation of a task, TASKING-
_ERROR will actually be propagated to the activating task; RM 9.317,/3).

S2. RM 13.2/14 shows an intent to allow considerable implementation freedom in deciding
what storage is associated with a storage size specification. In particular, if a storage size
specification Is given for a task type and a dependent task has the same type as its master,
STORAGEERROR could be raised when the dependent task is activated if the dependent
task's storage is allocated from its master's Jorage. On the other hand, the storage associated
with the dependent task could also be allocated independently, in which case, STORAGE-
_ERROR need not be raised.

S3. A task storage size can be specified for a derived task type since the name declared by a
derived task type declaration denotes a type (AI-00422; not yet decided). A storag9 siz;e
specification is allowed for a derived task type even if a storage specification has been given
the parent type (AI-00361).
S4. A task storage size specification cannot be given for the name declared by a single task
declaration, because such a name does not denote a task type (RM 9.1/2). For example:

task T is ... end T; I_7
for T'STORAGESIZE use 1024; -- illegal

The representation clause for T can't be given inside T's specification since T is not visible t.
(RM 8.3/5).

Changes from July 1982

SS. The prefix cannot be the name of a single task unit.

Changes from July 1980

se. A task storage size specification can no longer be given in a task specification.

Legality Rules

The following restrictions apply to task storage size specifications of the form:

%. for T'STORAGE SIZE use simple expression;

13.31

%"%

;' . " " " .'. " ". " ". . ." " " '.. , ,' " , . ," " ," "' .' ,,A. 3

13.2.c Task Storage Size Specifications Version 1 (Dec 86)

L1. T must denote a task type (RM 13.2/10).

L2. T cannot be an expanded name or the attribute T'BASE; it must be a simple name
(AI-00300; not yet approved).

L3. The expression must have an Integer type (RM 13.2/10).

L4. A task storage size specification can be rejected if an implementation chooses not to
support it (AI-00361).

L5. Two task storage size specifications cannot be given for the same task type (RM 13.6/1).
L6. A storage size specification for T cannot be given inside the specification for T (T is not yet

visible; RM 8.3/5).

Test Objectives and Design Guidelines
i.5'

Ti. Check that a task storage size specification cannot be given for:

" a prefix that is an expanded name;

" the prefix T'BASE; .
a name declared by an object declaration having an access type;
a Itask declared by a single task declaration;

a a name declared by a subtype declaration;
a a tjpe declared by a private type declaration prior to the full declaration of thetype;-

* a type declared by an Incomplete type declaration prior to Its full declaration;

* a generic formal type. ... -

Implementation Guideline: The size specification should not occur in the generic formal part.

* inside a specification for the task type. %

ImolemertatOn Guideline: In each case, use a clause that. if possible, would be allowed for the actual type or
'of -' l,3tay declared type.

T2. C, heck that two task storage size specifications cannot be given for the same type.
T3. Check that a task storage size specification cannot be given:

" in a package specification for a type declared in an inner package
specification;

" in a package or task specification, for a type declared in an enclosing package
specification or declarative part;

" in a package body for a type declared in the corresponding package
specification;

" after the occurrence of a body in a declarative part.

T4. Check that a task storage size specification cannot be given after a forcing occurrence for
type T (see IG 13.1.b/T1-T7). ,

T5. Check that a task storage size specification can be given after an occurrence of the type
name in an expression of a pragma (see IG 13.1.b/T8).

Ti 1. Check whether a task storage size specification can be given for a task type and that S

13-32 L,

%

Version 1 (Dec 86) 13.2.d Small Specifications

operations on values of the task type are not affected by the representation clause. In
particular, if a task storage size specification Is allowed, check that a task storage size
specification can also be given in the visible or private part of a package for a task type
declared in the visible part.
Implementaeion Guideline: In checking that the clause does not affect the specified behavior of the type. check
that there are no semantic anomalies when the access type is used to declare an object or subprogram
parameter. Check that an entry call Is accepted, and that storage within the task is allocated correctly. Check
that all these operations are performed correctly even for a derved task type and for a task type that is passed
as a generic actual parameter.

Check that the expression in a task storage size specification need not be static.

Check whether a different storage size can be specified for a derived task type.
Ti 2. Check whether a size specification can be given together with a task sturage size

specification.
T1 4. Check that the expression in a task storage size specification must be a simple expression.
Ti 5. If a specified task storage size is too small for any activation of the designated task, check

whether the representation clause is rejected (when the expression has a static value) or if
STORAGEERROR is raised when the task is activated and an attempt is made to
allocate local storage for the task. %

Check that STORAGEERROR is raised within the task when the specified amougt ;i
storage is found to be Insufficient after the task has been successfully activated.
Check whether storage for a dependent task is included in the space associated with a
task type's storage size specification.
Check whether storage for a collection is included in the space associated with a ta-
type's storage size specification.

13.2.d Small Specifications
Semantic Ramifications

Si. Usually the expression in a small specification will have the type universalreal. In this
case, the value of small is specified exactly. If the expression has a non-universal type, ther itc.
value might not be a model number, and even though the expression is a static expression. Z..
implementation is allowed to choose any value within the model interval as the value of small.
Of course, since the expression is a static expression, it is easy for the implementation to
evaluate it exactly, but the RM does not, strictly speaking, require exact evaluation in this ca&.1-. Z
s2. The specification of the range and SMALL of a fixed point type together determine the
minimum number of bits needed to represent the model numbers of the type. A size
specification and a small specification can be given for a fixed point type in either order. If the
small specification occurs first, an Implementation can choose a base type that has a particular
size, e.g., an implementation might choose a 32-bit base type even though 16 bits would suffice.
If a size specification occurs later that specifies 16 bits, the Implementation could reject the size
specification as being Inconsistent with the selected base type. Similarly, if a size specification
is given first (e.g., suppose 32 is specified), an Implementation is still free to choose a base type
that has a smaller number of bits. If it chooses too small a size, a later small clause (that
requires a 32-bit representation) could be rejected.
S3. On the other hand, an implementation could defer the choice of a base type until there is a
forcing occurrence for the type or until a representation must be chosen, e.g., at the end of the
package specification or declarative part in which the type is declared. At that point, the

13-33

popp

WY,. , V, * ;,,.,. , ',S'' .J. tA ,,' ,.*'.',.. ' ,(._r w - - -. . .-...-. ' '-', r '" " ' " +;'' " 0-+ ' .4 ' '+i t " " / .,* % *' - ''' "" ' " ' ''- " " f ' J '''""'+'

13.2.d Small Specifications Version 1 (Dec 86)

implementation could take into account any size and small specifications that have been given
(including specifications for derived types; see below), and could determine if it is possible to
choose a base type that satisfies all the requirements. The RM does not require such an ,"
approach. An implementation is free to choose a base type as soon as it finds it convenient to
do so, and then reject later representation clauses that are inconsistent with this choice of base
type. However, fixed point programmers are likely to want to specify both the size and small for
a fixed point type, so implementations should choose strategies that allow both aspects of the
type to be conveniently specified.

S4. A representation clause for a derived fixed point type is only allowed if the model numbers
for the specified value of SMALL are representable values of the type; in addition, the value
specified for SMALL cannot be greater than the delta of the type. For example:

type F1 is delta 1.0 range -15.0 .. 15.0; -- Fl'SMALL = 1.0
type DFI is now F1 delta 4.0;
for DF1'SMALL use ... ;

In deciding whether the representation clause is legal or not, we must take into account the
follcwing rules:

'.M 3.4/4 says the set of values of a derived type is a copy of the set of values
&hi the parent type. "

0 14 3.5.6/3 says an implementation of a real type must include the model
r 4,mbers of the type and represent them exactly.

9 -tM 13.2/12 says the specification of small determines the value of small for the
base type (see AI-00099; not yet decided).

Since the model numbers must be representable values of the type, and since the values of a
derivad type are determined by the parent type, no representation clause is allowed for a
derived fixed point type unless the model numbers determined by the clause are representable
values. With respect to the example, the representation clause is illegal if the model numbers
for DF1 are not included In the set of model numbers for Fl. What are the model numbers for

s5. rhe wcdel numbers for F1 are the model numbers of its base type (since F1 is a subtype
that does not define a new set of model numbers; see RM 3.5.9/9 and RM 3.5.9/14; also IG
3.5.9!S). The model numbers for Fl's base type Include at least the values -15.0, -14.0.
14.0, 15.0; these are exactly the model numbers for F! if the base type has a mantissa length of
4. The set of values for the base type includes an additional negative number, -16.0, if F1 is
represented in twos-complement notation.

s6. Now suppose that DFI 'SMALL is specified to be 4.0. The set of values of type DF1 'BASE
is the same as the set of values for F1'BASE, but the model numbers for DF1 can have a
reduced mantissa length of 2, so the smallest model number is -3 * DF1 'SMALL, or -12, and the
set of model numbers is -12.0, -8.0, -4.0, 0.0, 4.0, 8.0, and 12.0. Since this set of model
numbers is contained in the set of values for DF1, such a value of DF1 'SMALL is allowed.

S7. Now suppose that DFI'SMALL is specified to be 3.0. The mantissa for DF1 in this case
must be at least 3; a mantissa value of 2 would Imply that the largest model number is 2#11 #
DFI'SMALL, I.e., 9.0, and the difference between 9.0 and the largest value belonging to
subtype DF1 is 15.0 - 9.0 - 6.0. Since 6.0 is greater than the specified value of SMALL, a
mantissa length of 2 is insufficient to represent the set of model numbers required for OF1 (RM
3.5.9/6).

sa. A mantissa length of 3 implies that the largest model number is 2#111# DFI'SMALL - 4. -*
1383

'.%

13-34.'

; .;,,::~~~~~~..: :....:..:..-. , ,

Version 1 (Doc 86) 13.2.d Small Specifications

21.0, and so the set of model numbers Is -21.0, -18.0, ..., 18.0, 21.0. If the chosen base type for
the parent type Includes these values, the representation clause Is allowed. If, on the other
hand, the parent type only has a mantissa length of 4, the parent type only includes values in K

the range -16.0 to 15.0. Therefore, 21.0 Is not a representable value and the representation r
clause is illegal. i

S9. If the representation clause for DFI'SMALL specifies the value 0.1, then the mantissa of %

DF1 must be 8 and the largest model number for DF1 will be 2#1111_1111# * 0.1 = 25.5. (A
mantissa length of 7 would not be allowed because then the largest model number would be
127 * 0.1, which is insufficiently close to 15.0.) A specification of 0.1 will be allowed if the set of
values for Fl 's base type includes the values -25.5, -25.4 ..., 25.4, 25.5. If these numbers are
not represented exactly in Fl's value set, the representation clause for DF1 must be r-..;cted.
Assuming that no representation clause is given for F1, Fl's base type could bi such that
FI'BASE'SMALL is 1.0. In this case, the value 0.1, for example, is not in the set of values for
F1, and hence, is not in the set of values for DFI, so DF1'SMALL could nct be set to 0. 1. On
the other hand, Fl's base type might be chosen so that F1'BASE'SMALL is 0.1, in which case,
DF1 'SMALL could be specified to be 0.1.

sio. Since choice of the base type affects the legality of a small specification for DF1, and since
the representation clause for DF1 is not a forcing occurrence for the parent type, F1, the
following sequence of declarations Is allowed:

type V1 is delta 1.0 range -15.0 .. 15.0; -- Fl'SMALL - 1.0
type DF1 is new F1 delta 4.0;
for DF1'SMALL use 2.0/3.0;
for V1' SMALL use 3.0/9.0;

An implementation has several options at this point. If it is to accept both representn '
clauses, then Fl'BASE'SMALL must be some value that allows both 2/3 and 4i9 ', -'

represented exactly. The largest such value is 2/9, which is the least common multiple ot 2,3
and 4/9. But there is no requirement for an Implementation to choose such a value. The valuv,
chosen for the least significant bit of F1 'BASE can be determined solely by the range giver a
F1 and the representation clause given for F1. If the implementation chooses to accept t'"
clause for F1 'SMALL, and also chooses Fl's least significant bit to be equal to 4/9, then th.,
representation clause for DF1 cannot be accepted. Since me clause for F1 occurs after the
clause for DF1, it may prove awkward to reject the clause for DF1 after it has been proc, - C!'.
Since acceptance of representation clauses is Implementaton dependent (AI-003861
implementation is free to decide the default representation of FI when DF1 is declared or v. ,
DF1 'SMALL is speciflea, and then, based on that choice, to reject the specification for F 1.

Sl 1. A more likely use of a derived fixed point type Is in a context where the parent
representation has already been determined (e.g., the parent type is declared in some lit
package). In this case, it is easy to decide whether a representation clause for the derive.d tyo. .
can be accepted.

Changes from July 1982

S12. It is stated explicitly that the prefix of the attribute can denote a first named subtype

Changes from July 1980

S13. There are no significant changes.
Legality Rules

The following restrictions apply to small specifications of the form:

I Wx for T'SMALL use simple expression;

13-35

13.2.d Small Specifications Version 1 (Dec 86)

L. T must denote a fixed point type or first named subtype (RM 13.2/12).

L2. T cannot be an expanded name or the attribute T'BASE; it must be a simple name
(Ai-00300; not yet approved).

L3. The expression must be static and must have a real type (RM 13.2/12).

L4. The value of the expression must not be greater than T'DELTA (RM 13.2/12).

L5. A small specification can be rejected if an implementation chooses not to support it
(AI-00361).

L6. Two small specifications cannot be given for the same fixed point type (RM 13.6/1).

Test Objectives and Design Guidelines

T1. Check that a small specification cannot be given for:

" a prefix that Is an expanded name;

* the prefix T'BASE;

" a name declared by an object declaration;

" a name declared by a subtype declaration;

" a type declared by a private type declaration prior to the full declaration of the
type;

" a type declared by an incomplete type declaration prior to its full declaration;

" a generic formal fixed point type.
Implementation Guine: The small specification should not occur in the generic formal padt..

4, mplementation Guideline: In each case, use a clause that, If possible, would be allowed for the actual type or
for the comletely declared type.

T2. Check that two small specifications cannot be given for the same type.

T3. Check that a small specification cannot be given:

" in a package specification for a type declared in an inner package
specification;

" in a package or task specification, for a type declared in an enclosing package
specification or declarative part;

" in a package body for a type declared in the corresponding package
specification;

" after the occurrence of a body in a declarative part.

T4. Check that a small specification cannot be given after a forcing occurrence for a type (see
IG 13.1.b/T1 -T7).

T5. Check that a small specification can be given after an occurrence of the type name in an
expression of a pragma (see IG 13.1 .b/T8). ,

T6. Check that the expression in a small specification must be static and must have a real
type.

T7. Check that a small specification cannot be given for a derived fixed point type if the model
numbers of the derived type are not included in the model numbers of the parent base
type. ,.-' ",

133

13-36 ''

Version 1 (Dec 86) 13.3 Enumeration Representation Clauses
p

Implementation Guideline: Include checks where a small specification is given for the parent type. and the
small specification for the parent type occurs both before and after the derived typo declaration, and before and
after the small specification for the derived type.

T1 1. Check whether a small specification can be given for a fixed point type and that arithmetic
operations for the type are performed correctly.

Check whether a small specification can be given for a derived fixed point type.

T12. Check whether a size and small specification can both be given for a fixed point type (see
IG 13.2.a/T53).

Ti 3. If a small specification can be given for a fixed point type, check that it can be given in the
visible or private part of a package for a type declared in the visible part. -,

13.3 Enumeration Representation Clauses
Semantic Ramifications I

Si. The results produced by the POS and VAL attributes are not affected by an enumeration
representation clause. For example: %

type ENUN is (A, B, C); .

for ENUM use (1, 2, 3);

With or without the representation clause, ENUM'POS(A) - 0 and ENUM'VAL(1) = B. V

S2. The aggregate used in an enumeration representation clause has no corresponding type
declaration. No ambiguity exists even If an array type is visible that has a similar declaration.
For example:

type ENUM is (A, 3, C);
type ARRl is array (NUN) of INTEGER;type ARR2 is array (ENUM) of INTEGER;e i..

for ENUK use (1, 2, 3); -- unambiguous aggregate.:

S3. The requirement that the integer codes satisfy the predefined ordering relation for the type a-
means that a code associated with a particular enumeration literal must be less than the codeI
associated with another literal If and only If the first literal is less than the second, using the
predefined "<", operation. For example, the representation clause for type ENUM could ha\, 'o

been written as: a-

for SNUM use (C => 3, A -> 1, 3 -> 2)

S4. The requirement that every choice in the representation aggregate is not redundant. F.:,
example, consider:

type SWUM is (A);
type ARR is array (ENUM) of INTEGER;
for SHNM use (ARR'RANGE -> 1); -- illegal

The choice, ARR'RANGE, is nonstatic because the prefix is not a scalar type (RM 4.9/8).

S5. Within a generic unit, It is not possible to give a representation clause for a type derived
from a generic formal discrete type since the actual type need not even be an enumeration type.
It is possible to give an enumeration type representation clause for a derived type whose parent
type occurs In a generic instantation, although an Implementation may decide not to allow such
clauses:

3. p

13-37

1.1 . j.4 . - ". - "i -. '.", . .'. , -. ...• @. . . -,,' , , * - % -. .P % %-.. .'% • - - . % %. -. ". I

13.3 Enumeration Representation Clauses Version 1 (Dec 86)

generic
type T in (<>); : '

package GP is ,

type OT is new T;
end GP;

type IDMi is (A, 3, C);

package INST is new GP (INUM);

type D KNUN is new INST.DT; -- is an enumeration type;
for D I-IUM use (5, 10, 15);

The enumeration representation clause is allowed because INST.DT is an enumeration type
with three enumeration literals (see AI-00398).

s6. An enumeration representation clause can only be given for a derived enumeration type
whether or not a constraint applies to the parent type (AI-00422; not yet decided):

type INti is (A, 1, C, D):
type D is new IINUM;
type D2 is new INUM range A..C;
type D3 is now IlIUM range A..D:

An enumeration representation clause can be given for types D2 and D3. Such a clause must
give a representation for each value of the parent (type (i.e., for each value of D2'BASE and
D3'BASE; see AI-00422; not yet decided). ',

Changes from July 1982

S7. All the choices given In the aggregate of an enumeration representation clause must be
static.

Changes from July 1980

s8 A simple name of an enumeration type is required in the representation clause; an
expanded name is no longer allowed.

sq. The integer codes specified for the enumeration type must satisfy the predefined ordering
relation for the type (not necessarily a user-defined ordering relation).

Legality Rules

Li. The type named in an enumeration representation clause must denote an enumeration
type (RM 13.3/1 and RM 13.1/3).

L2. The aggregate of an enumeration representation clause must be written as a one-
dimensional array aggregate where the index subtype is the enumeration type and the
component type Is universalInteger (RM 13.3/3).

3. Integer codes must be specified for each enumeration literal of the type (RM 13.3/4).

L4. Each enumeration literal must be given a distinct Integer code (RM 13.34).

L5. Each component value and choice given in the aggregate must be static (RM 13.3/4). ..'

L6. The un/versaLinteger codes specified for the enumeration type must satisfy the predefined
ordering relation of the type (RM 13.3/4), I.e., the code given for one literal must be less
than the code given for another literal if and only If the first literal is less than the second
using the predefined - <- operation for the type. .

1 -

13-38 .

- 9 N R1~UfE -. MW WIK WWX W

Version 1 (Dec 86) 13.3 Enumeration Representation Clauses

L7. A forcing occurrence for an enumeration type is not allowed in the aggregate of a
representation clause for the type (AI-00371).

La. An enumeration representation clause is not allowed for a derived enumeration type if the
parent type has derivable subprograms (RM 13.1/3).

Test Objectives and Design Guidelines

Ti. Check that an enumeration representation clause cannot be given for:

* an expanded name that denotes an enumeration type;

" a name declared by an object declaration;

" a name declared by a subtype declaration;

" a type declared by a private type declaration prior to the full declaration of the
type;

" an incomplete type prior to the full declaration of the type;

" a generic formal discrete type;

" a type that is not an enumeration type.

Implementation Guideline: In each case, use a clause that, if possible, would be allowed for the actual type or
for the completely declared type.

*T2. Check that two enumeration representation clauses cannot be given for the same type.
Implementation Guideline: The two clauses should specify identical roprosentations. %

T3. Check that an enumeration representation clause cannot be given: %

,in a package specification for a type declared in an inner package
specification;

* in a package or task specification, for a type declared in an enclosing package
0 specification or declarative part;

, in a package body for a type declared in the corresponding package
specification;

e after the occurrence of a body in a declarative part.

T4. Check that an enumeration representation clause cannot be given after a forcing -
occurrence for the type (see IG 13.1 .b/T1 .17).

TS. Check that if an enumeration representation clause can be given, it can be given after an
occurrence of the type name in an expression of a pragma (see IG 13.1 .biT8).

T6. Check that the name of the enumeration type (or a subtype of the enumeration type)
cannot appear as a choice in the aggregate or In one of the expressions.
Implementtion Guideline: The name should be used in an attribute (e.g.. 'VAL) that delivers a value of the ,
required type.

T1 1. Check that an enumeration representation clause cannot be given for a derived
enumeration type if the derived type definition imposes a constraint or if the parent type
has derivable subprograms.
Implement.tion Guideline: Write separate tests for these two cao"

T12. Check that Integer codes must be given for each enumeration literal of the type.
Implementation Guideline: Check that neither too many nor too few codes can be given.

S.s

13-39

o r e d a ~ *

13.4 Record Representation Clauses Version 1 (Dec 86)

Check that nonstatic integer codes are not allowed.
Implementalion Guideline: Use nonstatic universalinteger expressions (see IG 4.10/S for ways of generating
such expressions).

Check that a choice cannot be nonstatic.

T1 3. Check that the same Integer code cannot be given for two enumeration literals.

Check that the integer codes must obey the predefined ordering relation for the type.
Implementation Guideline: Include some aggregates in which choices do not appear in the order defined for
the type, and for which an ordering operator has n explicitly declared.

Check that a choice in the aggregate must be a value of the enumeration type.

TI 4. Check whether an enumeration representation clause can be given for an enumeration
type. If so, check that such types can be used correctly in ordering relations, in indexing
arrays, in attributes (see IG 3.5.5/T2), and In generic instantlations.
Implementation Guideline: Include cases where the integer codes have negative values and in which they do
not have consecutve integer values.
Implementation Gukdline: Combine this check with various forms of aggregate: all choices named (when
some enumeration literale are character literals); some choices named; no choices named.

Check that an enumeration representation clause can be given in the visible or private part
of a package for a type declared in the visible part.
Im iementation Guideline: Repeat the checks for enumeration representation clauses given in a generic unit.

TI 5 Repeat T1 4 for a derived enumeration type, including when the parent type has an
erumeration representation clause given.

T21 Check that the aggregate in an enumeration representation clause cannot be considered
ambiguous.
Impiementabon Guideline: Declare more than one one-dimensional array type that has the enumeration type
as its index subtype.

T22. Check whether an enumeration representation clause can be given for a type derived from
a type declared in a genedc instantlatlon.

13.4 Record Representation Clauses
Semantic Ramifications

si. Although the alignment specified in an alignment clause must be a static expression, an
address clause might not specify an address consistent with the required alignment:

typo RZC is
record

C : lITK GZR;
end record;

for RIC useAii
record

at mod 2; -- even address alignment
end record;

O J : RZC"
for O3J use at 1:

The specified address is Inconsistent with the specified alignment. In this case, since the
address is given with a static expression, the inconsistency can be detected at compile time and
the address clause can be rejected (since an implementation can place additional restrictions on -" :

13-40

Version 1 (Dec 86) 13.4 Record Representation Clauses

representation clauses; A1-00361). But the expression in an address clause need not be static.
If it is not static, an implementation cannot detect the inconsistency until run time. An
implementation could, of course, require that addresses be specified with static expressions (in
which case there is no problem with rejecting the address clause at compile time), or an
implementation could specify that any such Inconsistency makes execution of the program
erroneous, and PROGRAMERROR will be raised (A1-00337; not yet decided).

S2. The simple expression after at mod must have an integer type and means that the address
modulo the expression must be zero. If SYSTEM.ADDRESS Is not an Integer type, then an
implementation can refuse to support mod clauses. Equally well, It can give a definition that is
implementation dependent.

S3. The example given In RM 13.4/9 for the record type PROGRAM STATUS WORD
illustrates several subtle points. First of all, the record type has components that are arrays of
BOOLEAN, e.g., SYSTEMMASK. However, the record representation clause provides space
only for the BOOLEAN components of these arrays, and not for any associated array
descriptors (dope vectors). Actually, given only the record representation clause, an
implementation could place the array descriptors after the specified components; it is the
subsequent size specification for the record type that eliminates any space for the array
descriptors. Hence, it an implementation accepts both the record representation clause and the
size specification, then it may have to provide separate array descriptors when these arra,
components are passed as actual parameters to subprogram formal array parameters. Fo"
example:

type A is array (NATURAL range <>) of BOOLEAN;

type R is "p
record

Al A (1..8); -- static constraints for Al
A2 A (4..11);

end record;

for R use -- assume STORAGE_UNIT - 8
record

Al at 0 range 0..7; -- OK since constraints of Al and
A2 at I range 0..7; -- A2 are static

end record;

for R'SIZZ use 16;

procedure P (Xl in out A; X2 in out A);

P (R.Al, RI.A2);

Since P is declared to have unconstrained formal array parameters, the actual bounds of R1 .A1
and RI .A2 must be passed (presumably in associated array descriptors) to the formal
parameters Xl and X2 in the call to P. An Implementation could either allow the array
descriptors to be separate from the array components (which usually works), or it could
construct copies of the actual parameters (but with array descriptors and components A
combined) and could pass the copies instead. On the other hand, the length clause could be
rejected because there Is no space for descriptors.

13-41 i
N*0

. ,, __ ,, p~l,, 1!, ,,, . .• , . . .% . .. % %. . ,.- ,,. , ... % ... ,.% .,. o ,....o, 'P J,, , J,, P '#', J, ', :"i
4 ' ' / '

'4, 4 *#' "t' "'
'' ' %

, .,...,, . ,,,p #_ ,, . '.. .""J

13.4 Record Representation Clauses Version 1 (Dec 86) ri

s4. A second point illustrated by the PROGRAMSTATUSWORD example is that the size
specified for a record component need only be large enough to hold the values possible for that
component's subtype. Thus, the PROTECTIONKEY component is declared as INTEGER
range 0..3 and is placed In a field of size 2. This size is less than INTEGER'SIZE, but is
adequate to represent the values 0 through 3. An implementation is also permitted to use
biased representations for record components, just as with size specifications for types (see IG
13.2.a/S). For example:

type R in
record

I : INTEGER range 7..10;
end record;

for R use
record

I at 0 range 0.. 1: -- biased representation, where
-- logical 7 <-> physical 0 etc.

end record;

It an implementation accepts such a record representation clause, it must supply the
appropriate implicit representation conversion when such a component is accessed, assigned,
or p~ssed as an actual parameter. Of course, scalar types are always passed by copy (RM
6.216) and any other type can always be passed by copy (RM 6.2/7).
t,.. A tOird point illustrated by the PROGRAMSTATUSWORD example is that the alignment
of a record component of type T need not be the same as for a separate variable of type T. For
example, the INTEGER component CC is bit-aligned, whereas many implementations would
always align separate INTEGER variables on halfword or word boundaries (depending on
INTEGER'SIZE). Again, if an implementation accepts such a record representation clause, it
must supply the appropriate implicit representation conversion when such a component is
accessed, assigned, or passed as an actual parameter. The component can be passed by copy
(RM 6 2/7).

s6. A component clause is Illegal for a record component if any of the constraints on the
component or on its subcomponents are nonstatic. However, as discussed previously, a
component clause can specify a smaller size than basetype'SIZE for a statically constrained
component provided that the size is sufficient to uniquely represent each value of the
component's subtype and that the Implementation supports the required representation. If not,
the program must be rejected. For example:

SS constant INTEGER range 0. 15 := 7; -- SS is static
SD: INTEGER range 0..255 :- 7; -- SD is not static
DO constant INTEGER range 0.. SD 3; -- DO is not static

type R is
record

11 : INTEGER range 0..SS, -- static subtype
-- minimum size is 3

12 : INTEGER range O..SD; -- nonstatic range,
-- component clause illegal

13 : INTEGER range 0..DO: -- nonstatic range,
-- component clause illegal

end record;

T% --

13-42

I).%
- '- .'. ,'.'.' .',"'," "."-." ."-.".."...'. - .-. ' 5 ' - - - .- . -i

G. . . = . .% % .. ' ".'-'--.'- .-=r-. -.. '

Version 1 (Dec 86) 13.4 Record Representation Clauses

generic :
type T is range <>; -- nonstatic subtype

package PKG in
L : constant T := T'FIRST; nonstatic value0

type DT is new T; -- nonstatic subtype
type ATI is array (T range <>) of INTEGER; -- nonstatic index %,

- - sutp,.,

subyp
type AZT is array (1.. 8) of T; -- nonstatic component type

type RT is
record

T : T; -nonstatic subtype
DT : DT; -- nonstatic subtype

ATIl : ATI (1..8); -- nonstatic index subtype
AITI : AZT; -- nonstatic component ,
T2 : T range 0..3; -- nonstatic T

end record; J-%

for RT use
record

-- component clauses for Ti, T2, DT1, ATe1, and AIT1
-- are illegal even if PKG is never instantiated

end record;
end PKG;

Similar requirements exist for size specifications (see IG 13.2.a/S). -.5

S7. An implementation can provide components in a record in addition to those explicitly
declared in the record type definition. An extra component can be used, for example, to give
the offset or bounds of another component, or to contain information that would otherwise be
computed repeatedly at run time. An implementation is permitted to place restrictions on what
record representation clauses it will support when such extra components are present. An
implementation is permitted to create names for these extra components. These created
names can be used only within the record representation clause. A created name must have
the syntactic form of a name, e.g., a simple name or a machine-dependent attribute. Each
name must be unique within the set of created and explicitly declared names for a particular ,
record type, i.e., the implementation must create the names in a way that avoids conflicts. For
example:

N1 : constant := ... ;

N2 : constant :: ... ;

type R is -.

record

Sl : STRING (1.. Ni); ,

S2 : STRING (1 .. 112);
end record:

-- assuming that: SYSTEM.STORAGZE'NIT 8
-- INTEGER' SIZE - 16

-- CEARACTR' SZE - 8

for R use
record

13-43
/ .o S.

13.4 Record Representation Clauses Version 1 (Dec 86)

S1'LZNGTR at 0 range 0..15; _ h

S1'OFFSET at 2 range 0 .15;
S2'LENGTE at 4 range 0..15;
S2'OFFSET at 6 range 0..15;
81 at 8 range 0 .. Nl*CBARACTER'SIZE-1;
S2 at 8 + NI*CRARACTER' SIZE/SYSTEM. STORAGEUNIT

range 0 .. N2*CBARACTER'SIZE-1;
end record;

ss. A record type representation clause can be given for a record type, or for a type derived
from a record type (as long as there are no derivable subprograms for the parent type; RM
13.1/3) (see AI-00422; not yet decided). If a constraint is given for the parent type, the
representation clause nonetheless applies to the parent type, and the representation clause can
(but need not) mention componnents that do not exist in the derived subtype: For example:

type REC (D POSITIVE) is
record

B BOOLEAN;
case D is

when 1..10 =>
C1 : INTEGER range 0. -7;

when others =>
C2 : STRING(I .50);

end case;
end record;

type DREC is new RZC(1);

A record representation clause can be given for D_REC, and the clause can even give a
position for component C2 (AI-00422; not yet decided).

sg. The range in a component clause cannot be a range attribute because such an attribute is
not static (its prefix cannot be a scalar type). Therefore, the only form of range allowed in a
f- imponent clause has the fo.rm L.R.

Changes from July 1982

Si0. The bounds of a range In a record representation clause need not have the same integer
ype.
si . At most one component clause is allowed for each component of a record type.

Changes from July 1980

S12. The type name in a record representation clause must be a simple name; an expanded
name or T'BASE Is no longer allowed.

Legality Rules

L1. The type mark In a record representation clause must denote a record type (RM 13.1/3).
(It cannot denote a derived record type if the parent subtype is constrained.)

L2. The expression in an alignment clause must be static and have an Integer type (RM
13.4/3).

L3 The expressions in a component clause must be static. Each expression must have an
integer type, but not necessarily the same integer type (RM 13.4/3).

L4. The range in a component clause cannot have the form of a range attribute (RM 13.4/3).

13-44
-I 'I-,

-. 5.. ".p:::z ''' ::::L:. z '. , , ,"' .. ' €". #i .""
"

.'"

Version 1 (Dec 86) 13.4 Record Representation Clauses

L5. An implementation may place restrictions on allowable values of the expression in an
alignment clause (RM 13.4/4). 0"

L6. At most one component clause is allowed for each component of the record type (RM
13.4/6).

L7. A component clause is only allowed for a component if every constraint on this component
or on any of its subcomponents is static (RM 13.4/7 and AI-001 32).

L8. Each component clause must al!ow 'or enough storage space to represent every value of
the component's subtype (RM 13.4/7).

L9. Storage places within a record must not overlap except that components belonging to
different variants may occupy the same space (RM 13.4/7).

L10. A record representation clause is not allowed for a derived record type if the parent type
has derivable subprograms (RM 13.1/3).

L11. A record representation clause must be rejected if it violates any implementation-defined
restrictions with respect to:

* the allowable c: , records (as specified in an alignment
clause),

* components overlapping storage bounoaries,

" the alignment of a component within the record,

e the specified size for a component being less than the implementation's
default size for that component, and the implementation not supporting the
smaller size (e.g., when a biased representation would be required).

Test Objectives and Design Guidelines

T1. Check that a record representation clause cannot be given for:

" an expanded name that denotes a record type;

" a name declared by an object declaration:

• a name declared by a subtype declaration;

" a type declared by a private type declaration prior to the full declaration of the
type;

" an incomplete type prior to the full declaration of the type;

" a type having a subcomponent of an incompletely declared private type, prior
to the complete declaration of the composite type;

" a type that is not an enumeration type.

Implementation Guideline: In each case, use a clause that, if possible, would be allowed for the actual type or
for the completely declared type.

T2. Check that two record representation clauses cannot be given for the same type.
Implementaton Guideline: The two clauses should specify identical representations.

T3. Check that a record representation clause cannot be given:

In a package specification for a type declared In an inner package
specification;

% %'%% % %

WKW7 VYWVIII

13.4 Record Representation Clauses Version 1 (Dec 86)

, in a package or task specification, for a type declared in an enclosing package
specification or a declarative part;

" in a package body for a type declared in the corresponding package
specification;

" after the occurrence of a body in a declarative part.

T4. Check that a record representation clause cannot be given after a forcing occurrence for
the type (see IG 13.1 .T1 -T7).

T5. Check that a record represintatlon clause can be given after an occurrence of the type
name in an expression of a p:ragma (see 10 13.1 .b/T8).

T6. Check that an expression in an alignment clause or a component clause must be static and
must have an integer type.

17. Check that a component clause cannot be given more than once for a particular
component, or for a nonexistent component.

TS. Check that a component clause is not allowed for a component that has a nonstatic
constraint or a subcomponent with a nonstatic constraint. In particular, check the following
forms of constraint:

* a range constraint in which one of the expressions is not static.
Implementation Guideline: Check for ranges having enumeration, integer, floating point, and
fixed point types.

* a static range constraint imposed on a nonstatic scalar subtype.

e an Index constraint for a component having an array type when:
F

" the index constraint contains a nonstatic expression.
Implementation Guideline: Include a case where the index constraint uses a
discriminant of the enclosing record.

" the index constraint only has static expressions, but an index subtype is
nonstatic.

" the index constraint is static but a subcomponent of the array has a
nonstatic constraint.

* a discriminant constraint for a component having a record or private type
when:

* the discriminant constraint contains a nonstatic expression.
Implemention Guideline: Include a case where the constraint uses a discrminant of
the enclosing recod type. .

9 the discriminant constraint only has static expressions, but a
discriminant subtype is nonstatic.

@ the discriminant constraint is static but a subcomponent has a nonstatic
constraint.

* the component Is unconstrained but there is a nonstatic discriminant
' subtype.

T9. Check that different components cannot be allocated overlapping storage space if they do
* not belong to different variants.

13-46

a, a * * ,._,:..'*,.. _ ,.,,..,..'-'.-.._,.-.'.,-,..".,

Version 1 (Dec 86) 13.5 Address Clauses

T1 0. Check that a record representation clause cannot be given for a derived record type with a
constraint or whose parent type has derivable subprograms.

Check that a record representation clause cannot be given for the discriminants of a
derived private type. I

T1 1. Check that a range attribute cannot be used in a component clause.

T21. For a record component having an enumeration subtype, check whether a component
clause can be given. If so, check whether the clause can specify less than the usual
amount of space allocated to a variable having that subtype.

T22. For a record component having an integer subtype, check whether a component clause
can be given. If so, check whether the clause can specify less than the usual amount of
space allocated to a variable having that subtype.
Implementation Guideline: Check for signed, unsigned, and biased representations.

T23. For a record component having a floating point subtype with a digits constraint, check
whether a component clause can be given. If so, check whether the clause can specify
less than the usual amount of space allocated to a variable having that subtype.

T24. For a record component having a fixed point subtype with a specified delta and/or a range
constraint, check whether a component clause can be given. If so, check whether th:
clause can specify less than the usual amount of space allocated to a variable having that
subtype.
Implementation Guideline: Check for signed, unsigned, and biased representations.

T25. For a record component having an array subtype, check whether a component clause can
be given. If so, check whether the clause can specify less than the usual amount of space
allocated to a variable having that subtype.
Implementalion Guideline: Check whether gaps between components can be suppressed, as for size
specifications.

T26. For a record component having a record subtype, check whether a component clause can %
be given. If so, check whether the clause can specify less than the usual amount of space
allocated to a variable having that subtype.
Implementation Guideline: Check whether gaps between components can be suppressed, as for size
specifications. p

T31. For a variant record type, check that components belonging to different variants can be
given overlapping storage.

T41. Check whether an alignment clause can be given for a record representation clause.

T51. Check whether a record representation clause can be given for a derived record type.

T61. Check whether a size specification can be given for a type that also has a record
representation clause.

13.5 Address Clauses

Semantic Ramifications

Si. A with clause naming the package SYSTEM must apply (in the sense of RM 10.1.1/4) to
the unit containing an address clause. This does not mean that the with clause must be given
for the compilation unit containing the address clause:

%

13-47

13.5 Address Clauses Version 1 (Dec 86)

with SYSTEM;

package P is

end P;

package body P is
di X : INTEGER;

for X use at ... -- legal

The address clause is allowed because the with clause given for the package specification
applies to the body (RM 10.1.1/4). Similarly, the with clause applies to any subunit of P's body.

S2. Only a simple expression is allowed in an address clause. If a relational operator or a
*logical operator is overloaded to deliver a value of type SYSTEM.ADDRESS, then it is possible

to write expressions that are not, syntactically, simple-expressions:

with SYSTEM;
package PECULIAR is

function "<" (L, R : INTEGER) return SYSTEM.ADDRESS;
end PECULIAR;

with PECULIAR; use PECULIAR;
procedure P is

OBJ : INTEGER;
for OBJ use at 5 < 3; -- illegal

end P;

The address clause is illegal because it is syntactically an expression, not a simple expression.
The expression must be enclosed In parentheses to be a simple expression.

S3. The expression in an address clause need not be a static expression, in part because the
type SYSTEM.ADDRESS might be a record or a private type. Moreover, an implementation is
allowed to impose special requirements on the nature of allowed addresses (AI-00361). For
ex.mple, :m implementation might support addres: clauses only if the expression in the clause
is static.

S4. An implementation may require that objects having certain types be aligned on certain
address boundaries. For example, it might only be possible to allocate an object of type
INTEGER to an even address. If so, an address clause that specifies a non-even address can
be rejected. Similarly, a record representation clause might impose certain alignment
requirements:

for REC use
record at mod 8;
end record;

for REC use at 65; -- can be rejected

The inconsistency between the record and the address clause implies that one of them must be
rejected.

s5. It the expression In an address clause is not static, an implementation cannot necessarily
decide at compile time whether the specified address will be acceptable. In this case, an
implementation has several options: it Is free to reject the address clause on the basis that it
cannot guarantee the alignment requirements will be satisfied, or it can check the alignment
restrictions at run time and raise PROGRAMERROR If they are not obeyed (AI-00228 and
AI-00337; not yet decided).

13.48
in%

% P , , , • e , , ,,,o , ° • . , . -,. . - - . . . -

Version 1 (Dec 86) 13.5 Address Clauses

s. An address clause for an object Is not allowed after an occurrence of the name of the
object (RM 13.1/8), although an occurrence In a pragma Is not considered forcing (AI-00423; not
yet decided):

TIM : INTEGR : 3;
X : INTGZR : 3;
pragma OPTINIZZ (TIMU);
for TIM use at ...
pragma PRIORITY (X + 3);
£or X use at ...;

The address clauses are allowed because TIME In the pragma OPTIMIZE does not denote the
variable TIME and because the pragma PRIORITY must be Ignored (its argument is not static).
But use of the names TIME or X In a default expression, renaming declaration, etc., would make
a subsequent address clause Illegal.

S7. Since the ADDRESS attribute is a representation attribute (see RM 13.7.2), an occurrence
of the attribute ADDRESS for a subprogram, a package, a task unit, or an entry makes a
subsequent address clause for the entity illegal (RM 13.1/8).

se. An address clause is not allowed after a subprogram body, even if the body acts as the
declaration of the subprogram:

begin
procedure P is ... end P;
for P use at ...; -i- illegal

end;

The address clause Is Illegal because RM 3.9/2 does not allow any representation clause after a
body.
s9. An address clause cannot be given for a library unit because a representation clause is not
allowed, syntactically, between or after compilation units (RM 10.1/2), nor can the clause specify
the address of a unit that contains the clause (RM 13.5/7).

SO. An address clause can be given Inside a generic unit. If the generic unit Is instantiated
more than once and both instantlations are elaborated, the execution of the program may be
erroneous (RM 13.5/8). The program is not necessadly erroneous:

generic
package GP is

X : IMTGER;
for X use at 15;

end GP;

with GP:
procedure PR is
begin

declare
package NPI is new GP;

begin

end;

declare
beginpackage N12 is new GP;

13-49
I

.'p

5V-WNVW W W %7%n l V %raw % W U" JLi- K7 L-..-- .- i - 4 V-'. -W -'W - -:: W%; .- - --W -

13.5 Address Clauses Version 1 (Dec 86)

end;
end PR:

Since the objects NP1 .X and NP2.X exist at different times, the address clause does not have

the effect of overlaying one object on the other. That is, even though the objects share the
same storage, an assignment to one object never changes the value of the other object.

Address Clauses for Objects

sii. An address clause for an object is only allowed for an object declared by an object
declaration or a single task declaration; it is not allowed for objects declared by other forms of
declaration. To see this, consider the varous forms for declaring objects (RM 3.2/2-7):

* an object declared by an object declaration or by a single task declaration,
" a formal parameter of a subprogram, an entry, or a generc subprogram,

" a generic formal object,

* a loop parameter,

" an object designated by a value of an access type, and

" a component or a slice of another object.

An address clause cannot be given for a formal parameter of a subprogram, an entry, or a
generic subprogram because the formal parameter name Is not declared, syntactically, within a
declarative part (RM 13.5/7). Similarly, an address clause cannot be given for a generic formal
object or a loop parameter because the object's declaration does not occur within a declarative
part or a package specification. An address clause cannot be given for an object designated by
an access type or for a component or a slice of another object because only a simple name can
be given in an address clause. (A renaming declaration could be used to get around this
limitation, but a name declared by a renaming declaration is not allowed in an address clause
(RM 13.5/7).) Since we have now covered all the forms for declaring objects, it is clear that an
address clause for an object can only be given if the object has been declared by an object
oaclaration or a single task declaration. If the declared object is a constant and the address
clause is accepted, this implies that the value of the constant is stored at the specified location.
S12. As noted above, an address clause can be given for an object declared by a single task

declaration:

task T is ... end T:
for T use at ...; -- ok

I he clause specifies the address of the task body's code (RM 13.5/7), i.e., the code designated ,'
by task object T (see RM 9.1/2 and RM 9.2t2).

S1 3. A named number is declared by "a special form of object declaration," (RM 3.2/8) and so is
arguably an object (AI-00263; not yet decided). If so, an address clause can be given for a
named number. (This might be useful to force materialization of literals in locations that will be
known at run-time.)

S14. An address clause for an object Is not allowed after an occurrence of a name that denotes
the object (RM 13.1/8). For example, occurrence of the object's name in a default expression, a
renaming declaration, etc., would make a subsequent address clause illegal.

13-50C'.%

Version 1 (Dec 86) 13.5 Address Clauses

X : INTEGER;
F ., Y INTEGER renams X; -- occurrence of XsV for X use at ...; -- illegal

Address Clauses for Subprograms

S15. An address clause can be given for a function. An enumeration literal is a function (RM
3.5.1/3) and so are certain attributes such as POS and VAL (RM 3.5.5/5-13). Since an
enumeration literal can be declared in a declarative part or a package specification, an address
clause is allowed for such a literal. But, of course, an Implementation might choose to reject
such a clause (AI-00361). An address clause cannot be given for one of the function attributes
since a simple name is required.

Sie. An address clause is allowed for an overloaded subprogram as long as only one of the
visible subprograms Is declared earlier in the same package specification or declarative part
(RM 13.5/7). For example:

package P is
procedure PR;

end P,

with P; use P;
package Q is

procedure PR (X : INTEGER);
for PR use at ...; -- ok

end Q;

The address clause is allowed even though PR is overloaded.

S17. Similarly, an address clause is allowed if the subprogram is overloaded by an implicit
declaration of a derived subprogram: 1",.

package P is

type T is range 1..10:
function F return T;

end P;

with P;
package Q is

type NT is new P.T;
function F (X INTEGER) return NT;
for r use at ...; -- can be accepted

end Q;

S18. An address clause is also allowed for a subprogram declared in a task body even if it
overloads an entry:

task type T is
entry E;

end T;

task body T is
function Z return INTEGER;
for E use at ... ; -- can be accepted

13-51

13.5 Address Clauses Version i (Dec 86)

The key point is that the subprogram named in the address clause must have been declared
explicitly by exactly one declaration occurring earlier in the same package specification or
declarative part (RM 13.5/7).

si. An address clause cannot be given for a generic subprogram because a generic unit is not
a subprogram unit.

Address Clauses for Packages

s2o. An address clause for a package does not specify the address of the package
specification; the clause only gives the location of the body (RM 13.5/5).

-' Address Clauses for Task Units

S21. When an address clause is given for a single task, the clause spec t"as the address of the
code associated with the task body (see RM 13.5/7), not the address of the task object (which
designates the task and its associated code; RM 9.1/2 and RM 9.2f2). Note the difference here
between giving an address clause for a single task and for a task object:

S. task T1 is

and Ti;
* for T1 use at ...;

task type T2 is

end T2;

XT2 : T2;
.forXT2 use at ...;

The address clause for Ti specifies the location of the machine code for T1 's task body. The
address clause for XT2 specifies the location of the object that designates a task of type T2.

Changes from July 1982

'.- S22. A compilation unit can contain an address clause only if a with clause naming the
predefined package SYSTEM applies to the compilation unit. (Previously, a with clause had to

'5. be given directly for the compilation unit.)

S23. The address clause is only legal if exactly one declaration with the simple-name occurs
earlier, Immediately within the same declarative part, package specification, or task
specification. (More than one such name can be visible.)

N S24. A name declared by a renaming declaration is not allowed as the simple-name of an
address clause.
Changes from July 1980

S25. The expression in an address clause need not be static, e.g., it can be an aggregate.

.5 S26. The simple-expression has a value of type ADDRESS defined in the package SYSTEM
"/ instead of some integer type interpreted as an address.

Legality Rules

L1. The expression In an address clause must have the type SYSTEM.ADDRESS (RM
13.5/3).:::.

13-52

:e -• • , % I , % ' % % . % % . ".",-. o•"% o". ' - - - , . . .- -, , .-

Version 1 (Dec 86) 13.5 Address Clauses

L2. A with clause naming the predefined package SYSTEM must apply to the compilation unit
in which an address clause occurs (RM 13.5/3).

L3. The name given in an address clause must denote an object (including a named number;
see AI-00263 -- not yet decided), a subprogram, a package, a task unit, or a single entry
(RM 13.5/4-6).

L4. The name given in an address clause must be declared explicitly by exactly one
subprogram declaration, generic Instantlation, object declaration, number declaration,
formal parameter declaration (of a subprogram, generic subprogram, or entry), generic
formal object declaration, loop parameter specification, package specification, task O
specification, or single entry declaration (RM 13.5/7).

L5. The name given in an address clause cannot be the name of a library unit (RM 13.5/7).

L6. The name given In an address clause is only allowed if exactly one explicit declaration with
this identifier occurs earlier, immediately within the same declarative part, package
specification, or task specification (RM 13.5/7).

L7. A name declared by a renaming declaration is not allowed as the simple name in an
address clause (RM 13.5/7).

L8. An address clause is not allowed for an object after an occurrence of a name that denotes
the object, unless the occurrence is In a pragma (RM 13.1/8 and AI-00423; not yet
decided).

L9. An address clause is not allowed for a subprograms, a package, a task, or an entry after
occurrence of an ADDRESS attribute for such an entity (RM 13.1/8).

L10. An address clause Is not allowed for a single task or a task object after an occurrence of a
STORAGESIZE attribute for the task type or single task (RM 13.1/8).

Test Objectives and Design Guidelines

TI. Check that the expression in an address clause must have the type SYSTEM.ADDRESS.
T2. Check that an address clause is illegal if a with clause naming the predefined package

SYSTEM does not apply to the unit containing the address clause.
Implementaton Guideline: Check for objects, subprograms, packages, tasks, and entries.

T3. Check that if an address clause Is allowed, a with clause naming SYSTEM need not be
given for the compilation unit containing the address clause as long as such a clause
applies to the unit.
Implementation Guideline: Check for address clauses in package bodies, subprogram bodies, and subunits.
Include a check for generic unit bodies and subunits.

T4. Check that an address clause cannot be given for a named number, an exception, a formal
parameter of a subprogram, entry, or generic unit, a generic formal object, a generic
subprogram, a generic package, a loop parameter, an object designated by an access
value, a slice, or a component of an object.
Check that an address clause cannot be given for a library unit or a generic unit.

T5. Check that an address clause cannot be given for an expanded name or for a name
declared by a renaming declaration.
Implementation Guideline: Include renamings of objects. subprograms, packages, tasks, and entries.

T6. Check that an address clause cannot be given:
In a package specification for an object, a package, etc., declared in an inner

package specification;

13-53

-WWW "LI us W *UhWM WW WUVU KO KXME 'F 'iF' -M~ uu~ v'V~ W- - U' X -. 7 N~ - , . ~- - .*.

13.5 Addres Clauses Version 1 (Dec 86)

" in a package or task specification, for an object, a package, etc., declared in
an enclosing package specification or a declarative part;

" in a package body for an object, package, etc. declared in the corresponding
package specification;

" after the occurrence of a body in a declarative part.
implementation Guideline: In particular, check for a subprogram body that also acts as the
declaration of the subprogram.

17. Check that an address clause cannot be given for a subprogram if more than one
subprogram with the same name is declared explicitly in the same package specification or
declarative part.
Implnemonbon Guideline: Include a generic instantiation and a renaming declaration as well as a subprogram
dedaration.

Check that if an address clause can be given for a subprogram, it can be given when the
subprogram is overloaded by:

a subprogram declared in an outer declarative region or library package,

an entry declaration (when the subprogram is declared in the task body),

o an implicitly declared derived subprogram.
"1

STO. Check that the expression in an address clause must be a simple expression.

T1 1. Check whether an address clause can be given for an object declared In a declarative part.
n-oirmnindon Gukfeline: Use a variable and constant having the following types: enumeration, integer,

floating point, fixed point, array, record, access, private, limited private, and task.
rnImplementation Guideline: Check for declarative parts of subprograms, blocks, and package bodies. *

T12. Repeat T11 for generic units.

Ti 3. Check whether an address clause can be given for an object declared in a package
specification.
Implomentagon Guideline: Use a variable and a constant having the following types: enumeration, integer,
floating point, fixed point, array, record, access, private, limited private, and task.
Implementatdon Guideline: Include a check that the address clause can be given in the private part for an
object declared in the visible part.

T14. Repeat T1 3 for generic packages.

T21. Check whether an address clause can be given for a subprogram deciared in a declarative
part by a subprogram declaration or a generic instantiation.
Impiementabon Guidelno. Check for a declarative part of a block, a package body. a subprogram, and a task
body.

T22. Check whether an address clause can be given for a subprogram declared in a package by
a subprogram declaration or a generic instantlation.
Implemrnntabon Guideline: Include a check that the clause can be given in the private part for a subprogram
declared in the visible part.

T31. Check whether an address clause can be given for a package declared in a declarative
part by a package declaration or a generic instantlation.
Implementation Guideline: Check for a declarative part of a block, package body, subprogram, and task body.

T32. Check whether an address clause can be given for a package declared in a package by a
package declaration or generic instantiation.
Implementation Guideline Include a check that the clause can be given in the private part for a package -/./..
declared in the visible part.

13-54

V..,

.=- - , "..,,,.' . V ... , -,.,, , . , V,.., .,/ , ,, -, ,% ."- .. '. ,-. .. . -. ,..,-. . . ,. , . ., -.

PW T.7 %-I mimin %" 3W AW' All Phn Xp1" wxIU R.- PM PUP Ow- MI" M.M Wi nn %R

t,.

Version 1 (Dec 86) 13.5.1 Interrupts

T41. Check whether an address clause can be given for a task type or a single task declared in -
., a declarative part. ..

Implmntion Guideline: Check for a declarative part of a block, a package body, a subprogram, and a task

body.
T42. Check whether an address clause can be given for a task type or a single task declared in

a package. N
Implementation Guideline: Include a check that the clause can be given in the private part for a task or a task ..
type declared in the visible part. e"

13.5.1 Interrupts

Semantic Ramifications

Si. Although the RM requires that any entry parameters have mode In, no requirement is
imposed on the types of these parameters. If the types seem to be inappropriate, an
implementation can refuse to accept the address clause (since acceptance of representation
clauses is implementation dependent; AI-00361).

S2. No special priority Is associated with an entry just because it is an interrupt entry; the
priority of the rendezvous is defined by the calling task (RM 9.8/5). When the calling task is the
hardware task, the rendezvous is executed with the hardware task's priority. When the entry is
called from a program unit, the rendezvous is performed with the priority of the calling task.

S3. An address clause can be given for an entry of a task type: N.--

task type T to
entry 3;
for entry E use 45;

end T;

The effect if more than one object of type T is declared is implementation dependent (see
AI-00379).-%

S4. An address clause exists for an entry of a derived task type if it exists for the parent task
type (AI-00292), e.g.:

type DT is new T;
type DDT is new DT;

If an address clause was given for an entry of task type T, it also exists for types DT and DDT.
If objects of type T, DT, and DDT are declared, the effect of the address clauses is
implementation-dependent (AI-00379).

S5. If an implementation supports address clauses for task entries, the occurrence of an
interrupt means that the currently executing task will be preempted (if the currently executing
task Is not already being executed in response to a higher prioity interrupt) (see AI-00032).

Changes from July 1982

s. The priority of an interrupt entry is defined to be higher than the priority of the main
program (as well as higher than the priority of any user-defined task).

Changes from July 1980

S7. If a select statement contains both an accept alternative for an interrupt entry and a
terminate alternative, then an implementation may impose further requirements for th election
of the terminate alternative in addition to those given for normal select statements.

13-55

13.6 Change of Reprsentation Version 1 (Dec 86)

Legality Rules
L. If an address clause is given for an entry, the entry must only have parameters of mode in -:..- ,

(RM 13.5.1/1).

L2. An address clause cannot be given for an entry family (RM 13.5/6).

Test Objectives and Design Guidelines

Ti. Check that an address clause cannot bg specified for an entry that has a parameter of
mode out or mode in out.

T2. Check that an address clause cannot be specified for an entry family.

4 T3. Check that the name in an address clause for an entry cannot be an expanded name.

T4. Check that an address clause for an entry cannot be given within the declarative part of the
task body.

Ti1i. Check that if an implementation supports address clauses for entries, such a clause can be
given for an entry of a task type as well as for an entry of a single task.

13.6 Change of Representation
Semantic Ramifications

Si. An explicit representation clause can be given for a derived type even if a clause has been
given for the same aspect of the parent type (A1-00371), but a record representation clause or
an enumeration representation clause cannot be given if the parent type has derivable
subprograms (RM 13.1/3).

I
Changes from July 1982

S2. There are no significant changes.

Changes from July 1980

s3. At most one representation clause is allowed for each aspect of a type.

Legality Rules

Li. More than one representation clause can be given explicitly for a type only if the clauses
specify different aspects of the representation. A size specification can be given for a
specific type together with at most one of the following: a collection size specification, a
task storage size specification, a small specification, an enumeration representation
clause, or a record representation clause (RM 13.6/1).

L2 A record representation clause or an enumeration representation clause cannot be given
for a derived type if the parent type has derivable subprograms (RM 13.1/3) or if the parent
subtype is constrained.

Test Objectives and Design Guidelines

TI. Check that two explicit type representation clauses are not allowed for the same aspect of
atype (see IG 13.2.a/T2, IG 13.2.b/T2, IG 13.2.c/T2, IG 13.2.d/T2, IG 13.3/T2, IG 13.4/T2).

T2. Check whether a derived type can be given a representation that is different from the
representation of its parent type (see IG 13.2.a/T21, /T31, /T41. /T51, /T61,/T71, /T81. and
/T91, IG 13.2.c/Tll, IG 13.2.d/T11, IG 13.3/715, IG 13.4/T51).

13-56

" %

Version 1 (Dec 86) 13.7 The Package System

13.7 The Package System
Semantic Ramifications

St. Although a program library can contain at a given time only one version of package
SYSTEM (i.e., only one value of SYSTEMNAME, STORAGE UNIT, MEMORYSIZE, etc.), an
implementation can provide various means of determining which version is to be used when
compiling. The pragmas SYSTEM-NAME, STORAGE-UNIT, and MEMORYSIZE provide one
way of specifying different versions of package SYSTEM, but an implementation might have
special commands that select from a set of possible SYSTEM packages.

S2. The meaning of the pragma MEMORYSIZE is implementation dependent, e.g., whether
the value refers to the total amount of memory available in the hardware, or to the amount of
memory reserved for a particular program, is determined by the Implementation.

S3. There is no requirement that a with clause for package SYSTEM apply to a unit that uses
the pragma PRIORITY, even though the pragma has no effect if its value does not lie within the
range defined by SYSTEM.PRIORITY (RM 2.8/8 and RM 9.8/3; see also A1-00197). Similarly.
no with clause is needed for SYSTEM when writing a record representation clause even though -.

a record component clause refers to storage units.

S4. The subtype PRIORITY need not be static; only the argument to pragma PRIORITY must
be static (RM 9.8/3). Whether or not the subtype is static, an implementation must ensure that
the pragma PRIORITY has no effect when the specified value lies outside the range defined for
the subtype PRIORITY.

ss. ADDRESS Is declared as a type. It cannot be a subtype of a predefined type (such as one
of the predefined integer types). It might be declared as a composite type.
s6. If a package named SYSTEM is user-defined and compiled, the effect is implementation
dependent, since an implementation can depend on declarations contained in the predefined
package SYSTEM. Even if all the predefined declarations are given in the user-defined
package, the effect can be unpredictable.

Changes from July 1982

S7. The named numbers for STORAGEUNIT and MEMORYSIZE are defined to have type
universal integer.

se. The pragma SYSTEMNAME has no effect if the argument is not one of the literals of type
SYSTEM.NAME.

Changes from July 1980

sq. The package SYSTEM is now a predefined library unit (instead of being declared within
STANDARD).

siO. The pragma SYSTEM is now called SYSTEMNAME. The type SYSTEMNAME is now
called NAME.

si 1. Type ADDRESS is now defined in package SYSTEM (and need not be an integer type).

S12. The following named numbers are now defined in SYSTEM: MAX DIGITS, MAX-
_MANTISSA, FINE DELTA, and TICK,
S13. The subtype PRIORITY Is now defined in SYSTEM.

Test Objectives and Design Guidelines

T1. Check that the package SYSTEM is not declared within STANDARD and that it is a
.. ,. predefined library package.

13-57

~ ~ . - q J~ . . 1

137 The Package System Version 1 (Dec 86)

Implementation Guideline: Check that a with clause is needed to access any of the declarations within
SYSTEM, but that the with clause need only apply to the unit using a declaration from package SYSTEM. That
is. declarations from package SYSTEM can be used in a package body or a subunit as long as a with clause
has been given for the package specification or for some ancestor unit.

T2. Check that the type ADDRESS is declared within SYSTEM.
Implementation Guideline: Declare a variable of type ADDRESS and check if a value of this type can be
assigned to it. Put the assignment in a separate test, since some implementations might make the type
ADDRESS a limited private type.

T3. Check that the type NAME is declared within SYSTEM and that at least one value is in the
type. Check that all the values of the type agree with the implementer's documentation.
Implementation Guideline: Use the IMAGE and VAL attributes to check the values.

- T4. Check that the constant SYSTEMNAME is declared within SYSTEM and that it has the
appropriate value of type SYSTEM.NAME.

Check that the pragma SYSTEMNAME can be used and that it gives the constant
SYSTEMNAME the specified value.

implementation Guideline: Check for each value of type SYSTEMNAME. Be sure the library is empty when
making this check.

Check that the pragma SYSTEMNAME is ignored if it does not appear at the start of a
compilation.

Check that the pragma SYSTEMNAME is ignored if its argument is not a value of type
SYSTEM.NAME.

T5. Check that the constant STORAGEUNIT Is declared within SYSTEM and that the type of
this value is universal integer.
Check that the constant can be used In static expressions.

Check that STORAGEUNIT has a nonzero value that agrees with the value specified by
the implementer.

Check that the pragma STORAGEUNIT can be used to define the value of the
STORAGE UNIT constant, at least for the values allowed by an implementation.

Check that the pragma STORAGEUNIT has no effect if Its argument is not an integer
literal.
Implementation Guideline: The argument should be a static universalinteger expression.

Check that the pragma STORAGEUNIT has no effect if it does not appear at the
beginning of a compilation.

T6. Check that MEMORYSIZE is declared within SYSTEM and that this constant has type
universalinteger.

Check that MEMORY SIZE can be used in static expressions.

Check that the pragma MEMORYSIZE can be used to define the value of the MEMORY-
-SIZE constant.

Check that the pragma MEMORYSIZE is ignored if its argument is not a numeric literal. ?
Implementation Guideline: The argument should be a static universal integer expression.
Check that the pragma MEMORYSIZE is ignored if it does not appear at the beginning of

a compilation.

T7. Check that subtype PRIORITY is declared within SYSTEM (not within STANDARD) and .-. .-
that it is a subtype of the predefined INTEGER type, -.

13-58

,;..
216 ,. ;- -- US .

Version 1 (Dec 86) 13.7.1 System-Dependent Named Numbers

Check that the range of subtype PRIORITY agrees with that specified for the
implementation.

I
13.7.1 System-Dependent Named Numbers
Semantic Ramifications

st. MAXINT and MININT give the largest (most positive) and smallest (most negative) value,
respectively, of all the predefined integer types, excluding the type universal integer (A1-00304).
Since the predefined integer types are required to have symmetric ranges (with the possible
exception of an additional negative value) (RM 3.5.4/7) and since integer type declarations must"N
be accepted if their range lies within the range of a predefined integer type other than
universal_integer (RM 3.5.4/6), the following declaration must always be accepted by an V
implementation:

type LARGESTINT is range -SYSTEM.MAXINT .. SYSTEM.MAXINT;

S2. The value of SYSTEM.TICK must be static, i.e., it cannot have a value determined at run
time since TICK is declared by a number declaration (RM 3.2/9 and RM 3.2.2/1). The
staticness of SYSTEM.TICK can be determined by using SYSTEM.TICK in a context that
requires a static value and in a context where the static value makes a program illegal. For
example, if SYSTEM.TICK is 1.0, then the following case statement is illegal:

case TRUE is
when (SYSTEM.TICK - 1.0) => ... ,.

when TRUE => -- illegal; duplicate choice
end case;

S3. The value of TICK has no required relation to the value of DURATION'SMALL.
DURATION'SMALL must be no greater than 0.020 (RM 9.6/4), but SYSTEM.TICK can be larger
or smaller than this value, since the value of TICK is determined by the accuracy of the clock.

S4. The value of FINEDELTA is related to MAXMANTISSA as follows: . 4

T'FINEDELTA = 2.0 ** (-T'MAXMANTISSA)

Changes from July 1982

S5. There are no significant changes.

Changes from July 1980

S6. The definitions of MAXDIGITS, MAXMANTISSA, FINEDELTA, MININT, and MAXINT
are now given in this section.

Test Objectives and Design Guidelines

Ti. Check that MININT and MAXINT have the values specified by the implementer, that
these constants are both static and have the type universalinteger, and that no predefined
integer type has values outside this range.
Implementation Guideline: Declare integer types that use these values.

T2. Check that MAXDIGITS has the value specified by the implementer, and that this
constant is static and has type universal Integer. A

Check that a floating point declaration cannot have a specified digits value greater than
SYSTEM.MAX DIGITS (see IG 3.5.7/T1).

13-59

a ~ -- V ~ -~- ~

13.7.2 Representation Attributes Version 1 (Dec 86)

T3. Check that MAX MANTISSA has the value specified by the implementer and that the .. .
constant is both static and has type universal integer.

Check that FINEDELTA has the value specified by the implementer and that the constant
is both static and has type universalreal.

Check that FINEDELTA = 2.0 *" (-MAXMANTISSA).

T4. Check that TICK has the value specified by the implementer and that the constant is both .,,

static and has type universalreal.

Check that the precision of the clock is at least that specified for TICK.

13.7.2 Representation Attributes
Semantic Ramifications

si. The value delivered by the ADDRESS attribute is implementation dependent and may not
have any useful meaning in some cases. For example, since a subprogram is a program unit, v..

the ADDRESS attribute can be applied to the name of an enumeration literal, predefined
operator, or inlined subprogram. For an enumeration literal, there is no code associated with
the "subprogram." For a predefined operator or inlined subprogram, there is either no code or
there is no unique address associated with the code. In all such cases, an implementation must
accept the attribute, but it can return any convenient value.

s. When the ADDRESS attribute Is applied to a formal parameter, the Intention Is to provide
an address value suitable for accessing the actual parameter's value. When the actual "

parameter is passed by reference, the ADDRESS attribute should give the address of the actual
parameter. When the parameter is passed by value, the address of the copy should be given.
When the actual parameter is passed in a register or via a descriptor (e.g., an array might be
passed using a descriptor that gives the lower and upper bounds for each dimension followed
by a pointer to the contents of the array), the value returned by the address attribute might not
be meaningful. An implementation can define additional attributes that give suitable values
under these circumstances.

S3. The address of an object is also not always meaningful when the prefix denotes an object.
For example, an optimizing compiler might not reserve space for a constant initialized with a
static value. Similar, an object that is declared but never used need occupy no space. It is legal
to specify the ADDRESS attribute for such objects, but the returned value will have no meaning.

s4. A context clause for SYSTEM need not apply (in the sense of RM 10.1.1/4-5) to a unit that
uses the ADDRESS attribute. For example:

with SYSTEM;
package P is

subtype MYADDRESS is SYSTEZM.ADDRESS;
end P;

I

with P;
package Q is

X INTEGER := 0;
Y P.HY ADDRESS := X'ADDRESS; -- legal

The with clause for SYSTEM does not apply to package Q (and so it would be illegal to write
SYSTEM.ADDRESS within package 0; see RM 10.1.1/5), but package 0 does lie within the
scope of the declaration for type ADDRESS (see IG 8.6/S), so the assignment operation is
legal.

13-60

Version 1 (Dec 86) 13.7.2 Representation Attributes

Ss. The prefix of the attributes POSITION, FIRSTBIT, and LASTBIT must have the form of a
, W selected component and the prefix must name a record component. In particular, a name

declared by a renaming declaration is not allowed as the prefix (AI-00238), and these attributes
cannot be used when the prefix denotes an array component (AI-00362):

type AEC is
record

C1 : INTEGER; .4,
C2 : STRING (1..5);

end record;

type ARRREC is array (1..5) of REC;

X : REC;
Y : STRING (1..5); -.
Z : ARR REC;
C : INTEGER renames X.Cl; ,

... X.Cl'POSITION -- legal

... C'POSITION -- illegal; prefix not of form R.C
... Y(I)'POSITION -- illegal; array component

... X.C2(I)'POSITION -- illegal; array component •
Z(I).Cl'POSITION -- legal; Z(I) denotes a record

se. The value returned by the SIZE attribute reflects the actual amount of space used to hold
an object. An implementation decides whether the amount of space includes descriptive

'p. -, information, e.g., index subtype bounds for an array object.

S7. The size attribute can have the value zero if no space is allocated for an object, e.g., 5
because an optimizing compiler has determined that the object need not be stored in memory.
Each object having the same subtype need not occupy the same amount of space. For
example, a record component having the subtype INTEGER range 1 ..7 might occupy only three
bits, while an object that is not a component of an array or record might occupy a full word or a
full byte; its size could be 8, 16, 32, or some other value.

0sa. When the SIZE attribute is applied to a subtype, the value returned is the minimum number
of bits the implementation will use to hold an object having that subtype. For example, consider
the subtype INTEGER range 11..15. A signed representation will occupy at least 5 bits, an
unsigned representation will occupy 4 bits, and a biased representation requires only 3 bits. If
an implementation does not support unsigned or biased representations even for record
components, the SIZE attribute for this subtype will return a value that is at least 5. S

s9. RM 13.7.2/6 specifies how the name of a function is to be interpreted when it serves as the 2,
prefix of the SIZE or ADDRESS attributes, even though a function name is not allowed as the
prefix of the SIZE attribute.

Changes from July 1982

so. There are no significant changes.

Changes from July 1980

Si i. The semantics of representation attributes are now specified in this section. .1
Legality Rules

L. The prefix of the attribute ADDRESS must denote an object, a package, a subprogram, a -.

13.61

% % % %'V

13.7.3 Representation Attributes of Real Types Version 1 (Dec 86)1

generic unit, a task type or a single task, a label, an entry, or an entry family (RM 13.7.2/2).,,A
(The prefix cannot denote a named number, an exception, or a type or subtype other than
a task type, or an attribute.) .

L2. The prefix of the attribute SIZE must denote a type, a subtype, or an object (RM 13.7.2/4).

L3. The prefix of the attributes POSITION, FIRSTBIT, and LASTBIT must demote a selected
component form of name whose prefix denotes a record object and whose selector
denotes a component (RM 13.7.2/7, AI-000362, and AI-00258).

L4. The prefix of the attribute STORAGESIZE must denote an access type or subtype, a task
type, or a task object.

Test Objectives and Design Guidelines

TI. Check that the prefix of the address attribute can denote an object, package, subprogram,
generic unit, task type, single task, label, entry, or entry family.
Implementation Guideline: Include (in a separate test) a prefix that denotes one of the function attributes,
SUCC, PRED. POS, VAL, IPAGE, and VALUE. %.
Check that the prefix of the address attribute cannot denote a named number, an
exception. or a type or subtype other than a task type. Check that the prefix cannot be an
attribute other than an attribute that denotes a function.

T2. Check that the address attribute can be used in a compilation unit even if a with clause for
package SYSTEM does not apply to the unit.

T3. Check that the prefix of the attribute SIZE cannot be a subprogram, generic unit, package,
named number, single task, label, entry, entry family, exception, or an attribute other than
T'BASE. -.
Implementation Guideline: For the subprogram prefix, use a parameteresis function name.

Check that the prefix of the attribute SIZE can be an object, a type (including a task type),
or a subtype, and that a suitable value is returned. ,
Implementation Guideline: Check for all types, and for the prefix T'BASE. "

T4. Check that the prefix of the attributes POSITION, FIRSTBIT, and LASTBIT cannot
denote an array component and cannot be a name declared by a renaming declaration.

Check that the prefix of the attributes POSITION, FIRSTBIT, and LASTBIT can be a
record component and that suitable values are returned.
implementation Guideline: For an implementation that accepts a record representation clause, check that the
values specified in the clause are returned.
Implementation Gudefine: Include a prefix that is a subcomponent of an array.

T5. Check that the prefix of the attribute STORAGESIZE cannot be a subprogram.

Check that the prefix of the attribute STORAGESIZE can be an access type, a task type,
a task object, or a single task.
Implementation Guideline: For an implementation that accepts length clauses specifying STORAGE SIZE.
check that suttah!e values are returned.

T6. Check that the attribute ADDRESS is defined for objects having any type.

13.7.3 Representation Attributes of Real Types
Semantic Ramifications
Si. MACHINE ROUNDS is true if every predefined arithmetic operation "either returns an

13-62

% % % %ii

Version 1 (Dec 86) 13.8 Machine Code Insertions

exact result or performs rounding." "Performs rounding" is deliberately vague. In particular, if
the result to be rounded is exactly halfway between possible rounded values, MACHINE-

ROUNDS can be true regardless of which value is chosen. Otherwise, MACHINEROUNDS
is true if and only if the closest value is chosen. D

S2. MACHINEOVERFLOWS is true if the underlying machine can detect overflow when it
occurs and the occurrence of overflow causes an exception to be raised. The raising of
overflow is to be understood in the context of optimizations allowed by RM 11.6/6. In particular,
the expression A*B/C need not raise any exception if the product is held in a double length
register before the division is performed. In addition, MACHINEOVERFLOWS can be true
even if no exception is raised when a result lies outside the range of safe numbers but within the
base type's range of values (see AI-00021; not yet decided).

s3. The predefined operations relevant to the value of MACHINEOVERFLOWS include the
conversion operations.

Changes from July 1982

s4. There are no significant changes.

Changes from July 1980

sS. Machine-dependent attributes of real types are now defined in this section.

Legality Rules D

L1. The prefix of MACHINE ROUNDS and MACHINE OVERFLOWS must denote a fixed or
floating point type or subtype (RM 13.7.3/2).

-, .

L2. The prefix of the attributes MACHINE RADIX, MACHINEMANTISSA, MACHINEEMAX, %

and MACHINEEMIN must denote a floating point type or subtype (RM 13.7.3/5).

Test Objectives and Design Guidelines

T1. Check that the prefix of the MACHINEROUNDS and MACHINEOVERFLOWS attribute
cannot be an integer type.

T2. Check that the prefix of the attributes MACHINERADIX, MACHINE_MANTISSA, D
MACHINEEMAX, and MACHINEEMIN cannot be a fixed point or integer type.

T3. If the attribute MACHINEROUNDS is true, check that rounding is performed for addition,
subtraction, multiplication, division, and conversion.

T4. If the attribute MACHINEOVERFLOWS is true, check that an exception is raised for
overflow for addition, subtraction, multiplication, division, and conversion. If not true, check
that no exception is raised for at least one of these operations.

TS. Check that MACHINERADIX, MACHINEMANTISSA, MACHINEEMAX, and MACHINE-
EMIN have the correct values for each value of digits accepted by an implementation.

Implementation Guideline: Check thet appropriate values can be computed, e.g., that (I/MACHINE_RADIX)".
MACHINE-MANTISSA - T'BASE'EPSILON, etc.

13.8 Machine Code Insertions
Semantic Ramifications

Si. Support for machine code insertions is optional.

S2. If machine code insertions are supported, a with clause naming the package MACHINE-
-CODE must apply (in the sense of RM 10.1.1/4-5) to the compilation unit containing code
statements. For example, the following would be illegal:

13-63 S

13.8 Machine Code Insertions Version I (Dec 86)

with MACINE CODE;
package NEW CODE is -"- I,

subtype TYPE_1 is MACHINECODE.TYPE 1;
end NEW CODE;

with NEW CODE; 4.

procedure MACHINE is
begin

NEW CODE.TYPE_1 (LDI, 4000); -- illegal
end MACI-NE;

The code statement is illegal even though the scope of MACHINE CODE.TYPE 1 includes the
code statement (see IG 8.6/S); a with clause for the package MACHINECODE does not apply
to the procedure MACHINE.

S3. The package MACHINECODE can contain as many type declarations as necessary. The
storage layout for these types may be different from the layout normally used for similar type
declarations.

s4. In principle, a program can declare a variable of any type declared in MACHINECODE.

Changes from July 1982
S

Ss. A with clause for the package MACHINECODE must apply to the unit containing a
machine code insertion.

s. An Implementation can Impose further restrictions on the record aggregates allowed in
code statements.

Changes from July 1980

S7. The record types needed for macnine code insertions are defined to occur in a predefined
library package called MACHINECODE.

Legality Rules

LI. A code statement Is only allowed in the body of a procedure (RM 13.8/3).

L2. If a code statement is given in a procedure body, no declarative items are allowed in the
declarative part of the body (except for use clauses), no exception handler is allowed, and
no other form of statement is allowed (RM 13.8/3). %

L3. The base type of a record type used in a machine code statement must be declared in the ,
predefined library package MACHINECODE (RM 13.8/4). I

L4. A with clause naming the predefined library package MACHINECODE must apply to any
compilation unit containing a code statement (RM 13.8/4).

L5. Additional restrictions may be Imposed on the use of code statements by an
implementation (RM 13.8/5).

Test Objectives and Design Guidelines

T1. Check that if machine code insertions are supported, a with clause for the predefined ..

package MACHINECODE must apply to the unit containing a code statement.
Implementation Guideline: Check that a with clause given for a package specification or a generic unit applies
to the body and its subunits. Similarly, check a with clause for a subprogram declaration.

T2. Check that a user-defined record type cannot be used in a code statement. "'- .%4
Implementation Guideline: If possible, use a record type that is identical to one declared in package ""- ,
MACHINECODE or use a type derived from a type declared in MACHINECODE.

13-64

Version 1 (Dec 86) 13.9 Interface to Other Languages

T3. Check that code statements are not allowed in the statement part of a package body, a
task body, or a function.

T4. If machine code insertions are supportea, check that no declarative items (other than use
clauses) are allowed in the procedure's declarative part.

Check that if a code statement is present, no exception handler is allowed.

Check that if a code statement is present, no other form of statement is allowed.
Implementation Guideline: Try a statement that assigns one formal parameter to another.

Ti 1. If machine code insertions are allowed, give a procedure body that uses code statements. p

13.9 Interface to Other Languages "

Semantic Ramifications V.

s1. There are several interrelated issues concerning the pragma INTERFACE:

9 There are many ways of declaring subprograms in Ada. In particular, an
enumeration literal is a subprogram and so are a predefined operators, derived "-."
subprograms, certain attributes (such as SUCC; see RM 3.5.5/8), and
subprograms declared by a renaming declaration, a generic instantiation, and a
subprogram body. A pragma INTERFACE applies (in the sense of RM 13.9/3) S

only to subprograms declared by an explicit subprogram declaration (AI-00410).
It is illegal to supply a subprogram body for a subprogram to which the pragma
applies (AI-00306).

* If a subprogram name in a pragma INTERFACE is overloaded but only some of
04 the denoted subprograms are acceptable (see below), the pragma applies just

to the acceptable subprograms (AI-00306).

Each of these issues is discussed in turn.

S2. If a pragma INTERFACE applies to a particular subprogram and is accepted by the
implementation, it is illegal to provide a body for the subprogram. For example:

package P is
procedure R (8 : INTEGZR);
pragma INTERFACE (XXX, R);

end P;

package body R is
procedure R (B INTEGER) is ... end R; -- illegal

end R:

The pragma in the package specification is equivalent to promising that no body for the
procedure will later be provided. It a body is provided, it must be rejected (AI-00306).

$3. If a body is provided for a subprogram to which the pragma INTERFACE applies, it is
irrelevant whether the body is provided before or after the occurrence of the pragma. The only
relevant fact is whether the pragma names an acceptable language and the named subprogram
has been declared earlier in the same declarative part or package specification:

declare
procedure R (B INTEGER);

13-65

FS -1

13.9 Interlace to Other Languages Version i (Dec 8b)

procedure R (B : INTEGER) is ... end R; -- illegal ".
pragma INTERFACE (XXX, R); .,

begin

Since procedure R is declared earlier in the same declarative part, the pragma applies to it and
no body can be provided (AI-00306 and RM 13.9/3).

S4. If a body is required for a subprogram declared in a package specification, a package body
that contains the subprogram body (or a stub for the body) must be provided. If a pragma
INTERFACE applies to the subprogram, however, no subprogram body is needed (or allowed).
Consequently, it may not be necessary to provide a package body. For example:

package P is
procedure R (B : INTEGER);
pragma INTERFACE (XXX, R);

end P;

No body is required for package P if the pragma is accepted.

s5. There Is no harm in providing the pragma INTERFACE more than once for the same
subprogram since the effect of the pragma is just to indicate that a body cannot be provided.

S6. RM 13.9/3 says that a subprogram name in the pragma INTERFACE is allowed to stand for
several overloaded subprograms. If only some of the denoted subprograms are acceptable,
e.g., if only some of the subprograms are declared earlier in the same declarative part or
package specification, the pragma is obeyed only for those subprograms (AI-00306). For
example:

procedure P (B : BOOLEAN); -- P-
package R is

procedure P (I : INTEGER); -- P2
pragma INTERFACE (XXX, P);

The pragma only applies to P2. Since the pragma applies to at least one subprogram, it is not
ignored. Since it does not apply to P1, it is not illegal to provide a body for PI.

S7. A similar situation can arise in a package body:

package P is
procedure R (I INTEGER);

end P;

package body P is
procedure R (B : BOOLEAN); -- RI
procedure R (I : INTEGER) is ... end R; -- R2
procedure R (F : FLOAT) is ... end R; -- R3
pragma INTERFACE (XXX, R);

end P;

The pragma only applies to procedure RI. It does not apply to R2 because R2 is declared in
the package specification, not earlier in the same declarative part. The pragma does not apply
to R3 because R3 is not declared by a subprogram declaration; it is declared by a body
(AI-00410). Since the pragma does not apply to R2 or R3, these bodies are not illegal.
so. For overloaded names, a pragma INTERFACE applies to a particular subprogram whether

or not a body is provided. For example:

13-66

Version 1 (Dec 86) 13.9 Interface to Other Languages

, , declare ..

procedure R (B BOOLEAN);
procedure R (B INTEGER);
pragma INTERFACE (XXX, R); 0

procedure R (B : INTEGER) is ... end R; -- illegal
begin

The relative position of the pragma and the body is not relevant:

declare
procedure R (B BOOLEAN):
procedure R (B INTEGER);
procedure R (B INTEGER) is ... end R; -- illegal V..'

pragma INTERFACE (XXX, R);

The body for procedure R is illegal because the pragma applies to the corresponding procedure q
declaration (AI-00306).
sq. The pragma only applies to subprograms declared by explicit subprogram declarations or
renaming declarations (AI-00306). In particular, the pragma does not apply to enumeration
literals, attributes that denote functions (such as T'SUCC; see RM 3.5.5/8), predefined
operators, derived subprograms, or subprograms declared by a generic instantiation or a
subprogram body (i.e., a subprogram body that is not preceded by a conforming subprogram
declaration). If a name In the pragma is overloaded and denotes one or more of these forms of
subprogram, the pragma is obeyed for (applies to) just those subprograms declared by the
subprogram or renaming declarations. For example:

package P is
procedure SPECIAL (B : BOOLEAN); .

procedure R (B INTEGER);
function R (L INTEGER) return INTEGER renames "+";
procedure R (B BOOLEAN) renames SPECIAL;
pragma INTERFACE (XXX, R);

end P;

The pragma applies to each subprogram denoted by R that was declared by an explicit
subprogram declaration appearing earlier in package specification P. Only the function R does
not satisfy this requirement, so the pragma does not apply "o the subprogram denoted by
function R.

sio. The pragma does not apply to generic formal subprograms because such subprograms 0
are not declared by subprogram declarations (see RM 12.1/2) and because they do not occur in
a package specification or declarative part,

Changes from July 1982

si1. There are no significant changes.

Changes from July 1980

S12. The pragma INTERFACE is allowed for library units.

Legality Rules

1L. A body cannot be supplied for a subprogram to which the pragma INTERFACE applies
(RM 13.9/3 and A1-00306).

13-67
%,

13.10.1 Unchecked Storage Deallocation Version 1 (Dec 86)

Test Objectives and Design Guidelines

TI. Check that if a pragma INTERFACE is given in a package specification and applies to a
subprogram declared In the package specification, no subprogram body can be given in
the corresponding package body.
Check that no package body is required if the only reason for requiring a package body is
for procedures declared in a package specification, and the pragma INTERFACE applies
to each such procedure.

Check that if a pragma INTERFACE is given in a declarative part and applies to a
subprogram declared earlier in the same declarative part, it Is illegal to provide a body
either before or after the pragma.

T2. Check that the pragma INTERFACE is ignored if a name in the pragma does not denote
any subprogram declared earlier in the same declarative part or package specification, or if . -

the pragma is given after a library unit declaration, and one or more names in the pragma
is not the name of the library unit.

T3. Check that the pragma INTERFACE is ignored if a nonoverloaded subprogram name given
in the pragma denotes an enumeration literal, an attribute that denotes a function (use the
attributes SUCC, PRED, POS, VAL, IMAGE, and VALUE), a predefined operator, a
derived subprogram, a subprogram declared by a renaming declaration, a subprogram
declared by a generic instantlation, a subprogram declared by a subprogram body, a i
generic unit, or a generic formal subprogram.
A *Mom Ww / Gkbkw: Check for both package specifications and declarative parts.

T4. If a sutprogram name In the pragma INTERFACE Is overloaded,

check that the pragma applies to every subprogram declared earlier in the . "
same package specification or declarative part by an explicit subprogram
declaration.
Implemen taon Guideine: For this part of the test, every overloaded subprogram declaration
ehluld be acceptable for the pragmea,

e check that the pragma app s only to subprograms declared earlier In the
same package specification or declarative part, and not to subprograms
declared In outer declarative regions.
Implementation Guideline: If the pragma Is given in a package body, check that it does not .,
apply to subprograms declared in the package specification. "".-'

.. ,5,

check that the pragma applies only to subprograms that are not enumeration
Oterals, predefined operators, derived subprograms, or subprograms declared
by renaming declarations, generic instantations, or subprogram bodies.

T5. Check that the pragma INTERFACE can be given for a library subprogram.

13.10 Unchecked Programming .

13.10.1 Unchecked Storage Deallocation
Semantic Ramifications

Si. Since the formal parameter of an instance of UNCHECKEDDEALLOCATION has mode in _
out, the actual parameter cannot be a constant having an access type. , ...

13-48 (

S--
5- 5-5- %"%%5."

Version 1 (Dec 86) 13.10.2 Unchecked Type Conversions

S2. If objects X and Y designate the same object, then any attempt to evaluate Y for its value
., •after the call FREE(X) is erroneous (AI-00356). In particular, consider:

declare
type ACC STR is access STRING;
X ACC STR := new STRING' ("ABC");
Y ACC STR := X;
function FREE is UNCHECED DEALLOCATION (STRING, ACCSTR);

begin

FREE (X);
X := new STRING' ("DEF");
if X = Y then -- erroneous

X and Y initially designate the same object. The allocator then creates a new object to be
designated by X's value. Since the value of Y is not altered by the FREE(X) call, Y still
designates an object conceptually distinct from the object designated by X's new value.
However, the effect of FREE is to allow the space designated by X's old value to be reused. In
particular, the allocator might return the same access value as X had before, and if so, the
comparison, X = Y, will evaluate to TRUE. However, this is not required; the comparison can
equally well evaluate to FALSE. The effect of the FREE operation is to make erroneous any
attempt to access Y's value; hence, the value of X = Y is not defined.

s3. An implementation must allow instantlations of UNCHECKED_DEALLOCATION with an
unconstrained array or record type. This means that there should be no use of the OBJECT
formal parameter that violates the rule given In RM 12.3.2/4 (see IG 12.3.21S).

s4. If an Instance of UNCHECKEDDEALLOCATION is applied to a value that designates a
task object, the task continues to execute (if it Is not already terminated).

Changes from July 1982

S5. There are no significant changes.

Changes from July 1980

S6. There are no significant changes.

Test Objectives and Design Guidelines

T1. Check that UNCHECKED DEALLOCATION can be instantiated with any OBJECT type,
and in particular, can be instantiated with an unconstrained array or record type.

Check that if FREE is called for a variable whose designated object is a task, the task
continues to execute correctly (although it cannot be accessed).

13.10.2 Unchecked Type Conversions
Semantic Ramifications

S1. If the source and target types have different sizes, the effect of invoking an instance of
unchecked conversion is implementation dependent.

S2. An implementation must allow instantiations of UNCHECKED CONVERSION with an
unconstrained array or record type. This means there should be no use of the formal
parameters that violate the rule given in RM 12.3.2/4 (see IG 12.3.2/S).

.-. 136.

13-69
.I

13.10.2 Unchecked Type Conversions Version 1 (Dec 86)

Changes from July 1982

s3. Restrictions on the use of an instantiation of UNCHECKEDCONVERSION are to be
desoribed in Appendix F.- -

Changes from July 1980

s4. There are no significant changes.

Test Objectives and Design Guidelines ,

Ti. Check that UNCHECKEDCONVERSION can be instantiated for a variety of types,_t
including unconstrained array and record types.
Imp@menftab Guide/ine: Use types whose declarations are structurally identical.

.:.,

13-.70

?I

',,

o p=

'p

t. .o

'..

|I

13-70Z

.- ..,**

Version 1 (Dec 86) 14.1 External Files and File Objects

Chapter 14 I",

Input-Output
p

14.1 External Files and File Objects

Semantic Ramifications

St. The generic packages SEQUENTIAL_10 and DIRECT_10, and the packages TEXT_10,
10_EXCEPTIONS, and LOWLEVEL_10 are predefined library units (RM C/22).
S2. The formal type of the generic packages SEQUENTIAL_10 and DIRECT_10 is not limited,
so it is not possible to instantiate these packages with a task type. In general, the generic -
packages SEQUENTIAL IO and DIRECT_10 cannot be instantiated with a limited type (RM
12.3.2/1-2).

S3. Access types, private types, and composite types with access or private component types
may be specified as the ELEMENT TYPE for SEQUENTIAL 10 or DIRECT 10, but the effect
of reading and writing values of such types is implementation-dependent. However, an
implementation is free to raise USEERROR in response to calls to CREATE or OPEN of files
of such types (RM 14.4/5).
S4. SEQUENTIAL_10 and DIRECT_10 can be instantiated for unconstrained arrays (including
STRING) and records with dlscriminants (without default values) types. Whether these
instantiations are legal depends on how the packages are implemented (RM 12.3.2/4). Within
the generic body of SEQUENTIAL 10 or DIRECT_10 there might be an attempt to use
ELEMENTTYPE in a way that is not allowed for such actual parameters; such instantiations
are then illegal. Since there is no requirement to allow such instantiations, their legality is
implementation-dependent. Note that either all unconstrained arrays and records with
discriminants can be instantiated or none of them can. In particular, it is implementation-
dependent whether variable-length values (e.g., values defined by records with discriminants)
can be read and written.

s5. The effect of sharing an external file is implementation-dependent. In particular, side P
effects on a property (index, size, ...) of one internal file can be caused by an I/O operation on
another internal file associated with the same external file (RM 14.1/13), with one exception: if
an external file is associated with two internal direct files, the current index is a property of each
internal file iRM 14.21/4).
S6 The sequential ard 110e: '0 packages must be instantiated for a specific data type before
any I/O operations can be ,oefor med. An implementation may legally augment the I/O facilities
by providing subprograms, piedefined standard instantiations (e.g., for predefined types), and
renaming declarations, suitabiy colected in lirary packages. These facilities, however, must ..
not replace the standard packages defined in RM 14.
57. The names of predefined input-output sutprograms, exceptions, and types are not
reserved. Such nares are subject to rei-aming IRM 8.5), hiding (RM 8.3), and overloading (RM
6.6). Note also that suchi names must be prefixed by the name of the appropriate package
instance, although this, .,in usuai\y t'e a- oidpd by .ppropriate use clauses. However, when
more than one I 0 package is ins*,_-'i r&,- ?,(ceptior,s declared in 10_EXCEPTIONS must
be named with expanded names, e g.

.-' . declare

use TE~XT-10

14-1

14.1 External Files and File Objects Version 1 (Dec 86) I,

package STRING 10 is new SEQUENTIAL 10 (STRING);

package INT 10 is new INTEGER 10 (INTEGER); ..-.-

use STRING_10, INT_10;
INT ITEM : INTEGER;

begin
GET (INTITEM); -- GET for INTEGER I/O

exception .1

when DATA_ERROR => ... -- illegal
end; -P

The reference to DATAERROR is illegal because DATAERROR is declared (by a renaming
declaration) in both TEXT_10 and SEQUENTIAL_10. Since an exception name is not
overloadable, the use clause does not make the name directly visible (RM 8.4/6), even though
SEQUENTIAL IO.DATAERROR and TEXT_IO.DATAERROR both denote the same
exception.

so. Because an implementation can refuse to open or create a file for implementation-defined
reasons, and because input-output on unopened files raises an exception, an implementation
can *support" i/0 by raising an exception for every call to one of the subprograms defined in RM
14. Only if a call is accepted (i.e., does not raise an exception) does RM 14 place some
semantic restrictions on the behavior to be provided by an implementation.

sq. Although the word "file" suggests storage devices, the definition given in the first sentence
of RM 14.1/1 is broad enough to include any I/O device (such as terminals, sensors, etc.). -.

1to. AlWhough the RM states that "The values transferred for a given file must all be of one type" '
(RM 14.1/2), an implementation that allows more than one internal file to be associated with a
given external file can allow values of different types to be transferred between the external file -
and the internal files. -

Changes from July 1982

si i. There are no significant changes.

Changes from July 1980

S12. The package defining general user-level input-output has been changed to the two generic
packages, DIRECT_10 and SEQUENTIAL_10.
S13. The mode of a file is no longer associated with the file type but is given by an enumeration
value.

Test Objectives and Design Guidelines

T1. Check whether sequential and direct files can be instantiated for unconstrained array types
and types with discriminants (see IG 14.2.1/T).

T2. Check whether an external file can be associated with more than one internal file (see IG
14.2.1/17).

T3. Check that the i/O exceptions must be named with expanded names if, for exampe, a use
clause names both TEXT_10 and an instantiation of SEQUENTIAL_1O (see IG 8.4/T6).

U..

* 14-2 5-

%-"-.

..

Version 1 (Dec 86) 14.2.1 File Management

14.2 Sequential and Direct Files
%F

Semantic Ramifications -h
S

Changes from July 1982

S1. There are no significant changes.

Changes from July 1980

S2. The position in a direct file is expressed by an integer of type COUNT instead of FILE-
-INDEX.

S3. The definition of current size has been changed. The current size is the index of the last
element (previously called end position). The previous definition of current size is not
associated with any term.

s4. The current index is the index used for the next read or write on direct access 1/O.
Previously, there existed a separate current read position and current write position. .

14.2.1 File Management

Semantic Ramifications

S1. STORAGE ERROR can be raised by any subprogram call if storage is not sufficient (RM
11.1/8). Nothing in RM 14 limits the exceptions raised by any subprogram to just those
exceptions declared in 10 EXCEPTIONS.

S2. Suppose that the name specified by CREATE includes the name of a directory to which a
user only has read access, and that CREATE specifies that a file is to be opened for writing.
NAMEERROR could be raised on the basis that a writable external file cannot be identified
(RM 14.2.1/4). It would be preferable, however, to raise USEERROR, on the basis that the
environment does not support creation of the file for writing. "-,

S3. If the name specified by CREATE identifies an existing external file, then an
implementation may either rai e USE__ERROR. may overwrite the existing external file (RM
14.4/5), or may create a new file with the same name and a different version (if the operating
system supports files with multiple versions).

s4. OPEN can only be used successfully for external files that already exist. In particular, if an
attempt is made to open a nonexistent external file for writing, then the exception NAME-

ERROR must be raised; it is not permitted for such an OPEN to have the same effect as
CREATE.

S5. It is possible to CREATE a file wi mode IN_FILE (RM 14.2.1/3). An implementation is
allowed to raise USE ERROR for such a call. If USEERROR is not raised, the effect of
attempting to read such a file is not defined by the RM. In particular, creating a file in INFILE
mode is not equivalent to:

CREATE (F1, OUT FTLt, k ' I"):

RESET (FI, TN_F1LR)

The effect of attempting to read a file created in IN_FILE mode is implementation-dependent,
but this is not so if the file is created in OUT FILE mode and then RESET to INFILE mode. In
particular, for TEXT. 10, if SKIPPAGE is called after RESET, no exception should be raised,
since the TEXT 10 RESET operation would output a line terminator, a page terminator, and a

• ,. . file terminator (RM 14.3 1/4). Thus. SKIP PAGE would read past the line terminator and the

14-3

14.2.1 File Management Version 1 (Dec 86)

page terminator without raising an exception (RM 14.3.4/17-19). If SKIP PAGE were called .,
after creating a file in IN FILE mode, END ERROR might be raised (since the file is empty), but -- '. :,
such behavior is not required by the RM; the length and contents of such a file are undefined.
,.. The string returned by the NAME function should correspond to a full specification of the
name. This will include the version number if the operating system supports multiple versions of
an external file. It will also include the path to the external file if the operating system supports
multiple directories, or if search rules are applied to identity an external file.
S7. Consider the following:

OPEN (F, OUTFILE, "Test. ,

NAMESTR := new STRING' (NAME (i)),
DELETE (F); -- (i)
OPEN (Fl, OUT FILE, NAM STR.all)- -- (2)
OPEN (F2, OUTFILE,. "Test"); -- (3)

If no exception is raised at (1), then the OPEN at (2) must raise NAME_ERROR, since the
" external file no longer exists (RM 14.2.1/7) and the result of the NAME funciion uniquely

identifies an external file. If the environment allows multiple versions of a "I,,, or f a search rule
'4 is applied to identify an external file belonging to one of several airectorfes. th~er' .he OPEN in

(3) will not raise NAMEERROR if either an liarlier version of the externai file or a !le ir, arnotter
directory satisfies the short name "Test."

ss. The RM's definitions of CREATE and DELETE imply that external files can be dynamically
created and deleted during program execution. Some operating systems or Ada
implementations may, however, require that all external files to be used by a program be
declared to the operating system before program execution starts, and may allow deletion of an .- "
external file only after program execution has ended. The RM allows an implementation to '' J

always raise USEERROR when CREATE is called in such environments. However, the RM -
also allows (and users would probably prefer) CREATE with mode OUTFILE to have the same
effect as OPENing an existing external file in mode OUTFILE.
sg. The correct semantic effects of dynamic deletion are determined by the effects on a
subsequent CREATE and OPEN. If no exception is raised when DELETE is called, then:

" the external file must "no longer exist;"

" a subsequent CREATE of the same external file should succeed,
" a subsequent OPEN of the same external file must raise an exr.,ption.

If no exception is raised by DELETE, 'hese semantic eff.;cts musi be maintained even if the
environment does not actually support ,/nmic deletion c' files.
sio. The status of open external files-z it 'the. end of the main prigram' , execultion is !_,ndefined.

In particular, there is no requiremert to flush the buffers associated with any fie.- left open.
Thus, what data is In such external files is implementation -dependent.
sil. The string returned by FORM must be a vali, str hg (according to the implementation's
Appendix F) for use in a subsequent OPEN of the same external file. That string should be
useable for the CREATE of another external filo. a;though, strictiy speaking, the use of the string
for the OPEN of another file is implementation-dependent and may raise the exception USE-

ERROR.
Here is an example of a copy operation that uses the Ftf,. stnng to copy a magret c tape,
preserving the tape format. The assumption is tha, te Z:ORM string is used o dofi,.i; i tape ._.-. .4;,
format, and that when a file is opened for read:ng, its firrnat is determined by ie 1.0 ryster-, if it
is not specified in the FORM argument. Thn eample is base; on tai. " C for mu " 'C- N

,1 44

",, 44"4"
14-4

6~ *6

Version 1 (Dec 86) 14.2.1 File Management 0

procedure COPYTAPE (OLDVOL NO, NEWVOLNO: STRING) is
type ITEM TYPE is array (1 . 100) of INTEGER;

type ACCSTR is access STRING;
ITEM ITEM TYPE; S
FORMSTR ACC_STR"
Fl, F2 FILE TYPE;
package ITEM_10 is new SEQUENTIALIO(ITEMTYPE);
use ITEM 10;
function REPLACE (OLD SUBSTR, NEWSUBSTR, STR STRING)

return STRING is .9
end REPLACE;

begin
OPEN (Fl, IN FILE, "Namel", "-tape ansi -vol " 8 OLD VOL NO);

-- OPEN will determine formatting of tape volume.
FORM STR := new STRING' (FORM(F1));
FORMSTR.all := REPLACE (OLD VOL NO, NEW VOL NO, FORM STR.all);
CREATE (F2, OUT FILE, "Name2", FORM STR.al) ;

-- Same tape format will be used for F2.
loop

READ (Fl, ITEM);
WRITE (F2, ITEM);

end loop;
exception

when END ERROR =>
CLOSE (Fl);
CLOSE F2) ;

end COPYTAPE;

S12. If temporary external files are not given a name by an operating system, the NAME
function will raise USEERROR (RM 14.4/5). Also, a temporary external file may cease to exist
after a CLOSE. Even if the temporary external file does have a name, if it is deleted by the
implementation after it is closed, then a subsequent OPEN using that name will raise NAME-

ERROR (the external file does not exist). For example:

with TEXT 10; use TEXT 10:
procedure P is

type ACC STR is access STRING:
NAMESTR: ACC STR;
F FILE TYPE, S

begin
CREATE (F); -- ()
PUT (F, "Write to the file.");
NAME STR := new STRING' (NAME(F)); -- (2)
CLOSE (F); -- (3)

OPEN (FILE => F, NAME -> NAMESTR.all); -- (4)
end P;

A temporary file is created at (1). USE ERROR may be raised at (2) if the operating system
does not assign names to temporary files. If the temporary file does have a name, then NAME-

ERROR may be raised at (4) if closing the temporary file at (3) causes the temporary file to be
deleted. v..

14-5

V"'..

214.2.1 File Management Version 1 (Dec 86)
.4.

S13. If the CREATE procedure raises USE ERROR or NAME ERROR. the state of the system
should not have been altered. For example, if the external file being created already exists, the , .,

external file should continue to exist if CREATE raises USEERROR because the external file
cannot be replaced. If the file being created did not exist, then it should not exist after CREATE
raised an exception.

S14. Incorrect use of the enumeration literal INOUT FILE as the actual parameter associated
with the formal parameter MODE in the routines CREATE, OPEN, or RESET instantiated for
SEQUENTIAL_10 or TEXT_10 is detected at compile time since INOUT _FILE is not a value of
the corresponding formal type. All other incorrect uses of a mode literal caue USE ERROR to
be raised. For example, if the internal file F is associated with an external sequential ,ead only
file, then: %

RESET (F, INOUTFILE); -- detected at corn.ille t_.:.
RESET (F, OUTFILE). -- raises USE ERROR if not allowed

S15. Ada's OPEN and CLOSE procedures are not necessarily equivalent to the operating .

system operations for opening and closing a file. The Ada OPEN and CLOSE procedures,
respectively, associate an external file with an internal fie and sever the associatior between
the internal file and the external file. It is implementation-dependent when certain operating
system file management operations occur with respect to the Ada OPEN and CLOSE
procedures. Thus, calling OPEN with the same external file name and different internal file
names need not raise an exception: the first OPEN can call the operating system procedures for

accessing the external file; the second OPEN simply associates the "opened" external file with
the file object given in the OPEN call. Such a use of OPEN causes an external file to be shared
by more than one (internal) file object. (Note that STATUSERROR is raised only if OPEN is
called for an internal file that is open, i.e., already associated with an external file.) If the same
external file cannot be shared by two internal files, then USEERROR should be raised when
an attempt is made to associate an internal file with an external file that is already open.

S16. When an external file contains heterogeneous record types - e.g., header records
followed by detail records - it is necessary to open the same external file once for each record
type. An implementation is not required to allow more than one internal file to be associated
with the same external file, but such support can be extremely convenient. Such a capability
allows varying length and different types of records to be read and written. Varying length I/O
can also be supported by allowing instantiations for unconstrained array and record ty!es.

S17. An implementation may allow some forms of file sharing and not others e. g.. opening the
same external file for both reading and writing might not be supported.

S18. File sharing can occur in rather duious ways, e.g., by sharing a file amrorg a±;;s

task type T:
task body T is

SHARED : FILE TYPE:
begin

OPEN (SHARED, "COMMON FILE");

end T;
TASKFAMILY: array (I..10) of T;

Sig. In general, it cannot be detected at compile time whether such a multip e association will
occur; attempts to create such a multiple association must therefore be detected at run time
(when OPEN is called) and raise an exception. If the attempt is not suDoco,-ed by the
implementation (e.g., if an external file can be shared for reading but not for wrt'i , the OPEN
operation should raise USEERROR (RM 14.4/5). -.

14-6
..

,.. -.'..'. . '-% '..' .' .. -.....- / -...-- .4 .; . 4 -.... ... ". 4..... .' . %.--.. . ,-.. ,.-.

Version 1 (Dec 86) 14.2.1 File Management

S20. If several internal files are associatqd with one external file, it is very likely that the
implementation will maintain separate data siructures, independent of all internal files, to

describe characteristics of the externai files. For example, in order to implement DELETE, "a
usage count" may be associated with the external file. Similarly, current size is a property of the
external file (and therefore must be the same for all internal files associated with a given S.

external file). On the other hand, the association between an internal file and an external file
must be stored in the internal file's data structure. Similarly, the current index of a direct file is a
property of an internal file (RM 14.21/4).

S ..

S21. If multiple associations are allowed, then care must be taken in implementing RESET and
DELETE. In the case of RESET .he foilowing choices seem reasonable and are permissible.

raise USEERROR (tha' is, disallow resetting an external file while it is
associated with more than one internal file).

* have the effect of resetting the file propagated automatically to all internal files
associated with the same e.,,ernal file (this would be a natural choice for a tape
file).

* allow different interna! files to have different views of the external file (this could
be natural if the sequential extarnal file resides on a random access device).

In the case of DELETE, the following are possibie choices:

raise USEERROR.

* automatically sever the association between the external file and all of its
internal files (subsequent attempts to access the external file would then raise
STATUS ERROR).

allow access to the external file using the other internal file associations, and
delete the external file as soon as all these associations are severed. Any
attempt to OPEN the file using the same file name must raise an exception. An
attempt to CREATE a file using the same name should probably raise USE-
_ERROR if the tile is not yet deleted.

S22. The association between an external f;ie and an internal file is not necessarily severed
automatically when the internal file ceases to exist, as in the following example.

package INT IO is new SEQUENTIAL 10 (INTEGER);
procedure IRRESPONSIBIXFATHER is

SON : INT - .FILE 'YPE;
begin

INT IO.CREATE (SON, NAME => "HIS NAME");
end IRRESPONSIBLE FATHER;

The effect of calling IRRESPONSIBLE-FATHER is implementation-dependent with respect to
the existence or the content of the external file ("HISNAME").

S23. If the input-output packaxJeF u ,. tasking to provide file access synchronization, and ,
instantiation of the packages, or aecalratiof of a file object, or invocation of one of the
package's procedures causes task obiects (or task access types) to be declared, then all such
objects (or, in the case of an access rype, all task objects designated by objects of the access
type) will depend (RM 9.4/1.4) or, the i.- narmost block, procedure body, or task body containing
such declarations, and such a b 2 ' ,dure, or task cannot terminate until all its dependent

, .~. ;:. tasks have terminated. The . eanism for ensuring synchronous termination of
dependent tasks is the selectivr, wai witt . .ermlnate alternative (RM 9.7.1), which should be 5,

14-7 .

%-

, I

,_._, "-- i '. ' p[_'% T, -. ..%, ..% % " " "." -"' ". ". .', " " "•-° --." ." -" ."

14.2.1 File Management Version 1 (Dec 86)

used by the implementation. If no innermost block, procedure body, or task body exists, then
the context must be that of a library package. The termination of tasks that depend on library
packages does not affect the termination of the main program (and vice versa). Hence, if the "-""
input-output packages are instantiated as library packages, and tasks are activated that depend
on these instantlations, the completion of the main program is not affected by the execution of
these tasks (see IG 9.4/S). e:

S24. The number of external files that can be simultaneously open is implementation-defined. ,

S25. An implementation need not support the RESET operation (i.e., USEERROR can be
raised). Note that the resetting of a file to a specific MODE could raise USEERROR if the
MODE specified is not supported by the implementation.

Changes from July 1982

S26. OPEN raises the exception NAMEERROR if no external file exists with the specified
name.

S27. RESET raises the exception USE_- ERROR if the environment does not support resetting to
the specified mode for the external file.

Changes from July 1980

S29. The specifications of the subprograms CREATE, OPEN, CLOSE, DELETE, NAME, and
ISOPEN have changed significantly.

S29. INFILE, OUTFILE, and INOUT FILE are enumeration literals, whereas previously they
were file types.

S30. The reasons for raising NAME ERROR by CREATE have changed. Previously, NAME- .--.- , "..
_ERROR was raised if creation of the external file was prohibited (e.g., the external file already
existed). Now, it is raised it the string does not allow identification of an external file.

S31. The reasons for raising NAME_ERROR by OPEN have changed. Previously, NAME-
ERROR was raised if no such external file existed or if its access was prohibited. Now. it is

raised if the string does not allow identification of an external file; In particular, if no external file
with the given name exists.

S32. The exception USEERROR for CREATE, OPEN, and DELETE has been added.

S33. Previously, DELETE would flag the file for deletion and the external file would cease to
exist as soon as it was no longer associated with any internal file.

S34. DELETE no longer raises the exception NAMEERROR; it now raises the exception
STATUSERROR.

S35. The procedure RESET has been added.

S36. The function MODE has been added.

S37. The function FORM has been added.

Exception Conditions

The set of exceptions that can be raised is not limited to the following. Any predefined
exception can be propagated by any of the subprograms defined in the input-output packages,
as well as (unnameable) exceptions defined within the subprograms. All such additional
exceptions must be mentioned in Appendix F for a given implementation.

14-8

Version I (Dec 86) 14.2.1 File Management S

CREATE Exceptions

El. STATUSERROR is raised if the internal file is already associated with an external file (RM
14.2.1/4). JP.

E2. NAME ERROR is raised if the NAME string does not identify an external file (RM
14.2.1/4), e.g., because the name contains an illegal character, is too long, or is ill-formed
in some way.,,

E3. USEERROR Is raised if the environment does not support the creation of an external file
for the specified mode with the given name (RM 14.2.1/4), e.g., because the named
external file already exists and cannot be overwritten (RM 14.4/5). USEERROR is also
raised if the FORM string Is not acceptable to the implementation (RM 14.2.1/4).

E4. DEVICEERROR is raised if the external file cannot be created because of a malfunction
of the underlying system (RM 14.4/6). -.

E5. STORAGEERROR is raised if insufficient storage exists to permit creation of data -..

structures associated with an internal file.

OPEN Exceptions

E6. STATUSERROR is raised if the internal file is already associated with an external file (RM
14.2.1/7).

E7. NAME ERROR is raised if the NAME string does not identify an existing external file (RM
14.2.1/7), e.g., because the name is illegal or an .6Atemal file with the specified name does .3-- .

not exist.

ES. USEERROR Is raised if the environment does not support the opening of an external file
for the specified mode with the given name (RM 14.2.1/7). USEERROR is also raised if
the FORM string is not acceptable to the implementation (RM 14.2.1/4).

E9. DEVICEERROR is raised if the external file cannot be opened because of a malfunction
of the underlying system (RM 14.4/6).

E10. STORAGEERROR Is raised if insufficient storage exists to permit creation of data
structures associated with an internal file.

CLOSE Exceptions

ElI. STATUS ERROR is raised if the internal file is not associated with an external file (RM
14.2.1/10).

E12. DEVICEERROR is raised if the external file cannot be closed because of a malfunction of
the underlying system (RM 14.4/6).

DELETE Exceptions

E13. STATUSERROR Is raised if the internal file is not associated with an external file (RM 0
14.2.1/13).

E14. USEERROR is raised if deletion is not supported by the environment or the external file
cannot be deleted (RM 14.2.1/13).

E15. DEVICE ERROR is raised if the external Mue cannot be deleted because of a malfunction
,%W- S of the underlying system (RM 14.4/6).

,.. . -.

14-9 0

',e .,Ag

14.2.1 File Management Version 1 (Dec 86)

RESET Exceptions.....

E16. STATUSERROR is raised if the internal file is not associated with an external file (RM
14.2.1/16).

E17. USEERROR is raised if the environment does not allow the external file to be reset to the
specified mode (RM 14.2.1/16).

E18. MODEERROR is raised if RESET attempts to change the mode of a file that is serving as ,
the current default input or default output file (RM 14.3.1/5).

E19. DEVICEERROR is raised if the external file cannot be reset because of a malfunction of
the underlying system (RM 14.4/6).

MODE Exceptions

E20. STATUSERROR is raised if the internal file is not associated with an external file (RM14.2.1/19).

NAME Exceptions

E21. STATUSERROR is raised if the internal file is not associated with an external file (RM
14.2.1/22).

FORM Exceptions
E22. STATUS ERROR is raised if the internal file is not associated with an external file (RM14.2.1/25). .', . -

Test Objectives and Design Guidelines

TI. Check that SEQUENTIAL_10 and DIRECT_10 can be instantiated with boolean, integer,
constrained string, enumeration, character, access, constrained array, record without
discriminants or whose discriminants have defaults, fixed point, floating point, and private
types.

Check whether SEQUENTIAL_10 or DIRECT_10 can be instantiated with an
unconstrained array type (including STRING), or a record type with discriminants (without
defaults).
Check that SEQUENTIAL 10 and DIRECT 10 cannot be instantiated for limited types
(including task types, and composite types containing limited components).

T2. Check to see that the exception STATUSERROR is raised for SEQUENTIAL_10 or
DIRECT_10 when:

*an internal file is open and an attempt is made to CREATE or OPEN the I..

internal file;
* an internal file is not open and an attempt is made to CLOSE, DELETE, or

RESET a file, or to determine the MODE, NAME, or FORM of a file.

Check that NAMEERROR is raised for SEQUENTIAL_10 and DIRECT_10 when the %
name string does not identify an external file for an OPEN or CREATE operation on files of "A,

type SEQUENTIAL_10 or DIRECT_10.
Implementation Guideline: Use macro definitions for different implementations. Include a case where the
external file does not already exist when an OPEN is attempted for an OUTFILE. ..
Check that USEERROR is raised for SEQUENTIAL_10 and DIRECT_1O for operations

not supported by the implementation.

14-10

z f* C..- . . t e
L_..:: .". - ". "" :" :~~~~~~-i ,..... '% A . . * ,. . . , . . ., . ,. ..

Verson 1(Dec86)14.2.1 File Management

Implementaton Gutde/ine "r "

*for an OPEN of a fle of rrc ooe J'.i F 'r INCUT..PILE;

efor a CREATE of a file of -n~aia ilx VKF C~i; lFFI . or iNOUTFILE;

*for a RESET of a file to rodi,;.,. F1_ .UT i. of INOLrT_FiLE;

" when an implementation (Ie -r-,. ~~'
" when an implementation does nc' i*! il.~i

T3. Check that ISOPEN retujrns thf n,'~ values for files of type SEQUENTIAL_10 or
DIRECT_10 in the following case ;

" after the internal file is dca but before it is open or created,

* following CREATE (botli) ,ca~u and unsuccessful),

" after a successful GLOSl;-

lb following OPEN (ooth s-jc~ u,! 4:d wnsuccessful),

" after a RESET,

" after' a DEL.ETE.

T4. Check that a file can! be cio i o:z r : Open for SEQUENTIAL_10 and DIRECTJ10.

Check that the name returned by NAME can be used in a subsequent OPEN for
SEQUENTIALI0 and DIRECT_i0.
Implementation Guideline: Cluse the fie ioowing the call to NAME, then re-open it. Otherwise the test would
not be possible in an Implementation that does not permit multiple internal files to be associated with an y
external file.

T5. Check that CREATE is permitted for a t'e of mode INFILE.
Implementation Guideline. Cli&eck volether USE ERROR is raised.

T6. After a successful DELETE of ar.zata file, check that the name of the external file can
be used in a CREATE operation. Cnheck that an OPEN operation using the file name
raises NAME ERROR.

17. For SEQUENTIAL_10 or DIETI>check whether or not more than one internal file
may be associated with the sa-ta eyterna) file.

Check whether two iritornai fli'es with difVerent ELEMENTTYPEs may be associated with
the same external file.
lmplamentqtion Guid,3'i'e i ec b~j : rsiitq olt'l ftie, and than by opening the created external file with
another inter na! file I ,A

Implementation Guidafirie. -~~I'. w !> F teo: F 'I fis a pe, manent file or a temporary file.

Implementation Guideline. Delsi-.;r.c ,'t- a,- 6eitefnai fMe may be associated with both an internal direct
tile and an internal saquer'tial' ;te
Implem entarkir Guidelin. ''ir:i,. :Ilerc-n types to the same external file and cheek whether A
they can be read .00. ti -A ti lh,4!, a diffrent ordr. .

T8. Check that an extei_., t~ file specified by a null string name is not
accessible~~~~~~ afe-cT ~i~ v. .~ . and that an external file specified bya

non-null string narri Is aces ~ ~ ~ maeinof the main program.
Implementationi Gud ne .-. -y exterrar' file is deleted after it is closed, and that the
NAME function may 'asa ISE vf;:6 has 11o name.
lmplementatror' Guidelie !r J"t. 'v n1 th,. sequential file and write data into it; the second,

to read the data fro-.

Check that if two files ;ireo it :iames specified, distinct temporary external
files are created.

14.2.1 File Management Version I (Dec 86)
.!"

T9. Check that the default modes for CREATE are OUTFILE for sequential and text files, and
INOUT FILE for direct files. .,"-

T10. For SEQUENTIAL_10 and DIRECT_10, check that an external file ceases to exist after a
successful DELETE, and that the NAME of the external file can be used in a CREATE
operation.
Imlementation Guideline: Attempt to OPEN the deleted file.

Check whether or not an external file associated with more than one internal file may be
DELETEd.

T1 1. For SEQUENTIAL_10 and DIRECT_10, check:

" the file remains open after a RESET;

" a successful RESET will read and write its elements from the beginning of the
file.
Implementation Guideine: For direct files, check that the current index is set to one after a
successful RESET.

" a supplied MODE parameter in a RESET changes the mode of a given file. If
no mode parameter is supplied, then the mode remains the same as it was
before the RESET.

Check the effect of resetting an internal file upon other internal files accessing the same
external file.

T12. Check that an instantiation of SEQUENTIAL_10 Is needed before the following
subprograms can be used: CREATE, CLOSE, OPEN, RESET, MODE, NAME, FORM,
IS OPEN, ENDOFFILE, DELETE.

Check that an instantlation of DIRECT 10 is needed before the following subprograms can
be used: CREATE, CLOSE, OPEN, RESET, MODE, NAME, FORM, ISOPEN, ENDOF-
-FILE, DELETE, SETINDEX, INDEX, SIZE.

Check that TEXT.O gives access to the following subprograms: CREATE, CLOSE,
OPEN, RESET, MODE, NAME, FORM, ISOPEN, ENDOFFILE, DELETE, SETINPUT,
SET OUTPUT, STANDARDINPUT, STANDARDOUTPUT, CURRENTINPUT,
CURRENT OUTPUT, SET LINE LENGTH, SET PAGELENGTH, LINE LENGTH,
PAGE LENGTH, NEWLINE, SKIP_LINE, ENDOF_LINE, NEWPAGE, SKIPPAGE,
ENDOF_PAGE, SETCOL, SETLINE, COL, LINE, PAGE, GET (for types CHARACTER
and STRING), GETLINE, PUT (for types CHARACTER and STRING), and PUTLINE.

T13. Check that the subprograms CREATE, OPEN, CLOSE, DELETE, RESET, MODE, NAME,
FORM, and ISOPEN are available for SEQUENTIAL_10 and DIRECT_10, and that the
subprograms have the correct formal parameter names.

T14. Check that FILETYPE is limited.

T15. Check whether USEERROR is raised by the SEQUENTIAL_10 and DIRECT_10 CREATE
when a named external file already exists and OUTFILE is specified as the mode.

T16. Check that the mode INOUTFILE is not allowed for SEQUENTIAL_10.

T17. Determine, for SEQUENTIAL_10 and DIRECT_10, the number of internal files an
implementation can support.

TIS. For SEQUENTIAL_10 and DIRECT_10, check that a null string for FORM specifies the use
of the default options of the implementation, as specified in Appendix F, for the external
file.

14-12

.# o . • • % , . % . " . .. ' .. , -. .° . . . '. *. . . , % % ", % % ". % , "

I'KMw r WW
NAMu. w

Version 1 (Dec 86) 14.2.2 Sequential Input-Output

T19. For SEQUENTIAL_10 and ,,IRECT_10, check that FORM returns the form string for the
external file.

T20. For SEQUENTIAL_10 and DIRECT 10, check that if the implementation allows alternate
forms of the name or form, that FORM and NAME return a full specification of the name 0
and form. -A

T21. For SEQUENTIAL_10 and DIRECT_10, check whether CREATE, OPEN, RESET, and
CLOSE operate on flies of all supported data types (see IG 14.2.2/T and IG 14.2.4MT).

14.2.2 Sequential Input-Output

Semantic Ramifications

S1. STORAGEERROR can be raised by any subprogram call if storage is not sufficient (RM
11.1/8). Nothing in RM 14 limits the exceptions raised by any subprogram to just those
exceptions declared in 10_EXCEPTIONS.

S2. If a READ operation for SEQUENTIAL_I raises the exception DATA-ERROR, then the
following READ operation reads the next element.

S3. Consider the following:

CREATE (DATAFILE, OUT FILE, "DATA FILE");
WRITE (DATAFILE, DATAI);
WRITE (DATA FILE, DATA2);
WRITE (DATAFILE, DATA3);
RESET (DATAFILE, IN FILE);
READ (DATA_FILE, DATA4);
READ (DATAFILE, DATA5);
READ (DATA FILE, DATA6):
READ (DATA_FITZ, DATA7).

The file will contain three elements. When the RESET operation is performed, the READ
operation will read the element at the beginning of the file. The last READ operation raises
ENDERROR since there are no mor-e elements to read from the given file.

In the following example:

CREATE (DATA FILE, OUT FILE, "DATA-FILE"):
WRITE (DATAFILE, DATA1)-'
WRITE kDATA JILE, DATA2); 0
WRITE (DATA FILE, DATA3);
RESET (DATA FILE);
WRITE (DATA ILE, DATA4);
CLOSE (DATAFILE);

DATA4 is written at the beginning of the file. The number of elements in the file can either be
one element or three elements. Since RM 14.2.2/6 does not specify that the element written
becomes the last element of the file, it Is Implementation-dependent which element is the last
element.

s4. If an existing file is opened in OUT FILE mode with a null FORM parameter, then the
WRITE operation will be performed at the beginning of the file. An implementation may also
allow the FORM parameter to be useo to specify that writing starts at the end of the file. -

S5. In the definition of READ, the use of the phrase "can be interpreted as a value of the type"
instead of "is a value of the type' is deliberate. Consider a main program:

14-13

44

i14.2.2 Sequential Input-Output Version 1 (Dec 86)

pr~ocedure MAIN is i -

type T is ..-- (1)
Type T is created at the Instant at which elaboration of the declaration at (1) ends. In particular,
diffellent excutions of the same program create different types. If the value read from a file
were requied to be of the proper type, fifes could not be used to exchange information between
pograms, Including different executions of the same program.
so. The RM says DATAERROR Is raised If the value read "cannot be interpreted as a value
(of the type used to Instantiate SEQUENTIAL_10)." The RM also says this check need not be
performed by all implementations. Now consider the following examples:

J..

package SEQ WR is new SEQUENTIAL 1O (INTEGER);
package SEQRD is new SEQUENTIALIO (POSITIVE);
use SEQKR, SEQ.RD;
ELEN : POSITIVE;
FILEWR : SEQ_WR.FILE TYPE;
FILE RD : SEQRD FILETYPE;

CREATE (FILE_WR, OUTFILE, "TEMP");
WRITE (FILEWR, -100);
WRITE (FILE WR, 5);
CLOSE (FILE WR);

OPEN (FILE RD, IN FILE, "TEMG");
A (VILE RD, ELEM); -- exception raised here

An implementation could raise USEERROR for SEQ_RD.OPEN since the subtype of the -'-

elements in the file being opened is not compatible with the subtype used when writing the file
(see RM 14.4/5). (This difference could be detected if SEQWR.CREATE stored appropriate
information in the created file). Assuming, however, that USE ERROR is not raised, SEQ-

.- RD.READ can raise either DATAERROR or CONSTRAINTERROR or no exception at all.
DATA ERROR can be raised because the value being read, -100, although a value of
POSITIVE's base type, is not a value of the subtype used to Instantiate SEQUENTIAL_10. Note
that this check can be indicated In the body of READ as follows:

if VALUE READ not in ELEMENT TYPE then
raise DATA-ERROR;

end if;

S7. Alternatively, the assignment to the formal parameter, ITEM, implies a check:

begin
ITEM : VALUEREAD;

exception
when CONSTRAINT ERROR ->

raise DATAERROR;
end:

so. Although such statements can be written inside a generic body, an optimizing compiler is
allowed to eliminate the code that actually makes the indicated checks, since VALUE READ
has the subtype ELEMENTTYPE, and so does ITEM. An implementation is allowed to
assume that a variable has a value that satisfies its subtype, and so:

VALUE READ not in ELEMENT TYPE

should always be identically TRUE. If a compiler does not exploit this optimization opportunity,
however, it will be possible to raise DATAERROR.

14-14

Version 1 (Dec 86) 14.2.2 Sequential Input-Output S

S9. If DATAERROR is not raised by READ, CONSTRAINTERROR can be raised by the %
assignment of the formal variable to the actual variable, ELEM. However, the constraint check b

,for actual parameters can be omitted by an implementation, since the actual and formal,
parameters have the same subtype. So it is possible that no exception will be raised at all. •

S10. Now let us consider the situation for enumeration types:

type ENUM is (A, 1, C, D, E);
for ENUM use (0, 2, 4, 6, 8);
EELEM : ENUM;
package SEQENUM is new SEQUENTIALIO(ENUM);
ENum FILE : SEQ_ENUR.FILETYPE;

Presumably, when an Implementation writes an ENUM value, it will actually write the value's
integer representation. If so, then the following possibility arises:

OPEN (ENUMFILE, INFILE, "TEMP"); 0
READ (ENUMFILE, Z ELEM); -- (1)
READ (EMO .ILE, E_.LEU); -- (2)

Assuming that we are reading the same TEMP external file that was written for the example with
integers, and assuming the OPEN is successful, then the first READ at (1) would be expected to
raise DATA-ERROR, since the integer value read, -100, is less than the smallest value used to
represent ENUM values. One would expect a cautious implementation to raise DATAERROR
in this case (although the RM does not, of course, require that any exception be raised).

Sli. Suppose that no exception is raised for the first READ and execution proceeds to the
second READ at (2). This call reads the integer value 5. Because of the representation clause
given for ENUM, there is no ENUM value whose representation is 5, and so DATAERROR can
be raised. However, since 5 lies in the range of values used to represent ENUM values, the
only way an implementation can detect that 5 does not represent an ENUM value is to check
explicitly to see whether 5 is a valid representation for an ENUM value. Such a check may well
be considered "too complex" (RM 14.2.2/4), and may be omitted by an implementation.
Moreover, the check could not be written in Ada, since READ is a generic procedure. There is
no way to generate all possible values of ELEMENTTYPE within the generic unit
SEQUENTIAL_10, since ELEMENT-TYPE is private. %

S12. For composite types, additional considerations come into play: r 4,

subtype STR10 is STRING(1 .. 10);

package SEQSTR is new SEQUENTIAL 10 (STRING); •
package SEQSTR10 is new SEQUENTIAL_10 (STR10);

STR10 ELEM STR0-;
STR FILE SEQ_STR.FILE TYPE;
sTR71oFILE SEQSTR10.FILE TYPE;

CREATE (STR FILE, OUT FILE, "TEMP");
WRITE (STRFILE, (1 . 5 => 'A'));
WRITE (STRFILE, (1. 11 > 'B'));
CLOSE (STRFILE):

OPEN (STR10_FILE, INFILE, "TEMP"); 0
A-'. READ (STR10FILE, STR10 ELEM); -- (1)READ (STR10-FILE, STR10-ELEM); -- (2)

14-15 0

14.2.2 Sequential Input-Output Version 1 (Dec 86)
p..

Assuming the instantiation for SEQ STR is allowed (see IG 14.1/S) and SEQ STR10.OPEN "'"
does not raise USE ERROR, the first READ at (1) should raise DATAERROR. DATA-
_ERROR could be raised relatively easily since the length of the string read does not equal the
length required by the subtype used to instantiate SEQ_STR10. Since an implementation can

* usually detect the length of a record that is read, and since comparing the length against the
expected length is a simple operation, this form of DATAERROR can be expected to be
supported by many implementations (although such support is not, of course, required). The
necessary check can be written as:

if ITEM'CONSTRAINED and ITEM' SIZE /= Size of ValueRead then
raise DATAERROR;

end if; ell

If DATAERROR is not raised, then CONSTRAINTERROR will not be raised either when
READ returns (even by a nonoptimizing compiler) since RM 6.4.1/9 explicitly states that no
constraint check is performed for out parameters when a subprogram returns unless the
parameter has a scalar or access type.
S! 3. The RM does not specify whether the bounds of an array are stored with the value:

STR20 : STRING (11 .. 20);
package SEQ_STR20 is new SEQUENTIALIO (STR20);

If we write to a file using SEQSTR10 and then read from the file using SEQSTR20, an
implementation could raise DATAERROR because the bounds of the written values do not
equal the bounds required for the values that are read, or the Implementation could simply
confirm that the required number of values is read, and then the assignment to the formal
parameter of SEQ_STR20.READ will implicitly change the bounds without raising an exception.
If the bounds of arrays are written and read, then the appropriate check can be written as

if VALUE READ not in ELEMENT TYPE then
raise DATA ERROR;

end if;

Alternatively:

begin
ITEM := ELEMENT TYPE' (VALUE READ);

exception
when CONSTRAINT ERROR =>

raise DATAERROR;
end;

Note that without qualifying VALUEREAD. CONSTRAINTERROR will not be raised as long
as VALUEREAD'LENGTH = 'EM'LENGTH. And, of course, even if the above block is written
in the template for READ, an optimizing compiler is allowed to omit the check implied by the
type qualification, since VALUEREAD must have the subtype ELEMENTTYPE.

S14. Similar reasoning applies to the reading and writing of variant records:

type VRZC (D INTEGER) is
record ... end record:

subtype VREC_3 is VREC(3):

package SEQ_VREC is new SEQUENTIAL 10 (VREC)- -- ?.:
package SEQVREC_3 is new SEQUENTIAL_10 (VREC_3):

14-16 . -..-

Version 1 (Dec 86) 14.2.2 Sequential Input-Output

VREC ELEM VREC(3); ,.-
VREC FILE SEQVREC.FILE TYPE; -'
VREC-3_FILE SEQ-VREC3.FILETYPE;

CREATE (VRECFILE, OUTFILE, "TEMP");
WRITE (VRECFILE, (1, ...));
CLOSE (VREC-FILE);

OPEN (VREC_3_FILE, IN-FILE, "TEMP");
READ (VREC3_FILE, VRECELEM);

If an attempt is made to check the length or the subtype of the value read, DATAERROR can
be raised.

S 5. The RM does not specify in general how an implementation should cope with access
contentions. For example, the RM does not state that a WRITE should not be initiated during
another WRITE, or during a READ, etc. This allows simple implementations of the 1/0
packages (for applications not requiring concurrent access to files) to be interchangeable with
more elaborate implementations.

Changes from July 1982 p
Sis. WRITE raises the exception USEERROR if the capacity of the external file is exceeded.

Changes from July 1980

S17. The specification of the subroutines READ, WRITE, ENDOFFILE have changed
significantly.

S18. INFILE and OUTFILE are enumeration literals, whereas before they were file types.

Sig. The exception MODEERROR for READ, WRITE, and ENDOFFILE has been added.

Exception Conditions

The set of exceptions that can be raised is not limited to the following. Any predefined
exception can be propagated by any of the subprograms defined in the input-output packages,
as well as (unnamable) exceptions defined within the subprograms. All such additional
exceptions must be mentioned In Appendix F for a given implementation.

READ Exceptions

El. STATUSERROR is raised if the file is not associated with an external file (RM 14.2.2/1).

E2. MODE ERROR is raised If the mode is not IN FILE (RM 14.2.2/4).

E3. DEVICEERROR is raised if an external file cannot be read because of a malfunction of
the underlying system (RM 14.4/6).

E4. ENDERROR is raised if no more elements can be read from the given file (RM 14.2.2/4).

E5. DATAERROR is raised if the element read cannot be interpreted as a value of the type %?
ELEMENTTYPE (RM 14.2.2/4). An implementation is allowed to omit this check if
performing the check is too complex.

14-1.

• J
s..°

14.2.2 Sequential Input-Output Version 1 (Dec 86)

WRITE Exceptions "-

E6. STATUS ERROR is raised if the file is not associated with an external file (RM 14.2.2/1).

E7. MODEERROR is raised if the mode is not OUTFILE (RM 14.2.2/7).

E8. USEERROR is raised if the capacity of the external file is exceeded (RM 14.2.2/7).

E9. DEVICE ERROR is raised if the attempt to write to an external file cannot be completed
because of a malfunction of the underlying system (RM 14.416). .

ENDOFFILE Exceptions

El0. STATUSERROR is raised if the file is not associated with an external file (RM 14.2.2/1).

El1. MODEERROR is raised if the mode is not IN-FILE (RM 14.2.2/10).

E12. DEVICEERROR is raised if the check for end of file cannot be completed because of a
malfunction of the underlying system (RM 14.4/6).

Test Objectives and Design Guidelines

T1. Check that READ, WRITE, and END OF FILE are supported for sequential files with
ELEMENTTYPEs integer, boolean, access, enumeration, constrained array, constrained ,
record, float, fixed, and private.
Implementation Guideline: Check that data written can be read. Try reading the data after a RESET or after
closing and opening the file.

Check whether READ, WRITE, and END OF FILE are supported for an unconstrained
record type with discuiminants (with or without default values) and for an unconstrained
array type.

T2. Check that READ, WRITE, and END OF FILE raise STATUS ERROR when applied to a
non-opened sequential file. Check that USE_ERROR is not permitted for this condition.

T3. Check that WRITE raises the exception USEERROR if the capacity of the external file is

exceeded... -

To the extent possible and practical, check that hardware malfunctioning causes DEVICE-
ERROR to be raised by READ and WRITE.

T4. Check that WRITE raises MODEERROR for sequential files of mode INFILE.
Check that READ and ENDOFFILE raise MODEERROR for sequential files of mode

OUTFILE.
T5. Check whether READ for a sequential file raises DATAERROR when an invalid element

is read and that reading can continue after the exception has been handled.
Implementation Guideline: Check whether CONSTRAINTERROR is raised instead of DATAERROR for a
scalar type.
Implementation Guideline: Write to the file elements of one type and read them back as elements of another
type.
Implementation Guideline: Check for value not in subtype (of equal and not equal range length), and for
represented value not valid for enumeration type.

T6. Check that READ for a sequential file raises ENDERROR when there are no more
elements that can be read from the given file.

Check that END OF FILE detects the end of the sequential file correctly.

T7. Check that INOUT FILE is not an acceptable mode for sequential files.

14-18

•'

Version 1 (Dec 86) 14.2.4 Direct Input-Output I
J,

T8. Check that data can be overwritten in the sequential file and the correct values can later be
read. 0.

Check whether overwriting truncates the file to the last element written.

T9. Check that a sequential file instantiation for type CHARACTER can read and write every
ASCII character.

T10. Check that Fortran-like READ and WRITE statements are illegal. U-

J".

14.2.3 Specification of the Package Sequential_ 10

The implications of the SEQUENTIAL_1O package have been discussed in IG 14.2.2. .

14.2.4 Direct Input-Output

Semantic Ramifications

Si. STORAGEERROR can be raised by any subprogram call If storage is not sufficient (RM
11.1/8). Nothing in RM 14 limits the exceptions raised by any subprograms to just those
exceptions declared in 10_EXCEPTIONS.

S2. If a READ operation for DIRECT_10 raises the exception DATAERROR, then the .U
following READ operation reads the next element. In other words, the current index is updated :
even if the exception DATA ERROR is raised. 5-

S3. For a direct file, if the current index is positioned where no element exists, the effect of the
READ operation is implementation-dependent. The READ operation can raise the exception •
DATAERROR, or it can attempt to interpret the garbage as a value of the given type
ELEMENTTYPE, e.g.:

CREATE (F, OUT FILE, "F DIR") ;ez.
WRITE (F, ITEM, 10);
RESET (F, INFILE); -- Next READ will read first item. D
READ (F, ITEM); -- DATA ERROR is raised or the undefined element c

-- is interpreted as a value of type ITEMTYPE.

S4. The size of the file is increased by a WRITE operation, not by a SETINDEX operation. If
the size of the file F is 10, then:

SETINDEX (F, 15); -- SIZE is still 10
-- INDEX is now 15

WRITE (F, ITEM); -- SIZE is now 15 ,
-- INDEX is now 16

Ss. Consider the following:

CREATE (DATA FILE, OUT FILE, "DATA FTLE");
WRITE (DATAFILE, DATA);
WRITE (DATA-FILE, DATA2);
WRITE (DATAFILE, DATA3)"
RESET (DATAFILE, IN FILE);

READ (DATAFILE, DATA4);
READ (DATA FILE, DATAS); -.

-,

14-19

14.2.4 Direct Input-Output Version 1 (Dec 86)

READ (DATAFILE, DATA6);
READ (DATA FILE, DATA7); .

The file will contain three elements. When the RESET operation is performed, the READ
operation will read the element at the beginning of the file. The last READ operation raises
ENDERROR since the current index exceeds the size of the given external file.

In the following example:

CREATE (DATAFILE, OUTFILE, "DATAFILE");
WRITE (DATA_FILE, DATA1);
WRITE (DATAFILE, DATA2);
WRITE (DATAFILE, DATA3);
RESET (DATAFILE);
WRITE (DATAFILE, DATA4);
CLOSE (DATAFILE);

DATA4 is written at the beginning of tlhe file. The number of elements in the file is three
elements.

Furthermore, it an existing file is opened in OUTFILE mode with a null FORM parameter, the
WRITE operation will occur at the beginning of the file. An implementation may also allow the
FORM parameter to be used to specify that writing starts at the end of the file.

S6. A program can attempt to write more than COUNT'LAST file elements. Such an attempt
need not raise an exception, but an implementation is free to raise USEERROR if an attempt is
made to write more than COUNT'LAST elements.

S7. In the definition of READ, the use of the phrase "can be interpreted as a value of the type"
instead of "is a value of the type" is deliberate. Consider a main program:

procedure MAIN is
type T is ... ; -- (1)

Type T is created at the instant at which elaboration of the declaration at (1) ends. In particular,
different executions of the same program create different types. If the value read from a file
were required to be of the proper type, files could not be used to exchange information between
programs, including different executions of the same program.

S8. Note that the RM does not specify in general how an implementation should cope with
access contentions. For example. the RM does not state that a WRITE should not be initiated
during another WRITE, or during a READ, etc. This allows simple implementations of the I/O
packages (for application not requirirg concurrent access to files) to be interchangeable with
more elaborate implementations.

sg. See IG 14.2.2/S for a discussion of when DATA ERROR can be raised.

Changes from July 1982

siO. WRITE raises the exception USEERROR if the capacity of the external file is exceeded.

Sl. SIZE returns the current size of the external file (instead of the number of elements in the
external file) that is associated with the given file.

Changes from July 1990

S12. The specification of the subprograms READ, WRITE, SIZE, and ENDOFFILE have
changed significantly. J-. ,.-.

S13. IN-FILE, OUTFILE, and INOUT FILE are enumeration literals, whereas before they were
file types.

14-20

.1

Version 1 (Dec 86) 14.2.4 Direct Input-Output 9

S14. The exception MODEERROR for READ, WRITE, and ENDOFFILE has been added. ?

sis. The definition of current size has been changed.
S16. The procedure SETINDEX replaces the subprograms SETREAD, RESETREAD, SET- •
_WRITE, and RESETWRITE.

S17. The function INDEX replaces the subprograms NEXTREAD and NEXTWRITE.
sis. The function LAST has been eliminated.

Exception Conditions

The set of exceptions that can be raised is not limited to the following. Any predefined
exception can be propagated by any of the subprograms defined in the input-output packages,
as well as (unnameable) exceptions defined within the subprograms. All such additional
exceptions must be mentioned in Appendix F for a given Implementation.

READ Exceptions

El. STATUSERROR is raised if the file is not associated with an external file (RM 14.2.4/1).
E2. MODE ERROR is raised if the mode of the given file is OUT FILE (RM 14.2.4/4).

E3. DEVICEERROR is raised if the read operation cannot be completed because of a
malfunction of the underlying system (RM 14.4/6). •

E4. END ERROR is raised If the index to be used exceeds the size of the external file (RM
14.2.4 4).

E5. DATA ERROR is raised if the element read cannot be interpreted as a value of the type
ELEMENTTYPE (RM 14.2.4/4). Note that an implementation is allowed to omit this check
if performing this check is too complex.

WRITE Exceptions

E6. STATUS ERROR is raised if the file is not associated with an external file (RM 14.2,4/1).
E7. MODEERROR is raised if the mode of the given file is INFILE (RM 14.2.4/7).

ES. USEERROR is raised if the capacity of the external file is exceeded (RM 14.2.4/7).
E9. DEVICEERROR is raised if the write operation cannot be completed because of a

malfunction of the underlying system (RM 14.46).

SETINDEX Exceptions

El0. STATUSERROR is raised if the file is not associated with an external file (RM 14.2.4/1). '"

El1. DEVICEERROR Is raised if this operation cannot be completed because of a malfunction
of the underlying system (RM 14.4/6).

INDEX Exceptions

E12. STATUSERROR is raised if the file is not associated with an external file (RM 14.2.4/1).

SIZE Exceptions

E13. STATUS ERROR is raised if the file is not associated with an external file (RM 14.2.4/1).

14-21

A0°...F

14.2.4 Direct Input-Output Version 1 (Dec 86)

"...

ENDOFFILE Exceptions
V E14. STATUSERROR is raised if the file is not associated with an external file (RM 14.2.4/1).

E15. MODEERROR is raised if the mode of the given file is OUTFILE (RM 14.2.4/16).

E16. DEVICEERROR is raised if the check for end of file cannot be completed because of a
malfunction of the underlying system (RM 14.4/6).

Test Objectives and Design Guidelines

Ti. Check that READ (with and without parameter FROM), WRITE (with and without
parameter TO), SETINDEX, INDEX, SIZE, and END OF FILE are supported for direct
files with ELEMENTTYPEs, character, integer, boolean, enumeration, access,
constrained array, record without discriminants, floating point, fixed point, and private.

Check whether READ (with or without parameter FROM), WRITE (with or without
parameter TO), SETINDEX, INDEX, SIZE, and ENDOFFILE are supported for an
unconstrained array type and a record type with discriminants (with or without defaults).

Check that data written Into a direct file can be read correctly.
Implementation Guideline: Try reading the data after a RESET, after closing and opening the file again, or aftr
a WRITE while in INOUTFILE mode.
Implementation Guideline: Try writing the data in random positions (leaving gaps so that the data in the direct
file are not contiguous) and then reading them in a different order.

Check that data can be overwritten in the direct file and the correct values can later be
read.
Implementation Guideline: Try while in INOUTFILE mode, and by writing in mode OUTFILE and then
resetting to IN FILE.

Check that rewriting an element does not change the size of the file.

T2. Check that READ, WRITE, INDEX, SETINDEX, SIZE, and ENDOFFILE raise
STATUSERROR when applied to a non-open direct file. USEERROR is not permitted.

T3. Check that WRITE raises the exception USEERROR if the capacity of the external file is
exceeded.

To the extent possible and practical, check that hardware malfunctioning causes DEVICE-
-ERROR to be raised by READ and WRITE.

T4. Check that READ raises MODEERROR when the current mode is OUTFILE.

T5. Check whether READ for DIRECT 0 raises DATAERROR when the current index
corresponds to an undefined element, or when a value read does not belong to ELEMENT-
-TYPE. Check that reading can continue after the exception has been handled.

Check that READ raises ENDERROR when the current index is greater than the current
size.

Check that ENDOFFILE detects the end of a direct file correctly.

T6. For a direct access file of mode IN FILE and mode INOUTFILE, check that. after a
READ, the current read position is incremented by one.

T7. Check that WRITE raises MODE ERROR when the current mode is INFILE.

T8. Check that WRITE does not cause an exception when the TO parameter is greater than
the file size, or when the current index exceeds the size. . .-1

T9. For direct access files of mode OUTFILE and mode INOUT FILE. check that a WRITE to

14-22

.'% "~~~~~~~~.'..-.'.-."..:......... .-... '....-..-...".. •

W-- - - . ." ' - ' , " .- . . "". ,I i '-i " : ' _ . .F ," - , . , ,, '., " ... 'o ". •" . -%

Version I (Dec 86) 14.3 Text Input-Output

a position greater than the current size causes the current index and the file size to be

incremented.

Check that the size of the file is correctly returned by SIZE.

T10. Check that ENDOFFILE raises MODEERROR when the current mode is OUTFILE.
TI 1. Check that INDEX returns the correct index position in the direct file. V.

Implementation Guideline: Use INDEX after several WRITE operations or after WRITE using the TO
parameter.

Check that SETINDEX correctly sets the index position in the direct file.

T13. Check that Fortran-like READ and WRITE statements are illegal.

14.2.5 Specification of the Package Direct_10 .; -

The implications of the DIRECT_10 package have been discussed in IG 14.2.4. I

14.3 Text Input-Output

Semantic Ramifications

S1. The RM prescribes that the standard input and output files are "associated with two
external files" (RM 14.3/5) (emphasis added). This does not preclude the use of an interactive
device for both input and output, since a file Is a sequence of characters; the relationship
between the files and the physical actions that take place on the device is not prescribed by the
language. , ..

S2. The current column, line, and page number, and also the maximum line and page length,
are all properties of an internal file. For example, consider the following:

SOURCE, SINK : FILETYPE;

OPEN (SOURCE, IN FILE, "PIPE FILE");

OPEN (SINK, OUT FILE, "PIPE FILE"); -- if allowed by inplementation

The call

NEW_LINE (SINK);

does not affect the line and column number of SOURCE.

S3. Although NEW LINE, SETCOL, etc. affect properties of internal files (in particular, the
values returned by LINE, COL, and PAGE), the NEWLINE, SET COL, etc. procedures take a -

file value as an In parameter. Hence, the current column, line, and page position cannot be
stored directly In a file value, but must be stored Indirectly. Moreover, although a text file is a
limited private type (see RM 14.3.10) whose implementation is not dictated by the RM, the full.
declaration of FILE TYPE must either be an access or a composite type to ensure that file S
objects never have undefined values:

procedure P is
F : FILETYPE:

begin
SET INPUT(F); -- F is an in parameter

The call to SETINPUT Is defined to raise STATUS.ERROR (RM 14.3.2/4), i.e., the program is

14-23

:S

14.3 Text Input-Output Version I (Dec 86)

not erroneous even though no value has apparently been given to F (see RM 3.2.1/18 and IG ... ,
3.2.1/S). The only way F can be referenced nonerroneously is if the full declaration of FILE- .- , "

_TYPE declares an access type or as a composite type. It would be incorrect to implement
FILETYPE as a scalar type, e.g., an integer type whose value serves as an index into an array
of file control blocks.

S4. Use of a text file as a default file is a property of the internal file, since an attempt to change
the mode of the file raises an exception (see IG 14.3.1/S). Hence, an implementation must
keep track of whether a text file is being used as a default file.

S5. The physical representation of page and line terminators Is implementation-dependent (RM
14.3/7). In particular, an implementation could choose to allow a single ASCII character to
represent a sequence of terminators, e.g., the ASCII FF (form feed) character could represent
the sequence, <line terminator>, <page terminator>.

s6. The RM permits text file output to fixed record media, e.g., cards. The effect of such output
may be to pad lines with spaces, since nothing in the RM forbids such padding.

Changes from July 1982

S7. A line terminator is explicitly defined to have a column number.

Changes from July 1980

So. Files are divided Into pages as well as lines.

so. OPEN, CLOSE, CREATE, DELETE, RESET, MODE, NAME, FORM, and ISOPEN
procedures are explicitly declared within the TEXT_10 package instead of using the INPUT-
_OUTPUT procedures for files of type CHARACTER. *\... ..

Sio. GET and PUT procedures are defined for reading and writing from a parameter of type
STRING.

Test Objectives and Design Guidelines

Ti. Check that the package TEXT_10 exists and that READ and WRITE are not available.

T2. Check that

" FILETYPE is visible and is limited private;

" FILE MODE is visible and has values IN FILE and OUT FILE, but not
INOUT FILE:

" COUNT is visible, COUNT'F'9ST = 0, and COUNT'LAST has an appropriate
implementation-defined value;

" POSITIVECOUNT is a subtype of COUNT, POSITIVE COUNT'FIRST = 1,
and POSITIVECOUNT'LAST = COUNT'LAST:

" FIELD (RM 14.3.7/2) is a subtype of INTEGER, FIELD'FIRST = 0, and
FIELD'LAST has an appropriate implementation-defined value;

* NUMBERBASE (AM 14.3.7/2) is a subtype of INTEGER, with NUMBER-
_BASE'FIRST = 2 and NUMBERBASE'LAST = 16;

* UNBOUNDED is a constant of type COUNT with value zero.

T3. Check that the default input and output files are distinct external files, e.g., check that they
have distinct names.
Implementation Guideline Use the NAME functhon to determine the default file names.

14-24

Version 1 (Dec 86) 14.3.1 File Management S

14.3.1 File Management

Semantic Ramifications

Si. The following example shows how RESET can raise MODE ERROR when attempting to
reset the mode of a file currently serving as a default Input or default output file: '.-

CREATE (FT, OUT FILE):
SET OUTPUT (FT);
RESET (FT, IN_FILE); -- MODEERROR raised

S2. Note that STORAGEERROR can be raised by any subprogram call if storage is not
sufficient (RM 11.1/8). Nothing in RM 14 limits the exceptions raised by any subprogram to just
those exceptions declared in 10_EXCEPTIONS.

S3. Suppose the name specified by CREATE includes the name of a directory to which a user
only has read access, and CREATE specifies that a file is to be opened for writing. NAME-

ERROR could be raised on the basis that a writable external file cannot be identified (RM
14.2.1/4). It would be preferable, however, to raise USEERROR, on the basis that the
environment does not support creation of a file for writing.

s4. If the name specified by CREATE identifies an existing external file, an implementation
may either raise USEERROR or may overwrite the existing file (RM 14.4/5).

S5. Note that OPEN can only be successfully used for files that already exist. If a nonexistent
file is opened for writing, the exception NAMEERROR must be raised; it is not permitted for
such an OPEN to have the same effect as CREATE.

S6. Note that resetting a file to OUTFILE always resets the line and page lengths to
UNBOUNDED (RM 14.3.1/4), even if the previous mode was OUTFILE.

S7. Implementations may require that some, or that all, external text files have a bounded line
length, but the RM specifies that all text files initially have an unbounded line length (RM
14.3.1/2). Although it would be allowed to raise USEERROR when attempting to OPEN or
CREATE files required to have bounded line lengths, this would not be very helpful. Another
approach is to raise USEERROR if PUT attempts to exceed the line length required by the
external file (RM 14.4/5). Note that any attempt to explicitly set the line length for such files
must raise USEERROR if the specified length is UNBOUNDED (RM 14.3.3/5). Hence, an
attempt to set the line length to its current value can raise USEERROR if LINELENGTH = A
UNBOUNDED.

Se. It is possible to call CREATE with mode INFILE (RM 14.2.1/3). An implementation is
allowed to raise USEERROR for such a call. If USEERROR is not raised, then the effect of
attempting to read such a file is not defined by the RM.

sq. The RM's definitions of CREATE and DELETE imply that files can be dynamically created
and deleted during program execution. Some operating systems or Ada implementations may,
however, require that all files to be used by a program be declared to the operating system
before program execution starts. and may allow deletion of a file only after program execution
has ended.
The RM allows an implementation to always raise USEERROR when CREATE is called in
such environments. However, the RM also allows (and users would probably prefer) CREATE
with mode OUTFILE to have the same effect as OPENing an exisitng file in mode OUTFILE.
To see the effect of DELETE in such environments, consider the following sequence of calls:

14-25 0

14.3.1 File Management Version 1 (Dec 86)

1* OPEN (F, OUT FILE, "Test"): .-.. .

", DELETE (F) -- (1)
ODIN (F, OUT FILE, "Test"); -- (2)

If no exception is raised at (1), then the OPEN at (2) must raise NAMEERROR since the file no
longer exists (RM 14.3.1/13). An implementation that does not support dynamic deletion of files
may, however, raise USEERROR at (1) (RM 14.2.1/13).may,.

Changes from July 1982

sio. RESET raises MODEERROR when it attempts to change the mode of a file currently
serving as a default input or default output file.

Changes from July 1980
l.j

Sn i. CREATE and OPEN are defined to set the page and line lengths to UNBOUNDED.

S12. The effect of OPEN and CREATE on the current column, line, and page numbers is
defined.

S13. The effect of CLOSE or RESET on a file of mode OUTFILE is defined.

S14. The effect of RESET on the line and page length is defined.

Sts. The effect of RESET on the current column, line, and page numbers is defined.

Exception Conditions

The set of exceptions that can be raised is not limited to the following. Any predefined
exception can be propagated by any of the subprograms defined in the input-output packages,
as well as (unnameable) exceptions defined within the subprograms. All such additional %.,
exceptions must be mentioned in Appendix F for a given implementation.

CREATE Exceptions

El STATUSERROR is raised If the internal file is already open (RM 14.2.1/4).

E2. NAMEERROR Is raised If the NAME strng does not Identify an external file (RM
14.2.1/4), e.g., because the name contains an illegal character, is too long, or is ill-formed
in some way.

E3. USEERROR is raised if the environment does not support the creation of an external file
for the specified mode with the given name and form (e.g., because the named file already
exists and cannot be overwritten (RM 14.4/5)) (RM 14.2.1/4).

E4. USEERROR is raised if the FORM string is not acceptable to the implementation (RM
14.2.1/4). -'

E5. STORAGEERROR is raised if insufficient storage exists to permit creation of the data
structures associated with the file.

OPEN Exceptions

E6. STATUSERROR is raised if the internal file is already open (RM 14.2.1/7).

E7. NAMEERROR is raised if the NAME string does not Identify an existing external file (RM
14.2.1/7), e.g., because the name is illegal or a file with the specified name does not exist.

ES. USEERROR is raised If the environment doe,; not support the opening of an external file . -

for the specified mode with the given name and form (RM 14 2.1/7).

14-26

S. ,=

Version 1 (Dec 86) 143.1 File Management 0

% Is E9. STORAGE ERROR is raised if insufficient storage exists to permit creation of the data

0 structures associated with the file.

CLOSE Exceptions .

El0. STATUSERROR Is raised if the Internal file is not open (RM 14.2.1/10).

DELETE Exceptions

ElI. STATUSERROR Is raised if the Internal file is not open (RM 14.2.1/13).

E12. USEERROR is raised if the external file cannot be deleted (RM 14.2.1/13; see also IG
14.2.1/S).

RESET Exceptions

E13. STATUSERROR is raised if the internal file is not open (RM 14.2.1/16). 0

E14. MODEERROR is raised if RESET attempts to change the mode of a file serving as the
current default input or default output file (RM 14.2.1/5).

E15. USE ERROR is raised if the environment does not support resetting for the external file
(RM 14.2.1/16).

MODE Exceptions

E16. STATUS_ERROR is raised if the internal file is not open (RM 14.2.1/19).

NAME Exceptlons 0

E17. STATUSERROR is raised if the internal file Is not open (RM 14.2.1/22).

FORM Exceptions

E18. STATUSERROR Is raised if the internal file is not open (RM 14.2.1/25).

Test Objectives and Design Guidelines

T1. Check that the subprograms defined in RM 14.2.1 (CREATE, OPEN, CLOSE, DELETE,
RESET, MODE, NAME, FORM, ISOPEN) and the function ENDOFFILE are available
for text files and have the correct formal parameter names. (END OFFILE is checked in
IG 14.3.4/T8). 0

T2. Check that the following exceptions are raised:

* STATUSERROR when an internal file is open and an attempt is made to
CREATE or OPEN the internal file;

e STATUSERROR when an Internal file is not open and an attempt is made to
CLOSE, DELETE, RESET a file, or determine the MODE, NAME, or FORM of
a file;

* NAMEERROR when the NAME string does not identify an external file for an
OPEN or CREATE; ..
Implementation Guideline. Include a case when the external file does not already exist when an
OPEN is attempted for an OUT FILE.

9 USEERROR when an implementation does not support creating or opening

an external file of the specified mode;

14-27 0

J. "'F 72 - "...*. .

14.3.1 File Lftnagoment Version 1 (Dec 86)

* USE ERROR when an external file cannot be RESET or DELETED. ft.:

0 MODEERROR when attempting to change the mode of a file serving as the _current default input or default output file.

Check whether USEERROR is raised by CREATE and OPEN when a named file already
exists and OUTFILE Is specified as the mode.

T3. Check that after opening (after a CREATE or OPEN) or resetting a file with mode OUT-
_FILE, the page and line length have the value zero.
Implementation Gideine: Include a case that resets a file with current mode IN_FILE to a new mode of
OUT-FILE. as well as resetting an OUTFILE.

" Check that when resetting a file, if the old and new modes are both OUTFILE, the line
and page lengths are still reset to zero.
ImpJementation Guideline: Be sure the line and page lengths are nonzero before RESET is called.

T4. Check that after opening (after a CREATE or OPEN) or resetting a file with either MODE,
the current column, current line, and current page numbers are set to one.
Check that RESET does not close the file.

Check that the MODE parameter in RESET changes the mode of a given file, and if no
mode is supplied, the mode is left as it was before the RESET.

T5. Check that the mode INOUTFILE is not allowed for TEXT_10.

To. Check that closing or resetting an OUTFILE to an IN_FILE has the following effect:

a. if there is no line terminator, a line terminator, page terminator, and file
terminator are written at the end of the file.

b. if there is a line terminator but no page terminator, a page terminator and file :%
terminator are written.

c. if there is a page terminator, a file terminator is written.

T7. Check that ISOPEN returns the proper values:

e after the file Is declared but before it is open or created;-'f.-

* following CREATE (both successful and unsuccessful);
* after a successful CLOSE;

f,..-

* following OPEN (both successful and unsuccessful);

* after a RESET;

* after a DELETE.

T"8. Check that a file may be closed and then re-opened.

Check that the name returned by NAME can be used in a subsequent OPEN.
Impl.mentaon Guideline." Close the file following the call to NAME, then re-open it. Otherwise the test would
not be pomeible for an implementation that does not permit multiple internal files to be associated with an
extm|al file.

T9. Check that CREATE is permitted for an INFILE.

Check whether USEERROR Is raised.
T10. Check that after a successful DELETE of an external file, the NAME of the file can be used

in a CREATE operation. '

14-28

%:

Version 1 (Dec 86) 14.3.2 Default Input and Output Files S

TI 1. Check whether or not more than one internal file may be associated with the same external
file. %
Implementabon Guideline: Check both with permanent and temporary file names.
Implementaton Guideline: Check by creating one file and then opening the created external file under another
internal name.

T12. Check that an external file specified by a null string NAME is not accessible after the
completion of the main program, and an external file specified by a non-null string NAME is
accessible after the completion of the main program.

Check that if two files are created by specifying null names, distinct temporary files are
created.

T13. Check that the default mode for CREATE is OUTFILE for TEXT_10 files (see IG
14.2. 1/T9).

T14. Check that an external file ceases to exist after a successful DELETE.

Check whether or not an external file associated with more than one internal file may be
DELETEd.

Ti 5. Check that resetting a file accessed by more than one internal file does not affect the
internal files that are not reset.

T16. Determine the number of internal files an implementation can support. ,

Ti 7. Check that a null string for FORM specifies the use of the default options of the .1
implementations, as specified In Appendix F, for the external file.

T1 8. Check that FORM returns the form string for the external file.

T19. Check that if the implementation allows alternate forms of the name or form, FORM and S
NAME return a full specification of the form and name.

14.3.2 Default Input and Output Files

Semantic Ramifications
J.-

SI. Note that assignment for file types Is not available, since such types are limited private.
Therefore, the following is illegal.

INPUT : FILE TYPE : CURRENT INPUT: -- illegal

S2. Although the standard Input and standard output files cannot be closed, the current default S

input and current default output files can be closed (and even deleted):

X FILETYPE:

SET INPUT (X);
CLOSE (X); -- current default input file now closed 4..

Subsequent attempts to read from the default Input file will raise STATUSERROR:

GET (CHAR); -- STATUSERROR raised

S3. Although the mode of a default Input or output file cannot be changed by using RESET (RM
14.3.1/5), the mode can be changed by closing the file and reopening it with a different mode:

X FILETYPE;

14-29 S

[J.

14.3.2 D~daiit Input and Output Files Version 1 (Dec 86)

OPEN (X, OUT FILE, "Test");
SET OUTPUT (X);
CLOSE (X); -- no exception
OPEN (X, INFILE, "Test"); -- no exception
PUT (CEAR); -- MODE ERROR is raised

The PUT raises MODEERROR because the default output file, X, now has mode IN-FILE.

Changes from July 1982

There are no significant changes. .

Changes from July 1980

s4. SETINPUT and SETOUTPUT raise MODEERROR when the mode of their arguments
is not correct.

ss. STATUSERROR cannot be raised by CURRENTINPUT and CURRENTOUTPUT.

Exception Conditions

SETINPUT Exceptions

El. STATUSERROR is raised if the given file is not open.

E2. MODEERROR is raised if the mode of the given file is not INFILE.

SETOUTPUT Exceptions

E3. STATUS ERROR is raised if the given file is not open.

E4. MODEERROR is raised if the mode of the given file is not OUTFILE.

Test Objectives and Design Guidelines

T1. Check that the standard input and output files exist and are initially open.

T2. Check that CURRENTINPUT and CURRENTOUTPUT initially correspond to the %

standard files.
Implementation Guidelone: Files cannot be compared for equality, since they have a limited private type. It
should suffice to compare NAME(STANDARDJINPUT) with NAME (CURRENTINPUT).

T3. Check that SET INPUT and SETOUTPUT can be used.

Check that calls to SETINPUT or SETOUTPUT do not redefine or close the
corresponding standard files.

Check that the formal parameter name is FILE.
T4. Check that after the default files have been redefined, input and output on the standard

files is still propely handled.
Implementation Guideline. Us. STANDARDINPUT and STANDARD OUTPUT to denote the files.

T5. Check that the standard input and output files cannot be opened, closed, reset, or deleted.
T6. Check that STATUSERROR is raised when SETINPUT and SETOUTPUT are called

with a closed file.

17 Check that MODEERROR Is raised if the parameter to SETINPUT has mode OUTFILE
or the parameter to SETOUTPUT has mode INFILE.

T8. Check that the file used as the parameter to SET INPUT or SET OUTPUT can be closed,
causing the corresponding default file to become closed.

14-30

- ,,.4..], . S

Version 1 (Dec 86) 14.3.3 Specification of Line and Page Lengths
"'

Check that when the file serving as a default file is closed and reopened with a changed
% "mode, the mode of the default file is also changed.

X"4

14.3.3 Specification of Line and Page Lengths
Semantic Ramifications

S1. It is not permissible to raise USEERROR if, at the time of a call to SETLINELENGTH,
the current column exceeds the value given in the TO parameter. The next PUT operation will
output a NEWLINE (e.g., see RM 14.3.6/6).
S2. A similar consideration applies "} SET PAGE LENGTH. After the call, the current page
will be terminated the next time a NEW LINE operation is performed.

sa. If an implementation requires a bounded line length for an external file, SET LINE- ..
_LENGTH (LINELENGTH) can raise USEERROR, since LINELENGTH is zero after a file is
opened, created, or reset to OUTFILE (see IG 14.3.1/S).

Changes from July 1982

s4. There are no significant changes.

Changes from July 1980

S6. SETPAGELENGTH and PAGELENGTH are added.

S6. The TO parameter subtype does not include negative values, and is a value of type
COUNT, not INTEGER.

M11, Exception Conditions

SETLINELENGTH Exceptions

El. STATUSERROR is raised if the file is not open.

E2. MODEERROR is raised if the file's mode is INFILE.
E3. USEERROR is raised if the specified line length is inappropriate for the external file.

E4. CONSTRAINTERROR is raised if the value of TO is negative or greater than
COUNT'LAST.

SETPAGELENGTH Exceptions

E5. STATUSERROR is raised if the file is not open.

E6. MODEERROR is raised if the file's mode is IN FILE.

E7. USEERROR is raised if the specified page length Is inappropriate for the external file.

E8. CONSTRAINTERROR Is raised if the value of TO is negative or greater than
COUNT'LAST.

LINE LENGTH Exceptions

E9, STATUSERROR is raised if the file is not open.

Ein. MODEERROR is raised if the file's mode Is INFILE.

14-31

,~~~~~-" -. "-.'.':'''....J:'' '.:: t - F"',,:, ...,'*,',,A , " .- -... .--... .,,-.;..-.-....... .,, •.. :.:'

4N

14.3.4 Operations on Columns, Lines, and Pages Version 1 (Dec 86)

PAGE LENGTH Exceptions .. ,.

El1. STATUSERROR is raised if the file is not open. ", " "

E12. MODEERROR is raised if the file's mode is INFILE.

Test Objectives and Design Guidelines

T1. Check that LINELENGTH and PAGELENGTH have the value zero when a file is
created, opened, or reset, and the mode is OUT-FILE (see IG 14.3.1/T3).

Check that when the line and page length are nonzero, line and page terminators are
output at the appropriate points.

Check that SETLINELENGTH and SETPAGELENGTH take parameters of type

COUNT (not INTEGER), and similarly, that LINELENGTH and PAGELENGTH return
values of type COUNT.

Check that when the file parameter is omitted, the current default output file is used.

T2. Check that SETLINELENGTH, SETPAGELENGTH, LINELENGTH, and PAGE-
_LENGTH raise MODEERROR when called with a file of mode INFILE.

T3. Check that SETLINELENGTH, SETPAGELENGTH, LINELENGTH, and PAGE-
LENGTH raise STATUS_ERROR when applied to a closed file.

T4. Check that SET LINELENGTH and SETPAGELENGTH raise USEERROR when the
specified lengths are inappropriate.

T5. Check that the line and page length can be set to a value shorter than the current length of
the line. "

Check that the line and page length can be altered dynamically several times and reset to
zero; check that the zero value is taken to indicate that the length is unbounded.

T6 Check that CONSTRAINTERROR is raised if the value of TO is negative or greater than

COUNT'LAST when COUNT'LAST is less than COUNT'BASE'LAST.

14.3.4 Operations on Columns, Lines, and Pages

Semantic Ramifications

si. Column number, line number, and page number are properties of the internal file, not of the
external file. In particular, if an implementation allows the input and output files to correspond to -
the same external file (as might be the case for an interactive terminal), those quantities will not '4

always have the same value.

S2. Note that NEWLINE always outputs a line terminator before checking to see if the page
length has been exceeded.

S3. Although the RM states that for SETCOL, SETLINE, COL, LINE, and PAGE the default
is the current default output file, this does not preclude performing these operations on the
current default input file. Specifically,

SET COL (CURRENTINPUT, 10):

is perfectly legal.

S4. An implementation may choose to raise USEERROR when SKIPLINE with SPACING > .- >-

1 is attempted on an interactive input device, since USEERROR can be raised "if an operation

14-32

Version 1 (Dec 86) 14.3.4 Operations on Columns, Lines, and Pages

is attempted that is not possible for reasons that depend on characteristics of the external file" ,
(RM 14.4/5).

s5. Because SETCOL for an IN_FILE performs GET operations, the column, line, and page
numbers are updated after each GET. In particular, if ENDERROR is raised, the page number 1,

must reflect the number of page terminators actually read. (Note that after ENDERROR is
raised, the column and line numbers will both be one, since a page terminator is the last entity
read before ENDERROR is raised.)

s6. The phrase "has the effect of calling NEWLINE," used in defining SETCOL and SET-
LINE for an OUT_FILE, and similarly, the phrase "has the effect of calling SKIP-LINE" - used

in the definition of the same operations for an INFILE - imply the proper treatment of the
end-of-page condition.

S7. The semantics of CLOSE (RM 14.3.1/3) and RESET (RM 14.3.1/4) ensure that every text
file is logically terminated with the sequence: line terminator, page terminator, file terminator.
When reading, it is not possible to skip a line terminator at the end of a page without also
skipping the page terminator (see RM 14.3.4/8). Hence, it is not possible to call ENDOFFILE
when positioned after a line terminator and before the sequence, page terminator, file -'

terminator. Hence, RM 14.3.4/24 covers all possible cases.

s8. Note that on input, SETCOL reads until it finds a line having a character at the specified
position. A line terminator is not a character. Now consider a file created by the following calls:

PUT ("ABC"); h

NEW LINE;

NEWLINE;

Assume that the file is RESET for input and that the command SETCOL(4) is issued followed
by GET(CHAR). The character read will be 'G' even though COL equals four after character C
is skipped. This shows that it is incorrect to implement SETCOL by reading until COL equals
the specified value - one must read until COL equals the specified value and ENDOFLINE is
false.

sq. Note that checking for END OFLINE requires reading one character to see if it is a line
terminator (or the beginning of a line terminator sequence). If ENDOFLINE is false, then the
next call to GET should return the character ENDOFLINE looked at, i.e., at least one
character look-ahead is needed to support the ENDOFLINE operation. Depending on how
END OF PAGE is supported, more than one character of look-ahead may be needed to
implement ENDOFPAGE.

si0. Note that if the file is positioned before the final page terminator, ENDOFFILE will be .
true, but SKIPPAGE will not raise ENDERROR, nor will SKIPLINE. It is incorrect to assume
that END OF FILE being TRUE implies that all subsequent read operations will raise END-

ERROR.

Changes from July 1982

si 1. There are no significant changes.

Changes from July 1980

S12. The default file for COL and LINE is specified as the current default output file.

s13. The semantics of SET_COL are defined more precisely for both INFILEs and OUT-
_FILEs.
S14. The semantics of SETLINELENGTH are clarified.

14-33

14.3.4 Operations on Columns, Lines, and Pages Version 1 (DeC 88)

S15. New procedures and semantics are added to account for the existence of page
terminators: NEW PAGE, SKIPPAGE, END OF PAGE, END OFFILE, SET LINE, PAGE. .*\:

Exception Conditions

El. STATUSERROR is raised for each operation when applied to an unopen file.

NEWLINE Exceptions

E2 MODEERROR is raised if the current mode is not OUTFILE.

E3. CONSTRAINTERROR is raised if the SPACING Is less than one or greater than
COUNT'LAST.

SKIPLINE Exceptions

E4. MODEERROR is raised if the current mode is not INFILE.

E5 ENDERROR is raised if the number of lines to be skipped exceeds the number of lines
remaining in the file.

E6. CONSTRAINT ERROR is raised if the SPACING is less than one or greater than
COUNT'LAST.

ENDOFLINE Exceptions

• , E7 MODEERROR Is raised if the current mode is not INFILE.

NEWPAGE Exceptions

E8 MODEERROR is raised if the current mode is not OUTFILE. -

SKIP_PAGE Exceptions

F, MODEERROR Is raised if the current mode is not IN_FILE.

Eio- ENDERROR is raised if the number of pages to be skipped exceeds the number of pages
remaining in the file.

ENDOFPAGE Exceptions
F 1 1 MODEERROR is raised if the current mode is not INFILE.

ENDOFFILE Exceptions

E 2. MODEERROR is raised if the mode is not IN-FILE.

SETCOL Exceptions

E13. LAYOUT ERROR is raised if the mode Is OUT FILE, if the value specified by TO exceeds
LINELENGTH, and if LiNELENGTH is greater than zero.

E14. ENDERROR is raised if the mode Is INFILE and the longest line remaining to be read
has fewer than the required number of characters.

E15. CONSTRAINTERROR is raised if the value of TO Is less than one or greater than
COUNT'LAST.

143

~14-34

Version I (Dec 86) 14.3.4 Operations on Columns, Lines, and Pages 6

SET LINE Exceptions

E16. LAYOUTERROR is raised if the mode is OUTFILE, if the value specified by TO exceeds
PAGELENGTH, and if PAGELENGTH is greater than zero. 0

E17. ENDERROR is raised when the mode is INFILE and an attempt is made to set the line
number past a file terminator.

E18. CONSTRAINTERROR Is raised if the value specified by TO is less than one.

COL Exceptions

E19. LAYOUTERROR is raised if the value of the current column number exceeds
COUNT'LAST.

LINE Exceptions
0

E20. LAYOUTERROR is raised if the value of the current line number exceeds COUNT'LAST.

PAGE Exceptions
.E21. LAYOUTERROR is raised if the value of the current page number exceeds

COUNT'LAST.

Test Objectives and Design Guidelines

Ti. Check that the formal parameters of each operation are named correctly.

T2. Check that NEWLINE:

" raises MODEERROR when the file mode is INFILE.
" has an optional SPACING parameter with default value one.

" operates on the current default output file if no file is specified.

" when the page length is nonzero and the current line number equals (or
exceeds) the maximum page length, NEWLINE outputs a line terminator .
followed by a page terminator, increments the current page number and sets
the current line number to one; check that, if necessary, several page
terminators are output and the page number is incremented by a value greater
than one. Check that empty pages have the appropriate number of line
terminators (i.e., the number specified by the page length).
Implementation Guideline: Try one case where the current line number exceeds the page 'Alength.

" outputs SPACING line terminators when SPACING is greater than one. V

" sets the current column number to one.

" raises CONSTRAINTERROR if SPACING is zero or negative or greater than 0
COUNT'LAST when COUNT'LAST < COUNT'BASE'LAST.

T3. Check that SKIP LINE:

o raises MODEERROR when the file mode Is OUTFILE.

* skips a single line terminator if the SPACING parameter is omitted.

* operates on the current default Input file if the file parameter is omitted.

14-35 S

So. °

14.3.4 Operations on Columns, Lines, and Pages Version 1 (Dec 86)

" is performed SPACING times for a SPACING greater than one.

" sets the current column number to one. %.,

" raises CONSTRAINTERROR if SPACING is zero or negative or greater than I
COUNT'LAST when COUNT'LAST < COUNT'BASE'LAST.

* increments the current line number by one and sets the current column
number to onp if the line terminator is not followed by a page terminator.

" sets the current line and column numbers to one and increments the current
page number by one when the line terminator is followed by a page
terminator.

" raises ENDERROR if an attempt is made to skip a file terminator. .
Implementation Guide/ine: Check that the file terminator is not skipped. Check that the column
number is correct.

T4. Check that END OF LINE:

• raises MODE ERROR when applied to an OUT FILE.

" operates on the current default input file if no file is specified.

* returns the correct value when positioned at the beginning and the end of a
line, and when positioned just before the file terminator.

TS. Check that NEWPAGE:

" outputs a line terminator followed by a page terminator if the current line is not
at column 1 or if the current page is at line 1; if the current line is at column 1,
outputs a page terminator only.

* operates on the current default output file if no file is specified.

" raises MODE.-ERROR if the file specified has mode INFILE.

* increments the current page number and sets the current column and line
numbers to one.

T6 Check tnat SKIPPAGE:

" reads and discards characters and line terminators until a page terminator is
read.

" adds jne to the current page number and sets the current column and line
numoers to one. ,

" raises MODEERROR when the mode of the specified file is not INFILE.

" raises END ERROR when the file is positioned before the file terminator but
not when the file is positioned before the final page terminator.

" operates on the current default Input file when no file is specified.

17. Check that END OF PAGE:

" returns TRUE if positioned just before a file terminator or at the end of a page
(before a line and page terminator) and otherwise returns FALSE.

" returns the same value when called more than once at the same file position -,
(i.e., check that ENDOFPAGE does not advance the file position). ..-.. .

14-36

% ".............

Version 1 (Dec 86) 14.3.4 Operations on Columns, Lines, and Pages p

* raises MODEERROR if the specified file is not of mode IN-FILE. %

* operates on the current default input file when no file is specified.

T8. Check that ENDOFFILE: P

* returns TRUE if positioned before the last page terminator of the file or before
a file terminator, and FALSE otherwise. Vp

" returns the same value when called more than once at the same file position.
Implementation Guideline: Check that END-ERROR is not raised when ENDOFFILE is L
called more than once when the file is positioned before the file terminator.

" raises MODEERROR if the mode of the specified file is not INFILE.

" operates on the current default input file if no file is specified.

T9. Check that SETCOL:

" raises LAYOUTERROR if the line length is bounded and the given column
position exceeds the line length for files of mode OUT FILE.

" raises CONSTRAINT ERROR if the given column position is zero or negative
(even when the file is closed) or greater than COUNT'LAST when
COUNT'LAST < COUNT'BASE'LAST.

" for OUTFILES, if the specified column number is:

* greater than the current column number, outputs spaces until the
specified and actual column numbers are equal;

* less than the current column number, outputs a line terminator and page
terminator if necessary, then outputs the required number of spaces.

" for INFILEs, reads zero or more characters until the specified column number
equals the current column number and END OF LINE is false.

" raises ENDERROR for files of mode INFILE when an attempt is made to set
the column past a file terminator.

" operates on the current default output file if no file is specified.

T1O0. Check that SETLINE:

" raises LAYOUTERROR if the page length is bounded and the given line
number exceeds the page length.

" raises CONSTRAINTERROR if the given line number is zero or negative
(even if the file is closed) or greater than COUNT'LAST when COUNT'LAST <
COUNT'BASE'LAST.

" for OUTFILEs, if the specified line number is:

*greater than the current line number, outputs line terminators until the
current line number equals the specified number;
Implementation Guideline: Try one case where the specified number equals the page
length.

• less than the current line number, outputs a page terminator and then
the required number of line terminators.

14-37 _

14.3.5 GET and PUT Procedures Version 1 (Dec 86)

for INFILEs, skips zero or more lines until the current line number equals the

specified line number. - .

* raises ENDERROR for files of mode INFILE when an attempt is made to set
the current line past a file terminator.

o operates on the current default output file if no file is specified.

Ti 1. Check that COL:

" returns the value of the current column number.

" raises LAYOUTERROR when the value of the column number exceeds
COUNT'LAST.

" operates on the current output file if no file Is specified, and operates on files
of both INFILE and OUTFILE.

T12. Check that LINE:

" returns the value of the current line number.

" raises LAYOUTERROR when the value of the line number exceeds
COUNT'LAST.

" operates on the current output file if no file is specified, and operates on files
of both IN_FILE and OUTFILE.

T1 3. Check that PAGE:

" returns the value of the current page number. -'- '

* raises LAYOUTERROR when the value returned exceeds COUNT'LAST.

" operates on the current output file if no file is specified, and operates on files
of both INFILE and OUTFILE.

T -t Check that all operations raise STATUSERROR when applied to closed files.

.J.

14.3.5 GET and PUT Procedures

Semantic Ramifications

S1. Since the treatment of control characters by TEXT_10 is implementation-dependent (RM
14.3/7). the compiler and the run-time package need not be consistent in the following aspects:

The compiler must consider one or more carriage return, line feed, vertical
tabulate, or form feed, as causing passage to a new line (RM 2.2/3). The
number of line marks signified by a sequence of these characters is
implementation-dependent for the compiler. TEXT_10 may (but need not)
follow the same rule by considering equivalent sequences to form line marks.

When processing program text, the compiler must disallow backspace, delete,
null, and other nongraphic characters other than format effectors, (RM 2.1/1)
and treat horizontal tabulate as a legal separator (AM 2.212). TEXT_10 must
also accept horizontal tabulate when reading numeric input; the treatment of the

*. other nongraphic characters is implementation-dependent. '-.

S2. The first sentence of AM 14.3.5/10 says ENDERROR is raised by a GET procedure "if an

14-38

%V

Version 1 (Dec 86) 14.3.6 Input-Output of Characters and Strings

attempt is made to skip a file terminator." Such attempts occur while skipping line terminators, ,
page terminators, and blanks that precede enumeration or numeric literals (AM 14.3.5/6). Once
reading of a lexical element has begun, the line and page terminator that precede a file
terminator (RM 14.3.1/3, /4) will end the lexical element; hence, ENDERROR will not be l
raised. It should be noted that END ERROR can also be raised when getting a numeric or an
enumeration value from a string (RM 14.3.7/14, RM14.3.8/18, and AM 14.3.9/11) if the string is
null or consists only of spaces and horizontal tabulation characters. Finally, ENDERROR can
be raised by GETLINE (RM 14.3.6/15). 1

S3. When GET or GETLINE is applied to a file associated with an input device, an ,

implementation may choose to assume that a file terminator can never be input, or it may treat a
particular control character (or a sequence of control characters) as signifying a file terminator.
Whether ENDERROR can ever be raised is thus Implementation-dependent. .-.

Changes from July 1982

s4. See IG 14.3.6-9/Changes.

Changes from July 1980

ss. See IG 14.3.6-9/Changes.

Exception Conditions
S

The exceptions raised for each operation are specified in subsequent sections.

El. DEVICEERROR may be raised by any operation due to a system malfunction.

Test Objectives and Design Guidelines

Tests for these functions are specified in the sections discussing TEXT_10 for individual S
data types.

14.3.6 Input-Output of Characters and Strings

Semantic Ramifications

si. GET for strings and characters does not require that the input satisfy the lexical rules for .

string and character literals (unlike GET for numeric and enumeration types). Instead, GET
inputs a sequence of ASCII characters, exclusive of any (control) characters that signify line,
page, or file terminators. The treatment of ASCII control characters is implementation-
dependent (RM 14.3/7). In particular, since the horizontal tabulation character (HT) is a control
character, an attempt to read or write it using the GET and PUT procedures defined in AM
14.3.6 has an implementation-defined effect. Since AM 14.3.5/5-6, however, defines an
implementation-independent effect of reading HT when inputting scalar values, most
implementations will probably define GET and PUT for characters and strings to accept HT as a
value. It is likely that only characters (and character sequences) used to implement line, page,
and file terminators will be ignored by GET. ,

S2. Similarly, PUT for strings simply outputs ASCII character codes, although the treatment of
characters used to signify line, page, and file terminators is implementation-dependent. In
particular, the line and page count need not be affected.

s3. Note that by the definition of GET for strings, no translation is performed on the input. The " '

transliteration rules of AM 2.10 do not apply.

.4. Note that when GETting a string, line and page terminators are skipped over until the

14-39

14.3.6 Input-Output of Characters and Strings Version 1 (Dec 86)

required number of nonterminator characters has been read. If fewer than the required number .. ,
are left to be read, then ENDERROR will be raised.

sr,. Note that GET and PUT operations for characters and strngs can only be applied to a file,
unlike integer, real, and enumeration type operations, which can be applied to strings as well.

s6. Note that the GET and PUT operations for character and string do not have a WIDTH
parameter.
S7. The usual semantics of out parameters and exceptions imply that if ENDERROR is raised
by GET-LINE, the value of the LAST parameter must be unchanged from its value at the time of
call (see RM 6.2/6). Of course, whether the value of the ITEM parameter is affected is not
defined by the language, since ITEM has the type STRING in this case and so is not necessarily
passed by copy. If ENDERROR is raised by GET for characters, the value of the ITEM
parameter is unchanged since ITEM is passed by copy in this case.

s8. RM 14.3.6/13 says that for GETLINE:
Reading stops if the end of the line is met, in which case the procedure SKIPLINE is then
called (in effect) with a spacing of one; reading also stops if the end of the string is met.

This sentence specifies two conditions that are not mutually exclusive. In particular, if the end
of the string and the end of the line occur simultaneously (i.e., if the number of characters
remaining to be read on the line is the same as the length of the string), then the line terminator
is skipped. Hence, when GET LINE is called at the end of a line with a null string parameter,
the effect is equivalent to SKIP-LINE, and the value of LAST is one less than the lower bound
of the ITEM parameter.
S9. After skipping the last page terminator in a file, only the file terminator remains. If GET- .-
_LINE is called, ENDOFLINE is true (RM 14.3.4/12), so no characters are read (the end of " ,
the line has been met) and SKIPLINE is called. The SKIPLINE call attempts to skip the file - . -
terminator, and therefore raises ENDERROR.

Changes from July 1982

s) GET LINE no longer skips leading line terminators.

:' r LAST is the index of the last character replaced, not the number of characters read.

* Changes from July 1980

812. The GET STRING subprogram no longer exists.

S13. The GETLINE subprogram is redefined as a procedure.,

Exception Conditions

GET Exceptions

El. STATUS.ERROR is raised if the file is not open.

E2. MODEERROR is raised if the file's mode is not INFILE.

E3. ENDERROR is raised by GET for characters if only line ana page terminators remain to
be read.

E4. ENDERROR is raised by GET for strings if the number of characters remaining in a file,
exclusive of any characters used to signify line and page terminators, is less than the
length of the ITEM parameter.

14-40

Version 1 (Dec 86) 14.3.6 Input-Output of Characters and Strings

GET LINE Exceptions

E5. STATUSERROR is raised if the file is not open.

E6. MODEERROR is raised if the file's mode is not INFILE.

E7. ENDERROR is raised for GETLINE if and only it no characters, line terminators, or page ,.%

terminators remain to be read.

PUT Exceptions ..

E8. STATUS ERROR is raised if the file is not open.

E9. MODE ERROR is raised if the file's mode is not OUT FILE.

PUTLINE Exceptions

EIO. STATUSERROR is raised if the file is not open.

Eli. MODE ERROR is raised if the file's mode is not OUT FILE.

Test Objectives and Design Guidelines

Ti. Check that GET and PUT for characters and strings, and GETLINE and PUTLINE for -
lines, raise STATUSERROR if the file is not open. .

Check the names of the formal parameters for each of the subprograms.

T2. Check that GET for characters and strings:
'.

" reads ASCII graphic characters (see T7 for control characters).

" allows a STRING to span over more than one line, skipping intervening line
and page terminators,

* accepts a null string actual parameter and a string slice. ,' "

* properly sets the line, page, and column numbers after the operation.t,

" raises MODEERROR for (open) files of mode OUTFILE. -

* can operate on any file of mode IN FILE, and if no file is specified, the current
default input file is used.

T3. Check that the last graphic character in a file may be read without raising ENDERROR,
and that after the last character of the file has been read, any attempt to read further
characters will raise ENDERROR. Check that ENDERROR is raised by:

" GET for characters if only line and page terminators remain in the file.

" GET for STRING if the graphic characters remaining in the file are fewer than
required to fill the string.

" GET LINE if and only if no characters, line terminators, or page terminators
remain to be read (whether or not the ITEM parameter is a null string).
Implementation Guideline: The file must be positioned before the file terminator. .

T4. Check that GET LINE:

e may be called to return an entire line. 0
* may be called to return the remainder of a partly read line.

14-41

VVV.p

14.3.7 Input-Output for Integer Types Version 1 (Dec 86) !o

" if called when the input is at the end of a line will effectively SKIPLINE and ;.. .
return no characters, even when the string parameter is a null string. %..,

" if called with a string exactly equal to the (nonzero) number of characters _
remaining on a line, skips the line terminator after reading all the characters.

*returns in the parameter LAST the index value of the last character read.
Verify that LAST is one less than ITEM's lower bound when no characters are
read.

T5. Check that PUT for character and string parameters:

* does not update the line number if the line length is unbounded, only the
column number. .p

..

" raises MODEERROR for (open) files of mode INFILE.

" outputs a line terminator (and possibly a page terminator) after outputting N
characters, if the line length, L, is bounded (L /- 0), C is the column number
at the time PUT is called, and N is the smallest non-negative number such that
N + C > L; thereafter, outputs a line terminator after outputting L characters
and before outputting the next character.
Implementation Guideline: Be sure no line terminator is output if the string is null or if the last
character output by a call to PUT was in column L.
Implementation Guideline: If the current column number exceeds L when PUT is called, a line . -

terminator is output before any characters are output.

* can operate on any file of mode OUTFILE, and if no file is specified the -.-

current default output file is used. *.-.-, -.-

Check that PUTLINE: --

* will accept a null string and output, correspondingly, a line terminator.
0%

* will output the given string on more than one line when the line length is

bounded and the number of characters to be output is greater than the line
length.

* can be used only for STRING parameters.

7 Ch,?rk the effect of reading and writing control characters. In particular, check to see if:

" reading or writing an HT increments the column count by one and inputs or
outputs an HT character (an increment greater than one is possible if the I
implementation simulates movement to a tab stop).

" all control characters can be written and read, and their effect on line count,
page count, and file termination.
Implementation Guideline: Keep in mind that ASCII NUL or EOT may signify end of file or be ,y
illegal to write.

14.3.7 Input-Output for Integer Types

Semantic Ramifications

Si. Note that a blank is defined as a space or a horizontal tabulation character (RM 14.3.5/5).
Hence, leading spaces or tabs are skipped when reading an integer literal. "

32 When reading with a WIDTH of zero, reading stops when the initial sequence of the syntax

14-42 I

Version 1 (Dec 86) 14.3.7 Input-Output for Integer Types

of an integer literal is no longer satisfied (RM 14.3.5/5, /6). RM 2.4/1 defines an integer literal as
a numeric literal without a decimal point. Hence, the syntax of an integer literal permits a minus
sign in its exponent, although RM 2.4.1/4 imposes an additional restriction that affects the
raising of DATAERROR. Hence, when reading the following input:

14.3X -- next character read is ' .
14EX -- next character read is 'X'
14E-3X -- next character read is 'X'

DATAERROR is raised by GET and the next character to be read is indicated by the
comments. Since lexical elements cannot extend across line boundaries (RM 2.2/1, /2), and
since GET analyzes input sequences of characters as lexical elements (RM 14.3/2), the reading
of a numeric literal stops when a line terminator is encountered.

s3. The syntax of a basedinteger (see RM 2.4.2/2) allows any letter as an extendeddigit.
Therefore, if the input file contains, for example,

16#FGB#

then all characters up to the second # must be read before DATAERROR is raised. It would
be incorrect to leave the input positioned at the letter G. Similarly, if the input contains:

10#ABC#

then the letters must be read.

S4. The letter E in the exponent part, and the letters used as extended digits in based notation, V
may appear in upper or lower case on input (RM 2.4.1/3). No exponent is provided on output.

ss. Numeric literals input in based notation may have the # character replaced uniformly (within
a literal) by : characters (RM 2.10/3), since the usual rules for analyzing lexical elements are
used (RM 14.3/2). The Implementation has the same freedom for output. In particular, if the
compiler runs in an environment supporting the # character, but the object code runs in an
environment supporting only the colon, different forms of literals will be used for input-output
vs. source code.

S6. When WIDTH is nonzero, exactly WIDTH characters are read (unless a line terminator is
seen first; then only characters preceding the line terminator are read):

143e3XYZ

Calling GET with a WIDTH of 6 causes 6 characters to be read. DATA ERROR is raised since
"I 43e3X" does not satisfy the syntax of a numeric literal. Note that DATAERROR would also
be raised if X were a space character. DATAERROR will not be raised if X is replaced with a
line terminator, in which case, only 5 characters will be read.

s7. Note that when WIDTH is nonzero, reading stops when a line terminator is encountered. If
the file is positioned just before the file terminator, END OF LINE is true, but an attempt to read
with a nonzero WIDTH will cause ENDERROR to be raised (RM 14.3.5/10), since a file
terminator is not a line terminator and the attempt to read will encounter the file terminator
without first encountering a line terminator.

se. Note that an attempt to read too large a value raises DATAERROR or CONSTRAINT-
-ERROR, but not NUMERICERROR:

subtype TWO is INTEGER range 0 .. 2:
package INT 10 is new INTEGERIO(TWO);
ITEM TWO RANGE 0 1;
BIG INTEGER:

14-43

14.3.7 Input-Output for Integer Types Version 1 (Dec 86)

U''

LAST : POSITIVE; "':t

INT IO.GET ("3", ITEM, LAST); -- DATA ERROR
INT-IO.GET ("3", BIG, LAST); -- DATAERROR
INT-IO.GET ("lEl0 000 000 000 000", ITEM, LAST); -- DATA_-ERROR
INT IO.GET ("2", ITEM, LAST); -- CONSTRAINT ERROR

The first three calls raise DATAERROR because the values being input exceed the range of
the subtype used to instantiate INT_10. Note that in the second case, DATA-ERROR is raised
even though 3 belongs to BIG's subtype. The last call raises CONSTRAINTERROR because
2 in TWO is TRUE, i.e., 2 belongs to the subtype used to instantiate INTEGER_10, but 2
exceeds 1, the upper bound for ITEM, which is the actual parameter used in the GET call. In
short, DATAERROR is raised if the input value lies outside the range of the subtype used in an
instantiation. CONSTRAINTERROR is raised if the input value lies inside the range of the
subtype used in the instantiation, but outside the range of the actual parameter's subtype.
sg. The minimum length needed to output an integer number to a file depends on the value
being output and on the base of the output. Note that a sign position is needed only for
negative numbers. The minimum number of digits to be output depends on the absolute
magnitude of ITEM's value. The minimum number is 1 if ITEM is zero. Otherwise, the minimum
number of digits is:

floor(logb (abs (ITEM)))+1,

where logb is the logarithm to base b, and the floor function yields the largest integer value less
than or equal to its argument. Hence, floor (1.9) = 1, and floor (2.0) = 2. Some values yielded
by this expression are: *-

ITEM b =10 b - 2
10 2 4
7 1 3
-9 1 4

,',-rpssion BOOLEAN'POS(ITEM <0) yields 1 If ITEM Is negative; otherwise, zero. If the
r.-P se is not 10, then the value of the base plus two # characters are output to form a based
oft ,l. Hence, the minimum field size needed to represent a nonzero integer value is given by

., " Icwitng expression when base Is 10:

BOOLEAN'POS(ITEM < 0) -- minus sign if necessary
floor(loglo(abs (ITEM)))+1) -- number of digits

V, en the base is not 10, the minimum field size is:

BOOLEAN'POS (ITEM < 0) -- minus sign if necessary
+ 1 + BOOLEAN'POS(base > 9) -- 1 or 2 digits for base
+ 1 -- the first # character
+ foor(ogb(abs(ITEM)))+1) -- number of digits
+- - the last # character

Hence, the smallest field size for a base 10 integer Is one; the smallest field for a number out ,'in bases 2 through 9 is four; and the smallest field for a number in bases 11 throug 16 1 .
,ii these minimums are increased by one when the value being output is negative

Changes from July 1982

sia. PUT for a based literal outputs letters in upper case.

14-44

ftS-R1" 64? THE RM (TRMK MNW) COMPILER VALIDATION CAPAILITY /
IIUI.EETRS' GUIDE VERION 1(U) SOFTECH IMC MALTNAN M
J I BOODENOUSI DEC "6

UNL M S IFFIED F012/5 N

r. .
11.0 mh I' 5 I

t. 132 IIi

12.0

1111.251.4 1
1.25 Li 111_.6_

MICROCOPY RESOLUTION TEST CHART
NATIONAL SUACAU OF STAND5O*fqtD g-

I

,..'

- - - w w

Version 1 (Dec 86) 14.3.7 Input-Output for Integer Types

SI i. When WIDTH is nonzero, leading line terminators are not skipped. Instead reading stops
when a line terminator is seen or when WIDTH characters have been read, whichever comes
first. This means that reading does not necessarily stop when the syntax of a numeric literal is
violated.

S12. GET from a STRING does not replace the value of LAST with an "undefined" value when
an exception is raised. Instead, the normal semantics of out parameters defines the effect on
LAST, i.e., the value of LAST is unchanged (since LAST Is a scalar parameter). The July 1982
wording implied that subsequent accesses to LAST could be erroneous (see RM 3.2.1/18).

Changes from July 1980

S13. GET has an optional WIDTH parameter.

S14. Default parameter values are defined by variables declared in the generic package, and
hence, these defaults can be changed dynamically during program execution.

sis. GET and PUT are defined for STRINGs as well as files.

si6. DATAERROR is raised by GET (instead of CONSTRAINTERROR) if the value read is
not in the range of the subtype used to Instantiate the package.

Exception Conditions

GET Exceptions (file Input)

El. STATUS_ERROR Is raised if the file is not open.

E2. MODEERROR is raised if the file's mode is not INFILE.

E3. DATAERROR is raised If:
I the input does not have the syntax of a numeric literal, has a decimal point, or

has a negative exponent.

* the number being input lies outside the range specified for the integer subtype
used in the instantiation of INTEGER_10.

E4. CONSTRAINTERROR is raised if:

" the WIDTH parameter has a negative value or exceeds FIELD'LAST (and
FIELD'LAST < INTEGER'LAST).

" the value read does not satisfy the actual parameter's range and the actual
parameter's range is a subset of the range of the subtype used to instantiate
INTEGER_10.

ES. ENDERROR is raised if:

" WIDTH is zero and the only characters read are spaces, horizontal tabulation
characters, line terminators, and page terminators or,

" WIDTH is nonzero, and the file Is positioned just before the file terminator.

GET Exceptions (string Input)

E6. DATA-ERROR is raised if:

, the Input does not have the syntax of a numeric literal, has a decimal point, or
has a negative exponent.

14-45

...--

14.3.7 Input-Output for Integer Types Version I (Dec 86)

* the number being input lies outside the range specified for the integer subtype
used in the instantlation of INTEGER_10.

E7. CONSTRAINT-ERROR is raised if the value read does not satisfy the actual parameter's
range and the actual parameter's range is a subset of the range of the subtype used to
instantiate INTEGERIO.

E8. ENDERROR is raised if the only characters read are spaces, horizontal tabulation
characters, line terminators, and page terminators or if the input string is null.

PUT Exceptions (file output)

E9. STATUS ERROR is raised If the file is not open.

El0. MODE ERROR is raised if the file's mode is not IN FILE.

Eli. LAYOUTERROR is raised (RM 14.3.5/10) if the line length (LL) for the file is fixed (i.e.,
not zero), and:

* LL < the minimum required length (whether or not WIDTH is zero), or

" WIDTH > LL.

E12. CONSTRAINTERROR is raised

* if the value of ITEM lies outside the range of the subtype used to instantiate
INTEGER_10.

• when the value specified for WIDTH is negative or exceeds FIELD'LAST, and -:.

FIELD'LAST < INTEGER'LAST.
* when the value specified for BASE is not in the range 2 through 16.

PUT Exceptions (string output)

E13. LAYOUTERROR Is raised If the length of the string variable Is less than the minimum
required length for the value being output (RM 14.3.5/10).

El 4. CONSTRAINT ERROR Is raised:

" if the value of ITEM lies outside the range of the subtype used to instantiate
INTEGER 10.

" when the value specified for BASE is not in the range 2 through 16.

Test Objectives and Design Guidelines

T1. Check that each operation raises STATUSERROR If the file is not open.

T2. Check that INTEGER_10 can be Instantiated for user defined types. "

T3. Check that PUT and GET for the predefined type INTEGER are not available without
instantiation of INTEGER_10. -- 5.

T4. Check that GET from a file:

• correctly reads nonbased literals without an exponent when the value read Is
the minimum or maximum value for an Integer type.
Implementation Guideline: Use each of the predefined integer types...

* correctly reads a nonbased integer literal containing an exponent, whether or "" .

14-46

VersIon 1 (Dec 86) 14.3.7 Input-Output for Integer Types

not the exponent is given in upper case, and whether or not a plus sign is
explicitly provided in the exponent.

" correctly reads a based literal without an exponent, for bases 2 through 16,
when the value read is the minimum or maximum value for an integer type;
check that any letters used may be In upper or lower case.
Implementation Guideline: Use each of the predefined Integer types.

" correctly reads a based literal containing an exponent, for bases 2 through 16,
independently of the case of the exponent or the letters used In the literal, and
whether or not a plus sign is explicitly provided in the exponent.

* allows : Instead of # in based literals.

" uses the default Input file if no file is explicitly specified.
" skips leading spaces, horizontal tabulation characters, line terminators, and

page terminators If WIDTH is zero.
" when WIDTH is nonzero, reads at most WIDTH characters or up to the next

line terminator; counts leading spaces and horizontal tabulation characters as
part of the WIDTH.

* when WIDTH is omitted, does not use the value of DEFAULTWIDTH, but
instead uses the value zero.

" when WIDTH is zero (either explicitly or by default), reads until the syntax of
an integer literal is not satisfied.
Implementation Guideline. This test should not raise DATA-ERROR.
Implementation Guideline: The test should check that reading occurs up to a period, up to the
end of a line, and up to the closing # (or :) for a based literal.

* raises MODE-ERROR if the mode of the file is not INFILE.

* raises STATUSERROR if the file is not open (see T1).
p.-.

" raises CONSTRAINT-ERROR if:

e WIDTH is negative, or Pi

" WIDTH is greater than FIELD'LAST (only possible if FIELD'LAST <"%0
INTEGER'LAST), or

" the value read is out of the range of the ITEM parameter, but within the .
range of the subtype used to Instantiate INTEGER_10,

" raises DATAERROR It

" the value read is not in the range of the subtype used to instantiate
INTEGER_10.

" WIDTH Is zero and:

" the exponent is negative (reads to end of sequence of digits). "- I

" there is no closing # sign for a based literal (reads until syntax is
violated).

e for a based literal, the opening # is matched with a closing :, or
vice versa (reading stops at : or #, respectively).

* the letters in a based literal are out of the range of the base
(reading stops at the end of the based literal).

14-47

14.3.7 input-Output for integer Typos Version 1 (Doc 86)

a the base is not In the range 2 through 18 (reading stops at the
end of the based literal).

o the base, the Integer part, or the exponent part contains
consecutive underscores (reading stops after the first
underscore).

* there are consecutive underscores between digits of the base,
the Integer part, or the exponent (reading stops after the first
underscore).

o there are leading or trailing underscores (reading stops before the
leading underscore, and after the trailing underscore).

o the integer part of a based literal contains a character that is not a
letter, digit, #, or: (reading stops before the offending character).

o a nondigit graphic character (other than a sign) Is encountered
before any digits have been read (reading stops before the :
nondigit character).

* WIDTH is nonzero and:

" all the cases for a zero WIDTH apply if WIDTH is large enough,
except that reading stops after WIDTH characters have been
read.
4mpIementton G kwdedn.: Chedc that leading blanks on preceding lines are -
read only up to a line terminator if the number of blanks is le than WIDTH.

" reading stops before a complete literal has been read if WIDTH is
small enough.

" the teral contains an embedded or trailing space or horizontal
tabulation character (the tabulation character counts as a single
character).

" the literal contains a decimal point.
T5. Check that ENDERROR is raised (for GET from a file) If only the file terminator remains to

be read (whether or not WIDTH Is zero).
If WIDTH is zero, check that ENDERROR is raised if the only remaining characters in the
file consist of line terminators, page terminators, spaces, and horizontal tabulation .
characters. After ENDERROR is raised, the file should be positioned before the file
terminator.
Check that the last character in a file may be read without raising END ERROR, and that
after the last character of the Rie has been read, any attempt to read further characters will
raise ENDERROR.

Check that ENDERROR Is not raised when WIDTH > 0, fewer than WIDTH characters
remain in the file, a based literal Is being read, and the closing # (or:) has not yet been
seen. (DATAERROR should be raised Instead.)

Check that END ERROR is not raised if fewer than WIDTH characters are remaining in p

the file and reailteral is being read.
T6. Check that PUT to a file:...

correctly outputs the minimum and maximum Integer values for an integer type "" ,as well as zero, for all bases 2 through 18.

14-48
. . . . F ,• ' • - . . . -S

Version I (Dec 86) 14.3.7 Input-Output for Integer Types

" uses the default output file if no file is explicitly specified.

* uses the minimum field required If WIDTH Is too small and the line length is
sufficiently large.

" pads the output on the left with spaces If the value of WIDTH is greater than
the minimum width required.

" has the effect of NEWLINE as well as outputting the item when the number M

of characters to be output Is less than the maximum line length, but when
added to the current column number exceeds the maximum;

* uses the value of DEFAULTWIDTH and DEFAULTBASE when no explicit
parameter Is provided.

" raises MODEERROR If the mode of the file Is not OUT..FILE.

" raises STATUS_ERROR if the file Is not open (see Ti).

" raises CONSTRAINT-ERROR if:

* the specified value of BASE is not in the range 2 through 16.

* the specified value of WIDTH is less than zero or greater than
FIELD'LAST.

* the value of ITEM is outside the range of the subtype used to instantiate
INTEGER_10.

" raises LAYOUTERROR when a nonzero line length, LL, is specified for the

output file and:

e WIDTH is greater than LL (since at least WIDTH characters must be
output), or

* the minimum width required for the output value Is greater than LL.

Check that DEFAULT_BASE can only be assigned values in the range 2 thrQugh 16.

Check that DEFAULTWIDTH can only be assigned non-negative values not exceeding
FIELD'LAST.

17. Check that GET from a string:

" correctly reads nonbased literals without an exponent when the value read is r

the minimum or maximum value for an Integer type.
Implementation Guideline: Use each of the predefined integer types.

" correctly reads a nonbased Integer literal containing an exponent, whether or,%
not the exponent Is given in upper case, and whether or not a plus sign is
explicitly provided In the exponent. I ON

" correctly reads a based literal without an exponent, for bases 2 through 16,
when the value read Is the minimum or the maximum value for an integer type;
check that any letters used may be In upper or lower case.
Implementation Guideline: Use each of the predefined Integer types.

" correctly reads a based literal containing an exponent, for bases 2 through 16,
Independently of the case of the exponent or letters used in the literal, and
whether or not a plus sign Is explicitly provided in the exponent.

14-49
.S'

14.3.7 input-Output for Integer Types Version 1 (Dec 86)

" raises CONSTRAINT.ERROR if the value read is out of the range of the ITEM ,,,N
parameter, but within the range of the subtype used to instantiate INTEGER-
_10.

" raises DATA-ERROR if.

* the value read is not in the range of the subtype used to instantiate
INTEGER IO.

" the exponent Is negative.
" there is no closing # sign for a based literal.
" for a based literal, the opening # is matched with a closing :, or vice

versa.
" the letters In a based literal are out of the range of the base.
" the base is not in the range 2 through 16.
" the base, integer part, or exponent part contains consecutive

underscores.
" there are leading or trailing underscores.
" the integer part of a based literal contains a character that is not a letter,

digit, #, or:. 10
" a nondlglt graphic character (other than a sign) is encountered before

any digits.
* the literal contains an embedded or trailing space or a horizontal

tabulation character.

* raises END-ERROR if an attempt is made to skip the end of the string, i.e., if
the string is null or only contains spaces and/or horizontal tabulation
characters.

Check that LAST contains the index value of the last character read from the string if no
exception Is raised.

T8. Check that PUT to a string:

* correctly outputs the minimum and maximum Integer values for an integer type
as well as zero, for all bases 2 through 16.

" pads the output on the left with spaces if the length of the string is greater than
the minimum width required.

" uses the value of DEFAULT-BASE when no explicit parameter is provided.
" raises CONSTRAINT-ERROR If:

* the specified value of BASE is not in the range 2 through 16.
" the value of ITEM Is outside the range of the subtype used to instantiate %

INTEGER_10.

" raises LAYOUTERROR when the minimum width required for the output
value is greater than the length of the string.

T9. Check the names of the formal parameters. "

14-50

- %*- ",

Version 1 (Dec 86) 14.3.8 Input-Output for Real Types

14.3.8 Input-Output for Real Types

Semantic Ramifications

Si. Note that a blank is defined as a space or a horizontal tabulation character (RM 14.3.5/5).
Hence, leading spaces or tabs are skipped when reading a real literal.

s2. When reading with a WIDTH of zero, reading stops when the initial sequence of the syntax
of a real literal is no longer satisfied (AM 14.3.5/5, /6). AM 2.4/1 defines a real literal to be a
numeric literal with a decimal point. Hence, when reading the following input:

14.3 X -- next character read is X
14.3EX -- next character read is X
14E-3X -- next character read is Z

DATAERROR is raised by GET and the next character to be read is indicated by the
comments. Since lexical elements cannot extend across line boundaries (RM 2.211, /2), and
since GET analyzes input sequences of characters as lexical elements (RM 14.3/2), reading of
a numeric literal stops when a line terminator is encountered.

s3. When WIDTH is nonzero, exactly WIDTH characters are read (unless a line terminator is
seen first; then only characters preceding the line terminator are read):

14.3e3XYZ

Calling GET with a WIDTH of 7 causes 7 characters to be read. DATAERROR is raised since
"14.3e3X" does not satisfy the syntax of a numeric literal. Note that DATAERROR would also
be raised if X were a space character. DATAERROR will not be raised if X is replaced with a
line terminator, In which case, only 6 characters will be read.

s4. A real literal must have an embedded decimal point (RM 2.4) and so is at least three
characters long. Hence If WIDTH is 1 or 2, GET will raise DATAERROR.

ss. The syntax for a based real literal (AM 2.4.2/2) permits any letter to be used in the part
enclosed in # characters. Therefore, if the Input is:

8#16.8ZF#B -- input data to be read

all characters up to the second # will be read before DATAERROR is raised. (DATAERROR
will be raised since 8, Z, and F are all incompatible with the base.)

S6. The letter E in the exponent part and the letters used as extended digits in based notation
may appear in upper or lower case on input (AM 2.4.1/3); AM 14.3.8/2 specifies that a capital
"E" Is to be used on output.

S7. Numeric literals input in based notation may have the # character replaced uniformly (within
a literal) by : characters (AM 2.10); the implementation has the same freedom for output. In
particular, if the compiler runs in an environment supporting the # character, but the object code
runs in an environment supporting only the colon, then different forms of literals will be used for
input-output vs. source code.

so. Note that an attempt to read too large a value raises DATAERROR or CONSTRAINT-
-ERROR, but not NUMERICERROR:

subtype ONE is FLOAT range 0.0 .. 1.0,
package FLT1 is new FLOAT IO(ONE);
ITEM ONE range 0.0 .. 0.5;
BIG FLOAT;
LAST POSITIVE;

14-51
,4,*~ ~.s,4 !'*~ '.~'V ~ ? C-.

14.3.8 Input-Output for Real Types Version 1 (Dec 86)

FLT_IO.GET ("2.0", ITEM, LAST); -- DATAERROR
FLT IO.GET ("2.0", BIG, LAST); -- DATAERROR
FLTIO.GET ("I.0E10 000 000 000 000", ITEM, LAST); -- DATA ERROR
FLT-IO.GET ("0.75",--ITEM, LAST); -- CONSTRAINT ERROR

The first three calls raise DATAERROR because the values being input exceed the range of
the subtype used to instantiate FLT_10. Note that in the second case, DATAERROR is raised
even though 2.0 belongs to BIG's subtype. The last call raises CONSTRAINT ERROR
because 0.75 in ONE is TRUE, i.e., 0.75 belongs to the subtype used to instantiate FLOAT 10,
but 0.75 exceeds 0.5, the upper bound for ITEM, which is the actual parameter used in the GET
call. In short, DATA ERROR is raised if the input value lies outside the range of the subtype
used in an instantiation. CONSTRAINTERROR is raised if the input value lies inside the range
of the subtype used in the instantiation, but outside the range of the actual parameter's subtype.

sq. The RM says GET returns the value that corresponds to the literal that is read (RM
14 3.8/9). This means converting the mathematical (i.e., universalreal) value of the literal to
ITEM's type. Such conversions are governed by the rules of RM 4.5.7, since conversion is a
basic operation. Hence, if a literal's value is in the range of safe numbers for ITEM's base type,
and the literal's value is also the value of a safe number for ITEM's type, then the literal must be
converted to the corresponding safe number, i.e., exact conversion is required. Literals whose
value lies between safe numbers must be converted to a value bounded by consecutive safe
numbers.

si o. The RM places no restrictions on the accuracy of output conversion. Our tests will check
to see if an implementation satisfies the following rules:

for floating point types and certain fixed point types (e.g., types whose SMALL -'-"e-' V
;-

is a power of two), PUT outputs ITEM's value exactly if AFT is sufficiently long.
(Note that every safe number of these types can be represented exactly as a
decimal number, since safe numbers are represented in base two.)

it AFT is not sufficiently long to permit ITEM's value to be represented exactly, .

PUT outputs the decimal value closest to ITEM's actual value. When two 0

decirnal values are equally close to ITEM's actual value, either one may be
output. However, programmers will be less surprised if the value furthest from '.

c. .o rsen in this case (e.g., when AFT = 1, -1.25 should be output as -1.3,
- .25 should be output as 1.3; note that the RM, however, explicitly allows
.r . .2 to be output in these cases). .

T- e mmr.,wmum iength needed to out,-ut a real number to a file depends on the value being
u ,; che values of the FORE, AFT, and EXP parameters. Note that a sign position is

nowpled only for negative numbers. The number of digits needed before the decimal point
riiends on the value of the EXP parameter, namely, if EXP is greater than zero, then the
iu,'nber needed is 1 (exclusive of sign). If EXP is zero, then the number of digits depends on

I'ti ibsohute :'rgnitude of ITEM's value. The minimum number of digits is 1 if abs(ITEM) < 1.0.
'',wise, the n , nmum number of digits preceding the decimal point is:

floor(log 1o (abs (ITEM)))+1,

where the flocr function yields the largest integer value less than or equal to its argument.
,,,rj, A. floor 1.91- 1, and floor (2.0) 2. Some values yielded by this expression are:

'.

14-52
., %,

Version 1 (Dec 86) 14.3.8 Input-Output for Real Types.S

ITEM digits
10 2 %PP

0.10
0.5 0,

The expression BOOLEAN'PUS(ITEM < 0.0) yields I if ITEM is negative; otherwise zero.
Hence, the minimum number of nonblank characters preceding the decimal point when EXP = 0
and ITEM /- 0.0 Is given by:

mnax(l, floor (Iogto(abs (IZH))+1) +

BOOLKAN' IPO8(IT < 0.0) when ab((IZTE) >= 1.0

S12. When EXP is nonzero, then the minimum number of characters preceding the decimal
point is one plus a position for a minus sign if the number Is negative:

1 + OOL, ZAPOS(ITM < 0.0)

The number of digits in the fraction part is:

max(l, AFT)

The number of digits in the exponent value is given by:

exp digits = floor(Ioglo (abs (exponent value)))+1.

where exponent-value -

1 if ITED - 0.0 and otherwise equals
f/oor(lOglo (&be (ZH))).,,

When EXP is nonzero, its value includes a position for the exponent sign. Consequently, the

number of digits In an exponent part is:

ax(1, ZXF-1, Gxp digits)

If EXP-1 is greater than expdigits, then leading zeroes are used.

S13. The value of FORE determines a minimum number of characters that precede the decimal
point Therefore, the final formulas for the minimum field size needed to represent a real value
are as follows (where sign - BOOLEAN'POS(ITEM < 0.0) and ITEM/= 0.0): -

when UP = 0: 0

sign -- minus sign if necessary
+ max(1, rOR-sign, floor(Ioglo(abs (ITE))) + 1)

-- characters in integer part
SI-- decimal point

+ max(l, AFT) -- number of digits in fractional part

when EXP > 0:

sign minus sign if necessary
+ max(1, FORZ-sign) -- integer part
+ 1 F)--decimal point
+ max(1, AFT) number of digits in fractional part

+ 2 the "Z" and the exponent's sign

14-563

k ,,, , ..,.,p _e,,-,-, .2,trL-_-%-,eo-. , .. '.' "."." ",.'_". "" "-€ """. -"". """,2,'.P". "'J'"r -.'cf •". " . ., J A .'/

14.3.8 Input-Output for Real Types Version 1 (Dec 86)

+ max(l, ZXP-1, exp_digits) -- number of exponent digits ,-...

Note that at least one digit is always output before the decimal point. Hence, although a value
of zero is allowed for FORE, it Is always ignored. Since expjdigits has a minimum value of one
when EXP > 0, and at least one fractional digit Is required, the minimum number of characters
needed to output a real number Is 3 when EXP equals zero, and 6 when EXP is greater than
zero. These minimums are increased by 1 when the value being output is negative.

Changes from July 1982

S14. When width is nonzero, leading line terminators are not skipped. Instead, reading stops
when a line terminator is seen or when WIDTH characters have been read, whichever comes
first. This means that reading does not necessarily stop when the syntax of a numeric literal is
violated.

S15. One fractional digit is output when AFT is zero.

S16. When outputting 0.0 with an exponent, the exponent part is specified to equal zero.
(Previously the exponent value was implementation defined in this case.)

q17. GET from a STRING no longer replaces the value of LAST with an "undefined" value when
an exception is raised. Instead, the normal semantics of out parameters defines the effect on
I.AST, i.e., the value of LAST is unchanged (since LAST is a scalar parameter). The July 1982
wording implied that subsequent accesses to LAST could be erroneous (see RM 3.2.1/18).

Changes from July 1980

sis. PUT has the same form for both fixed and floating point types, and the name and meaning
0,f Rnme formal parameters is changed.

;i GET has an optional WIDTH parameter.

";o. Default parameter values are defined by variables declared in the generic package; hence,
Ihs defauIts can be changed dynamically during program execution.
* -! 'T ard PUT are defined for STRINGs as well as files.

T,, ,A ERROR is raised by GET (instead of CONSTRAINTERROR) if the value read is
.* in the rancP of the subtype used to instantiate the package.

"". 'puc': Uono'!tions

I Fy,,eptior, ifi leinput)

-TAT7JS E-RHOR is raised if the file Js not open.

" MODE ERROR :s raised if the file's mode is not INFILE.

DATA ERROR s raised if:

e the input does not have the syntax of a numeric literal with a decimal point.

.•the number being input lies outside the range specified for the subtype used in
the n-tantiation of FLOAT 10 or FIXED 10.

F4 CONSTRAINTERROR Is raised If:

e the WIDTH parameter has a negative value or exceeds FIELD'LAST (and
FIELD'LAST < INTEGER'LAST).

the value read does not satisfy the actual parameter's range, and the actual ..
parameter's range is a subset of the range of the subtype used to instantiate
FLOAT 10 or FIXED 10.

1-'4=5

14-54

Version 1 (Dec 86) 14.3.8 Input-Output for Real Types p

E5. ENDERROR is raised if:

e WIDTH is zero and the only characters read are spaces, horizontal tabulation
characters, line terminators, and page terminators or,

• WIDTH is nonzero, and the file is positioned just before the file terminator.

GET Exceptions (string Input)

E6. DATAERROR is raised if:

" the input does not have the syntax of a numeric literal with a decimal point. -. J.

" the number being Input lies outside the range specified for the subtype used in
the Instantiation of FLOAT_10 or FIXEDI0.

E7. CONSTRAINTERROR Is raised if the value read does not satisfy the actual parameter's
range, and the actual parameter's range is a subset of the range of the subtype used to
instantiate FLOATjO or FIXED 10.

E8. END ERROR is raised If the only characters read are spaces, horizontal tabulation
characters, line terminators, and page terminators, or if the input string is null.

PUT Exceptions (file output)

E9. STATUSERROR is raised if the file is not open.

El0. MODEERROR is raised if the file's mode is not INFILE.
ElI. LAYOUTERROR is raised (RM 14.3.5/10) if the line length (LL) for the file is fixed (i.e.,

not zero), and:

LL < max(FORE, 1) + 1 + max(AFT, 1) + .XP
" when EXP - 0 and abs(ITEM) /- 0.0:

LL < sign + max(l, FORZ-sign, floor (1oglo (abs (ITEM))) +1) +

I + max(1, AFT)

" when EXP > 0 and ITEM /= 0.0:

LL < sign + max(l, FORE-sign) + 1 + max(1, AFT) + 2 +
max(l, EXP-1, exp digits)

" when EXP = 0 and ITEM = 0.0: p

LL < 3

" when EXP > 0 and ITEM = 0.0:

LL < 4 + max(2, EXP)
E12. CONSTRAINTERROR is raised:

* if the value of ITEM lies outside the range of the subtype used to instantiate
FLOAT_10 or FIXED_10.

* when the value specified for FORE, AFT, or EXP is negative or exceeds
FIELD'LAST, and FIELD'LAST < INTEGER'LAST.

14-55

i+' + +
+

+ ++' % ' -+ + + .J. . % * . .P 1. - '

I1W~ WV WU W%. IR WV M IIlI 0-1X IVLny ryc

, 14.3.8 Input-Output for Real Types Version 1 (Dec 86)

PUT Exceptions (string output) %

E13. LAYOUTERROR is raised if the length of the string variable is less than the minimum -
required length for the value being output (RM 14.3.5/10). 4.

E14. CONSTRAINTERROR is raised if the value of ITEM lies outside the range of the subtype
used to instantiate FLOAT_10 or FIXED_10.

Test Objectives and Design Guidelines

1i. Check that each operation raises STATUS_ERROR if the file is not open.

T2. Check that FLOAT_10 and FIXED_10 can be instantiated for predefined types and for
user-defined real types.

Check that FLOAT_10 cannot be instantiated with a nonfloat type.

Check that FIXED_10 cannot be instantiated with a nonfixed type.

T3. Check that PUT and GET for fixed and float types are not available without instantiating
FIXED_10 and FLOAT_10, respectively.

r4. Check that GET from a file, for both fixed and float types:

* correctly reads nonbased literals without an exponent when the value read is a
positive, negative, and zero real literal.

correctly reads a nonbased literal containing an exponent, whether or not the
exponent is given in upper case, and whether or not a sign (plus or minus) is
explicitly provided in the exponent.

*correctly reads a based literal without an exponent, for bases 2 through 16,
when the value read is a positive or a negative value; check that any letters
used may be in upper or lower case.

* correctly reads a based literal containing an exponent, for bases 2 through 16,
independently of the case of the exponent or letters used in the literal, and
whether or not a sign (plus or minus) is explicitly provided In the exponent.

* allows : instead of # in based literals.

* uses the default input file if no file is explicitly specified.

* skips leading spaces, horizontal tabulation characters, line terminators, and
page terminators if WIDTH is zero.

e when WIDTH is nonzero, reads at most WIDTH characters or up to the next
line terminator; counts leading spaces and horizontal tabulation characters as
part of the WIDTH.

* when WIDTH is omitted, uses the value zero.

9 when WIDTH is zero (either explicitly or by default), reads until the syntax of a
real literal is not satisfied. .

Implementation Guideline: This test should not raise DATAERROR.
Implementation Guideline: The teat should check that reading occurs up to the end of a
sequence of digits following a decimal point, or up to the end of a line, and up to the closing #
(or :) for a based literal.

* raises MODEERROR if the mode of the file is not INFILE. 4. .

e raises STATUSERROR if the file is not open (see TI).

14-56

_' . o. .

Version 1 (Dec 86) 14.3.8 Input-Output for Real Types
,%

" raises CONSTRAINTERROR if:

* WIDTH is negative, or

* WIDTH Is greater than FIELD'LAST (only possible if FIELD'LAST <
INTEGER'LAST), or

e the value read is out of the range of the ITEM parameter, but within the
range of the subtype used to instantiate FLOAT_10 or FIXED_10.

" raises DATAERROR if:

* the value read is not in the range of the subtype used to instantiate
FIXED_10 or FLOAT_10.

" WIDTH is zero and:

e no decimal point Is present (reading stops after a sequence of
digits; for based literals, reading stops after a sequence of digits
and letters).

* the decimal point is not followed by a digit or, for based literals, a
letter (reading stops after the decimal point).

e the decimal point is not preceded by a digit (or a letter in a based
literal) (reading stops before the decimal point).

* there is no closing # sign for a based literal (reads until syntax is
violated).

0 for a based literal, the opening # is matched with a closing :, or
vice versa (reading stops at : or #, respectively).

a the letters in a based literal are out of the range of the base
(reading stops at the end of the based literal).

* the base Is not in the range 2 through 16 (reading stops at the
end of the based literal).

* the base, integer part, or exponent part contain consecutive
underscores (reading stops after the first underscore).

e there are leading or trailing underscores (reading stops before the
leading underscore, and after the trailing underscore).

a the integer or fraction part of a based literal contains a character
that is not a letter, digit, #, or : (reading stops before the offending
character).

e a nondigit graphic character (other than a sign) is encountered
before any digits have been read (reading stops before the

Y nondigit character).
* WIDTH Is nonzero and:

e all the cases for a zero WIDTH apply if WIDTH is large enough,
except that reading stops after WIDTH characters have been
read.
Implem.entation Guideline: Check that leading blanks on preceding lines are

--. '"read ony up to a line terminator if the number of blanks is less than WIDTH.
Implementation Guideline: If no line terminator is encountered, check that

14-57

14.3.8 Input-Output for Real Types Version 1 (Dec 86)

WIDTH characters are read, even if the syntax for a real literal is not satisfied by

the sequence of characters. ,,.,,

" reading stops before a complete literal has been read if WIDTH is
small enough.

" the literal contains an embedded or trailing space or horizontal
tabulation character.

T5. Check that ENDERROR is raised (for GET from a file) if only the file terminator remains to
be read (whether or not WIDTH is zero).
If WIDTH is zero, check that END ERROR is raised if the only remaining characters in the
file consist of line terminators, page terminators, spaces, and horizontal tabulation
characters. After ENDERROR is raised, the file should be positioned before the file
terminator.

Check that the last character in a file may be read without raising END-ERROR, and that
after the last character of the file has been read, any attempt to read further characters will

"5 raise ENDERROR.

Check that ENDERROR is not raised if fewer than WIDTH characters are remaining in 45the file and a real literal is being read. (DATA ERROR should be raised instead, if any
exception at all is raised.)

T6. Check that PUT to a file (for fixed or float values):
e may be called with or without a FORE, EXP, and AFT parameter, the correct

default values are used, and the correct formatted output is obtained. In
particular, check that PUT:

will output the whole converted string if the integer part of the converted
number exceeds the value of FORE, or the required exponent length
exceeds EXP (when EXP > 0).
Implementation Guideline: Include a value of zero for FORE.

will insert a sufficient number of leading spaces if a FORE parameter
was given and is greater than the length of the converted number's
required integer part.

will insert a sufficient number of leading zeroes if an EXP parameter
was given and is greater than the length of the converted number's
required exponent par,
Implementation Guideline: Check that the number of spaces output when FORE is too
big is not arected when EXP is too small.

" outputs one fractional digit even when AFT is zero.

" outputs at least one digit in the exponent if EXP is one.

* generates output conforming to the proper syntax, including a minus
sign if the value is negative.

*uses appropriate values of DEFAULTFORE, DEFAULT AFT, or
DEFAULTEXP if these parameters are omitted.

e uses the default output file if no file Is explicitly specified.

e has the effect of NEWLINE as well as outputting the Item when the number
of characters to be output is less than the maximum line length, but when "
added to the current column number exceeds the maximum.

14-58

Version 1 (Dec 86) 14.3.8 Input-Output for Real Types

e raises MODEERROR if the mode of the file Is not OUTFILE.

e raises STATUSERROR if the file is not open (see Ti).

* raises CONSTRAINTERROR if:

* the specified value of FORE, AFT, or EXP is less than zero or greater
than FIELD'LAST.

* the value of ITEM is outside the range of the type used to instantiate
FIXED_10 or FLOAT_10.

* raises LAYOUTERROR when a nonzero line length, LL, is specified for the
output file and:

" FORE + AFT + 1 > LL when FORE and AFT are both nonzero and EXP
=0.

• FORE + AFT + 2 > LL when either FORE or AFT are zero (but not both)
and EXP - 0.

* 3 > LL when FORE, AFT, and EXP are all zero.

" FORE + AFT + 2 + max (2, EXP) > LL when FORE, AFT, and EXP are
all nonzero.

* FORE + AFT + 3 + max (2, EXP) > LL when either FORE or AFT are
zero (but not both) and EXP is nonzero.

* max (2, EXP) + 4 > LL when FORE and AFT are both zero and EXP is
nonzero.

e the minimum width required for the output value is greater than LL and
the values for FORE, AFT, and EXP do not satisfy one of the
relationships given above.

Implementation Guideline: If LAYOUT-ERROR is raised, no characters should be output.

* will output zero as 0.0 (when EXP = 0) and 0.OE+0 (when EXP = 1 or 2).
Implementation Guideline: Also check for EXP > 2.

Check that DEFAULTFORE, DEFAULT AFT, and DEFAULTEXP can only be assigned -,: ,

non-negative values not exceeding FIELD'LAST.

T9. Check that GET from a string, for both fixed and float types:

" correctly reads nonbased literals without an exponent when the value read is a J.
positive, negative, and zero real literal.

" correctly reads a nonbased literal containing an exponent, whether or not the
exponent is given in upper case, and whether or not a sign (plus or minus) is
explicitly provided in the exponent. 6

*correctly reads a based literal without an exponent, for bases 2 through 16, %.-r
when the value read is a positive or negative value; check that any letters ,
used may be In upper or lower case. "

" correctly reads a based literal containing an exponent, for bases 2 through 16,
Independently of the case of the exponent or letters used In the literal, and

%. whether or not a sign (plus or minus) is explicitly provided in the exponent.

" allows : instead of # In based Iterals. %

14-59

14.3.8 Input-Output for Real Types Version 1 (Dec 86)

" ignores leading space and horizontal tabulation characters.

" raises CONSTRAINTERROR if the value read Is out of the range of the ITEM
parameter, but within the range of the subtype used to instantiate FLOAT_10
or FIXED_10.

" raises DATAERROR if:

* the value read is not in the range of the subtype used to instantiate 111%

FIXED_10 or FLOAT_10.

• no decimal point is present.

" the decimal point is not followed by a digit or, for based literals, a letter.

" the decimal point is not preceded by a digit (or letter, in a based literal).

" there is no closing # sign for a based literal.

" for a based literal, the opening # Is matched with a closing :, or vice
versa.

" the letters in a based literal are out of the range of the base.

* the base is not in the range 2 through 16. I
* the base, integer part, or exponent part contain consecutive

underscores. ..

" there are leading or trailing underscores.

" the integer or fraction part of a based literal contain a character that is -- "
not a letter, digit, #, or:.

" a nondigit graphic character (other than a sign) Is encountered before
any digits have been read.

" the literal contains an embedded or trailing space or horizontal
tabulation character.

* raises END ERROR if the string is null or contains only spaces and/or
horizontal tabulation characters.,

Check that LAST contains the index value of the last character read from the string.

TO. Check that PUT to a string (for fixed or float values):

* may be called with or without an AFT and EXP parameter, the correct default
values are used, and the correct formatted output is obtained. In particular,
check that PUT:

" will output the whole converted string If the required exponent length
exceeds EXP (when EXP > 0).

" will insert a sufficient number of leading spaces if the minimum required
length is less than the length of the string.

" outputs one fractional digit even when AFT is zero.

" outputs at least one digit in the exponent If EXP is one.

" generates output conforming to the proper syntax, including a minus "-
sign if the value is negative.

14-60

Version 1 (Dec 86) 14.3.8 Input-Output for Real Types

, uses appropriate values of DEFAULTAFT or DEFAULT_EXP if the
AFT or EXP parameters are omitted.

%,
• raises CONSTRAINTERROR if:

" the specified value of AFT or EXP is less than zero or greater than
FIELD'LAST.

* the value of ITEM is outside the range of the subtype used to instantiate
FIXED_1O or FLOAT_10.

* raises LAYOUTERROR when the length of the string is LL and:

* AFT + 2 > LL when AFT is nonzero and EXP = 0.

* 3 > LL when AFT and EXP are both zero.

* AFT + 3 + max (2, EXP) > LL when AFT and EXP are both nonzero.
S

* 4 + max (2, EXP) > LL when AFT is zero and EXP is nonzero.

* the minimum width required for the output value is greater than LL and
the values for AFT and EXP do not satisfy one of the relationships given
above.

Implementation Guideline: If LAYOUT-ERROR is raised, no characters should be output.

a will output zero as 0.0 (when EXP = 0) and 0.OE+0 (when EXP = 1 or 2).

TI 1. Check that floating point safe numbers are input exactly.
Implementation Guideline: Use values such as 'SMALL and 'LARGE. Check for a variety of floating point
types, including the most precise type.
Implementation Guideline: Use string input as well as file input.

Check that numbers lying between model numbers are Input with the same accuracy as
the corresponding literals.

T12. Check that safe floating point numbers are output exactly if AFT is sufficiently large.
Implementatlon Guideline: Note: AFT cannot be greater than FIELD'LAST.

Check that numbers are rounded correctly on output. '...

Implementation Guideline: Include positive and negative values, and some values whose rounding error is
slightly above. slightly below, and exactly one-half the value of the last output position.
Implementation Guideline: Use both string and file output.

-:

T1 3. Check that fixed point model numbers are Input exactly for both string and file input.
Implementation Guideline: Use values such as 'SMALL and 'LARGE. Check for a variety of fixed point types.
including some types for which 'SMALL has been specified as other than a power of two. (Note: it is not
required that all implementations support an explicit specification of 'SMALL via a length clause; see IG 13.2/S).

Check that numbers lying between two fixed point model numbers are input with the same
accuracy as the corresponding literals.

T14. Check that safe fixed point numbers are output exactly if AFT Is sufficiently large and the
value Is exactly representable as a decimal literal.

Check that fixed point values are rounded correctly on output.
Inplementation Guideline: See Guidelines for T12.

T15. Check the names of the formal parameters.

14-61

. . . p

14.3.9 Input-Output for Enumeration Types Version 1 (Dec 86)

14.3.9 Input-Output for Enumeration Types "

Semantic Ramifications

Si. Note that PUT and GET exist for the CHARACTER data type without instantiating
ENUMERATION_10, but the semantic effect of TEXT_10's PUT and GET for CHARACTERs is
different from the effect when ENUMERATION_10 is instantiated with the CHARACTER type
(see IG 14.3.61S).

s2. Note that for an enumeration literal that is an identifier, the output case is independent of
the way the identifier appeared in the type declaration. In particular, even if the declaration
used mixed case, the output will be all lower or all upper case.

S3. Note that DATAERROR is raised both for literals that do not belong to the base type and
for out of range values. For example:

subtype REX is CHARACTER range 'A'..'F';
type HEX2 is ('A', 'B', 'C', 'D', '3', 'F');
package HEX 10 is new ENUMERATION IO(BX);
package 0EX2 10 is new ENUMERATION 0IO(2X2);

subtype HEX2S is 23X2 range 'A'..'C';
package HEX2S 10 is new ENUMERATION IO(3EX2S);

X : REX;
X2S : HEX2S;

If the input contains 'Z', HEX_IO.GET(X) raises DATAERROR (as would HEX2_IO.GET(X2S)),
tiot CONSTRAINTERROR (as one might expect). If the input contains 'F', however, HEX2-

IO.GET(X2S) will raise CONSTRAINT ERROR, and HEX2S_1O.GET(X2S) will raise DATA- "-

-ERROR.

S4. The RM says that the effect of instantlating ENUMERATION_10 with an integer type is
r.defined. An implementation can check to see if ENUMERATION_1O has been instantiated

mth an integer type by using the following code:

declare
VAL constant STRING := ENUM'IMAGE(ENUN'VAL(0));

begin
if VAL(1) = ' ' or VAL(l) = '-' then
en fraise USEERROR; -- integer type used

," end if;

end:

Note that no enumeration literal can begin with either a space or a minus sign. Moreover, zero
is a valid position number for every enumeration and integer type.
Changes from July 1982

s5. The case of the output is specified with the enumeration type TYPESET rather than with a
BOOLEAN value.

se. The variable controlling the default output case Is named DEFAULT..SETTING instead of
DEFAULT_IS_LC.

S7. PUT's formal parameter controlling the case of the output is called SET instead of LC.

14r2

Version 1 (Dec 86) 14.3.9 Input-Output for Enumeration Types

Changes from July 1980

s. Variables controlling the default values for width and case are provided.
Sg. GET skips leading blanks, line terminators, and page terminators.
slo. Additional GET and PUT procedures are specified that operate on STRINGs rather than
files.
Exception Conditions

GET Exceptions (file Input)

El. STATUSERROR Is raised if the file is not open.

E2. MODE ERROR is raised if the file's mode is not INFILE.
E3. DATAERROR is raised if.

* the input does not have the syntax of a character literal or identifier. t.
* the literal or Identifier is not a value of the base type used to instantiate

ENUMERATIONIO.
* the literal being input lies outside the range specified for the subtype used in

the instantiation of ENUMERATIONJO. p

E4. CONSTRAINTERROR is raised if the value read does not satisfy the actual parameters
range and the actual parameter's range Is a subset of the range of the subtype used to
instantiate ENUMERATION 10.

E5. ENDERROR is raised if the only characters read are spaces, horizontal tabulation
characters, line terminators, and page terminators.

GET Exceptions (string Input)

E6. DATAERROR is raised if:

* the input does not have the syntax of a character literal or identifier
" the literal or identifier is not a value of the base type used to instantiate

ENUMERATIONIO.
" the value being input lies outside the range specified for the subtype used in

the Instantation of ENUMERATION 10.

E7. CONSTRAINTERROR is raised if the value read does not satisfy the actual parameter's
range and the actual parameter's range is a subset of the range of the subtype used to
instantiate ENUMERATIONJO.

E8. ENDERROR is raised if the only characters read are spaces and horizontal tabulation
characters, or if the Input string is null.

PUT Exceptions (file output)

E9. STATUS-ERROR is raised if the file is not open.
El0. MODE.,ERROR is raised if the file's mode is not INFILE.
Eli. LAYOUT ERROR is raised (RM 14.3.5/10) It the line length (LL) for the file is fixed (i.e.,

not zero), and:

14-63 II

a.' , _, , ,p,:-: ,,..:.:.,.. '.:.-.:.. .. ,:.-.,: .-.. :.-. S , ,. -. -.. , .- :,,

14.3.9 Input-Output for Enumeration Types Version 1 (Dec 86)

" LL < the length of the identifier or character literal to be output (whether or not
WIDTH is zero), or

" WIDTH > LL.

E12. CONSTRAINTERROR is raised:

" if the value of ITEM lies outside the range of the subtype used to instantiate
ENUMERATION_10.

" when the value specified for WIDTH is negative or exceeds FIELD'LAST, and
FIELD'LAST < INTEGER'LAST.

PUT Exceptions (string output)

E13. LAYOUTERROR is raised if the length of the string variable is less than the minimum
required length for the value being output (RM 14.3.5/10).

E14. CONSTRAINTERROR is raised if the value of ITEM lies outside the range of the subtype
used to instantiate ENUMERATION_10.

rest Objectives and Design Guidelines

TI. Check that GET and PUT raise STATUS_ERROR If the file is not open.

T2. Check that ENUMERATION_10 can be instantiated for predefined and user-defined
enumeration types.
Implementation Guideline: Include an instantiation for BOOLEAN.

r3 Check that GET and PUT for enumeration types (other than character; see RM 14.3.6) are
not available without instantiating ENUMERATIONJO.

• For GET from a file, check that the last nonblank character in a file may be read without
r3ising ENDERROR, and that after the last character of the file has been read, any
a.'empt to read further characters will raise ENDERAOR.

,ec, that ENDERROR is raised by GET when the only remaining characters in a file are
spaces. tabulation characters, line terminators, and page terminators.

- heck that GET from a file:

correctly reads identflers and character literals, i.e., distinguishes the case in
character literals but not in identifiers.
Imrno4eptation Guideline: Use the predefined BOOLEAN and CHARACTER types as well as
usar-defined types.

reads until the syntax for an Identifier or character literal is not satisfied.
Implementation Guideline: This check should not raise DATAERROR.
Imolementation Guideline: A character literal should be followed by an apostrophe; an identifier
should -e terminated by a line terminator and by a character that is not a letter, digit. or
underscore.

" uses the default input file if no file Is explicitly specified.

" skips leading spaces, horizontal tabulation characters, line terminators, and
page terminators.

" raises MODE_ERROR if the mode of the file is not INFILE.

" raises STATUS ERROR if the file Is not open (see TI). - .

14-64
V % ., '.

Version I (Dec 86) 14.3.9 Input-Output for Enumeration Types

" raises CONSTRAINTERROR if the value read is out of the range of the ITEM
parameter, but within the range of the subtype used to instantiate
ENUMERATION IO.
"raises DATA-ERROR If: .

" the lexical element retrieved is not a value of the enumeration type.

" the lexical element is not in the range of the subtype used to Instantiate
ENUMERATION_10.

* the lexical element Is an identifier terminated with two underscores
(reading stops after the first underscore).

* the Input is a character literal, but with the terminating apostrophe
omitted.

T6. Check that PUT to a file: 0

" outputs identifiers in lower case if LOWERCASE is specified explicitly or as
the value of DEFAULTSETTING, but performs no conversion on character
literals.

* outputs identifiers in upper case if UPPERCASE is specified explicitly or as
the value of DEFAULTSETTING, but performs no conversion on character
Ilterals.

" outputs character literals between single quote marks.

" uses the minimum field required if WIDTH is too small or zero, and the line
length Is sufficiently large.

" pads the output on the right with spaces if the value of WIDTH is greater than
the minimum width required.

" has the effect of NEWLINE as well as the effect of outputting the item when
the number of characters to be output Is less than the maximum line length,
but when added to the current column number exceeds the maximum.

* uses the value of DEFAULTWIDTH and DEFAULTSETTING when no
explicit parameter is provided.

" uses the default output file if no file is explicitly specified.

" raises MODEERROR if the mode of the file is not OUTFILE.

" raises STATUSERROR if the file is not open (see Ti).

" raises CONSTRAINTERROR if:

* the specified value of WIDTH is less than zero or greater than
FIELD'LAST.

* the value of ITEM Is outside the range of the subtype used to instantiate
ENUMERATION_10.

" raises LAYOUTERROR when a nonzero line length, LL, is specified for the
output file and:

* WIDTH Is greater than LL (since at least WIDTH characters must be
output), or

14-65 0

14.3.9 Input-Output for Enumeration Types Version 1 (Dec 86) ,-

* the minimum width required for the output value is greater than LL.

Check that DEFAULTWIDTH can only be assigned non-negative values not exceeding
FIELD'LAST.

17. Check that PUT to a string:

* outputs identifiers in lower case if LOWERCASE is specified explicitly or as
the value of DEFAULT_SETTING, but performs no conversion on character
literals.

* outputs identifiers in upper case if UPPERCASE is specified explicitly or as
the value of DEFAULTSETTING, but performs no conversion on character
literals.

" outputs character literals between single quote marks.

" pads the output on the right with spaces if the length of the string is greater
than the minimum width required.

" uses the value of DEFAULT_SETTING when no explicit parameter is
provided.

" raises CONSTRAINTERROR if the value of ITEM is outside the range of the
subtype used to instantiate ENUMERATIONJO.

* raises LAYOUT ERROR when the minimum width required for the output
value is greater than the length of the string.

TS. Check that GET from a string:

" correctly reads identifiers and character Iterals, i.e., distinguishes the case in
character literals, but not In identifiers.
Implementlaton Guideline: Use the predefined BOOLEAN and CHARACTER types as well as
user.defind types.

" skips leading spaces and horizontal tabulation characters.

" reads until the syntax of an identifier or a character literal is no longer -y.
satisfied.

" sets LAST to the correct value.

" raises CONSTRAINT_ERROR if the value read is out of the range of the ITEM
parameter, but within the range of the subtype used to instantiate
ENUMERATIONJIO.

' raises DATAERROR if.

" the lexical element retrieved is not a value of the enumeration type.

" the lexical element Is not in the range of the subtype used to instantiate
ENUMERATION_10.

* the lexical element Is an Identifier terminated with two underscores
(reading stops after the first underscore).

" the input is a character literal, but with the terminating apostrophe
omitted.

" raises ENDERROR If the input string Is null or contains only spaces and
horizontal tabulation charcters.

1, , """".,

Version 1 (Dec 86) 14.4 Exceptions in Input-Output

NT9. Check the names of the formal parameters.

14.3.10 Specification of the Package TextjlO

The implications of the TEXT_10 package have been discussed in IG 14.3 and IG
14.3.1-9.

h

14.4 Exceptions in Input-Output

Semantic Ramifications

si. Note that DEVICEERROR is not restricted to READ or WRITE. An implementation may
raise this exception for any operation on a device which, for example, has been physically
removed.

S2. Note that the RM does not preclude the possibility of an operation encountering situations
that permit one of several exceptions to be raised, depending on the implementation - e.g.,
whether USEERROR or DEVICEERROR is raised when attempting to write a tape whose
write ring has been left off is Implementation-dependent. It is implicit in the nature of exceptions
that only one will be raised. The RM states, "If more than one error condition exists, then the
corresponding exception that appears earliest In the following list is the one that is raised" (RM
14.4/1). This implies that each language-defined exception has a priority assigned to it. Note
that Implementation-defined exceptions have no priority defined by the language. The priority of
each exception should, however, be detailed in Appendix F.

s3. The RM does not restrict the exceptions that each operation may raise to those explicitly
listed in the IO EXCEPTIONS package. In particular, since it seems likely that OPEN and
CREATE may dynamically allocate data structures that describe the external file status as well
as associated buffers, we have assumed that such procedures may propagate STORAGE-
_ERROR (RM 11.1/8). Other exceptions may be propagated as well, since no rule in RM 14
forbids this. Full details should be listed in Appendix F.

Changes from July 1982

s4. There are no significant changes.

Changes from July 1960

$s. The 1980 version of the RM did not have an equivalent section.

Exception Conditions

The exceptions discussed here have been covered in the preceding sections (IG 14.2.1/E
through IG 14.3.9/E).

Test Objectives and Design Guidelines

The tests for exceptions are covered in the sections describing the operations that raise
them.

I1"

) 14-67

V

14.6 Low Level Input-Output Version 1 (Dec 86)

14.5 Specification of the Package IO Exceptions

The implications have been discussed in IG 14.4.

14.6 Low Level Input-Output

Semantic Ramifications

si. The procedures SENDCONTROL and RECEIVE-CONTROL are totally implementation-
dependent (including the types of the parameters).
Changes from July 1962

S2. There are no significant changes.

Changes from July 1980

s3. There are no significant changes.
Test Objectives and Design Guidelines

TI. Check that the procedures provided by the Implementation work as specified.

Check that the prooedures may be called with parsneters of the types specified by the
implementation. -

14-0.

.%"

'-'

p o.

y,::
14-611 "'-"

ACVC IMPLEMENTERS' GUIDE IMPROVEMENT PROPOSAL

(See Instructions - Reverse Side)

NAME OF SUBMITTING ORGANIZATION VENDOR

SUSER

ADDRESS (Street, City, State, ZIP Code) MANUFACTURER

El OTHER (Specify):

PROBLEM AREAS

a. Paragraph Number and Wording:

-..

b. Recommended Wording:

kke

c. Reason/Rationale for Recommendation: .<

,..

NAME OF SUBMITTER (Last, First, MI) WORK TELEPHONE NUMBER

MAILING ADDRESS (Street. City, State, ZIP Code) DATE OF SUBMISSION

4, **?. .' .. '

INSTRUCTIONS:

In a continuing effort to improve the ACVC Implementers' Guide, the ACVC Maintenance Organization
provides this form for use in submitting comments and suggestions for improvements. All users .
of the Implementers' Guide are invited to provide suggestions. In the PROBLEM AREAS block, %

be as specific as possible about particular problem areas such as wording that is ambiguous or
incorrect, and give proposed wording changes that would alleviate the problems. An acknowledge-
ment will be mailed to you to let you know that your comments have been received and are being
considered.

Please fold this form along the lines indicated, tape along the loose edges, affix proper postage, ,t
and mail ft.

-

-'S

(Fold along this line)

..

I.

-..

(Fold along this line)

AFFIX-

POSTAGE-'
HERE'

5%

ASD/SCOLi
WRIGHT-PATTERSON AFB OH 45433-6503.,

ATTN: AMO MANAGERH S..

S..

-~ 9'

p

'S

:- .~ -

FrFF
~ ~*1a-. -~ -.

J.

S
%q~ ~

* %'%

IL. a0

-'S *'S,qcgcg K.

'S% ~

''p
-'S
'a.'
a" ~

~mAI~n.
S

-'S

a-.
.5..'
5. S..-S.

"-'S...

0/cL
S

